University of Groningen Theory and History of Geometric Models Polo

Total Page:16

File Type:pdf, Size:1020Kb

University of Groningen Theory and History of Geometric Models Polo University of Groningen Theory and history of geometric models Polo-Blanco, Irene IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below. Document Version Publisher's PDF, also known as Version of record Publication date: 2007 Link to publication in University of Groningen/UMCG research database Citation for published version (APA): Polo-Blanco, I. (2007). Theory and history of geometric models. [s.n.]. Copyright Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons). The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license. More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne- amendment. Take-down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum. Download date: 04-10-2021 Chapter 1 Models of surfaces, a Dutch perspective 1.1 Introduction The collection of more than 100 mathematical models in the University of Groningen gives rise to many questions. When were these models made? Who built them and how? From a local perspective, one may also ask whether the models were made in Groningen. If not, where did they come from? Such a big collection must have been rather expensive. Why did the University spend money on this? Who was responsible for buying the models? And finally, what was their use? Many of the models turn out to be sold by the German companies L. Brill and M. Schilling in the second half of the 19th century. Much information on the mathematics and the building of models in Germany at that time can be found in the literature ([F], [Dy] and [Sch1]). We shall next give a short introduction to the topic, and shall dedicate the remaining part of the chapter to the story of the mathematical models in The Netherlands, and more particularly, in Groningen. 1.2 Mathematical models in Germany In the second part of the 19th century, a wave of innovations occurred in western Europe and the United States. Germany together with the United States came ahead of the innovating countries, where science and engineering 1 2 CHAPTER 1. MODELS OF SURFACES, A DUTCH PERSPECTIVE was combined for the first time ([McN] and [Chr]). We find an example of this fruitful combination in the polytechnic schools in Germany. In particular Felix Klein and Alexander von Brill, professors of mathematics at the Poly- technic School of M¨unich, and Walter von Dyck among others, constructed mathematical models to make the visualization of geometrical objects eas- ier. The building of models became rather popular among mathematicians in Germany during the second half of the 19th century and the beginning of the 20th. 1.2.1 Brill and Schilling The great period of model building started in the 1870’s, when Ludwig Brill, brother of Alexander von Brill, began to r and sell copies of some mathe- matical models. A firm under the name L. Brill was founded in 1880 for the production of models. The company was established in Darmstadt and in 1899 it was taken over by Martin Schilling who renamed it. Under this new name, the firm was first located in Halle a. d. Saale, but later moved to Leipzig. Figure 1.1: Cover of Schilling’s catalogue [Sch1]. 1911. By 1904, Martin Schilling had already produced 23 series of models. In that year, the firm published a book [Sch2] with the mathematical explana- 1.2. MATHEMATICAL MODELS IN GERMANY 3 tions of the models existing at the time. Some of these texts have been used to develop chapters 2, 3 and 4. The 1911 catalogue of Schilling [Sch1] describes 40 series consisting of almost 400 models and devices. But by 1932 Martin Schilling informed the mathematical institute at G¨ottingen that: “in the last years, no new models appeared” ([F]). These models often represent objects from differential geometry, algebraic surfaces or instruments for physics. In Schilling’s catalogue [Sch1], the models are given a name and a short mathematical explanation. Sometimes this is accompanied with a drawing, as shown in Figure 1.2. Figure 1.2: Drawings of models: Series XXV, nr. 4 and Series VIII, nr. 1 from Schilling’s catalogue [Sch1]. Another drawing from the catalogue is displayed in Figure 1.3, alongside the corresponding model (in poor condition) in the Groningen collection. Figure 1.3: Model nr. 1, Series XII: drawing from [Sch1] and model in the Groningen collection. Another collection and catalogue is the one of 1892 [Dy] of Walter von Dyck. He was a student of Klein at M¨unich. Under the direction of von 4 CHAPTER 1. MODELS OF SURFACES, A DUTCH PERSPECTIVE Dyck models were created (see advertisement in Figure 1.4 on the left). Still another catalogue is the one of H. Wiener [W2]. 1.2.2 Felix Klein, use and popularization of models. During the great period of model building, many models were constructed un- der the direction of Klein. Klein was appointed at the Technische Hochschule in M¨unich in 1875. He and his colleague Alexander von Brill taught there advanced courses to several excellent students including Walter von Dyck and Karl Rohn. Klein lectured at the University of G¨ottingen from 1886 until he retired in 1913 (see [Yo]). Klein developed his love for geometric models under the influence of Al- fred Clebsch. Klein believed strongly in the utility of models and other illustrative objects for didactic purposes ([Yo]). He not only played an im- portant role in the construction of mathematical models, but also was a key figure in their popularization. At the end of his life he was proud to be able to say that no German university was without a proper collection of mathe- matical models ([Yo]). The idea of model building reached many universities in Europe and the United States. Klein brought the topic to the new world when he presented many of the models (including a model of the Clebsch diagonal surface) at the World Exhibition in Chicago in 1893. During the congress of mathematics (part of this World Exhibition), Klein gave a series of talks [Kl]. In several of them he referred to the models. We quote Klein’s lecture at the Chicago Exhibition. The importance he attributed to the construction of such models, and the purpose he attributed to them is expressed by him as follows: The principal effort has been to reduce the difficulty of mathema- tical study by improving the seminary arrangements and equip- ments... [...]... Collections of mathematical models and courses in drawing are calculated to disarm, in part at least, the hostil- ity directed against the excessive abstractness of the university instruction. [Kl] 1.2.3 Design and building of the models The designers of the mathematical models were often students of Alexander von Brill and Felix Klein (see [Po-Za]). The latter believed that students were 1.3. MODELS IN THE NETHERLANDS 5 not merely pupils, but collaborators ([Kl]), and instigated them to design and build some of the models. An example of this is the series of 20 models representing singularities of cubic surfaces that Carl Rodenberg, a student of Klein, presented along with his 1878 thesis (these models are now Series VII in Schilling’s catalogue). Another example of this collaboration with students is Karl Rohn. He designed several models, among which are three plaster models of Kummer surfaces with four, eight and sixteen real double points (part of Series II in [Sch1]). Rohn also designed the ruled surfaces of degree four discussed in Section 1.5.2 and Chapter 4. For a list of the students who designed models see [Sch1] or [Po-Za]. Once a geometric object was mathematically conceived, how could one realize it as an actual physical model? How is it possible that the results are so accurate and precise? Little has been found about the actual technique used to build the models. The two references that we found are a recipe for modelling in clay ([F]) and a mechanical construction of a model of the Weierstrass sigma function ([Sny]). Nowadays, there exist 3D printers for models which can create a plaster or bronze model of a surface starting from its equation (see [*] and [**]). 1.3 Models in The Netherlands 1.3.1 An overview More than half of the Dutch universities keep some collection of Brill’s or Schilling’s models. We briefly describe some of them, namely the ones located at the Universities of Amsterdam, Leiden and Utrecht. 1. University of Amsterdam. The University of Amsterdam keeps the largest collection of mathematical models in The Netherlands. It con- sists of more than 180 models, most of them from the collections of Brill and Schilling. The University Museum of Amsterdam has made a detailed inventory of their collection. Most of the plaster mod- els and many of the string ones have been restored. More detailed information of this collection can be found at the online catalogue http://opc.uva.nl:8080/.
Recommended publications
  • University of Groningen Theory and History
    University of Groningen Theory and history of geometric models Polo-Blanco, Irene IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below. Document Version Publisher's PDF, also known as Version of record Publication date: 2007 Link to publication in University of Groningen/UMCG research database Citation for published version (APA): Polo-Blanco, I. (2007). Theory and history of geometric models. [s.n.]. Copyright Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons). The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license. More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne- amendment. Take-down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum. Download date: 07-10-2021 RIJKSUNIVERSITEIT GRONINGEN Theory and History of Geometric Models Proefschrift ter verkrijging van het doctoraat in de Wiskunde en Natuurwetenschappen aan de Rijksuniversiteit Groningen op gezag van de Rector Magnificus, dr.
    [Show full text]
  • An Inquiry Into Alfred Clebsch's Geschlecht
    ”Are the genre and the Geschlecht one and the same number?” An inquiry into Alfred Clebsch’s Geschlecht François Lê To cite this version: François Lê. ”Are the genre and the Geschlecht one and the same number?” An inquiry into Alfred Clebsch’s Geschlecht. Historia Mathematica, Elsevier, 2020, 53, pp.71-107. hal-02454084v2 HAL Id: hal-02454084 https://hal.archives-ouvertes.fr/hal-02454084v2 Submitted on 19 Aug 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. “Are the genre and the Geschlecht one and the same number?” An inquiry into Alfred Clebsch’s Geschlecht François Lê∗ Postprint version, April 2020 Abstract This article is aimed at throwing new light on the history of the notion of genus, whose paternity is usually attributed to Bernhard Riemann while its original name Geschlecht is often credited to Alfred Clebsch. By comparing the approaches of the two mathematicians, we show that Clebsch’s act of naming was rooted in a projective geometric reinterpretation of Riemann’s research, and that his Geschlecht was actually a different notion than that of Riemann. We also prove that until the beginning of the 1880s, mathematicians clearly distinguished between the notions of Clebsch and Riemann, the former being mainly associated with algebraic curves, and the latter with surfaces and Riemann surfaces.
    [Show full text]
  • From Riemann Surfaces to Complex Spaces Reinhold Remmert∗
    From Riemann Surfaces to Complex Spaces Reinhold Remmert∗ We must always have old memories and young hopes Abstract This paper analyzes the development of the theory of Riemann surfaces and complex spaces, with emphasis on the work of Rie- mann, Klein and Poincar´e in the nineteenth century and on the work of Behnke-Stein and Cartan-Serre in the middle of this cen- tury. R´esum´e Cet article analyse le d´eveloppement de la th´eorie des surfaces de Riemann et des espaces analytiques complexes, en ´etudiant notamment les travaux de Riemann, Klein et Poincar´eauXIXe si`ecle et ceux de Behnke-Stein et Cartan-Serre au milieu de ce si`ecle. Table of Contents 1. Riemann surfaces from 1851 to 1912 1.1. Georg Friedrich Bernhard Riemann and the covering principle 1.1∗. Riemann’s doctorate 1.2. Christian Felix Klein and the atlas principle 1.3. Karl Theodor Wilhelm Weierstrass and analytic configurations AMS 1991 Mathematics Subject Classification: 01A55, 01A60, 30-03, 32-03 ∗Westf¨alische Wilhelms–Universit¨at, Mathematisches Institut, D–48149 Munster,¨ Deutschland This expos´e is an enlarged version of my lecture given in Nice. Gratias ago to J.-P. Serre for critical comments. A detailed exposition of sections 1 and 2 will appear elsewhere. SOCIET´ EMATH´ EMATIQUE´ DE FRANCE 1998 204 R. REMMERT 1.4. The feud between G¨ottingen and Berlin 1.5. Jules Henri Poincar´e and automorphic functions 1.6. The competition between Klein and Poincar´e 1.7. Georg Ferdinand Ludwig Philipp Cantor and countability of the topology 1.8.
    [Show full text]
  • The Transcendence of Pi Has Been Known for About a Century
    Results in Mathematics Contents 117 J. Bair/F. Jongmans Volume 7/No. 2/1984 Some remarks about recent result Pages 117-250 on the asymptotic cone 119 W. Beekmann/S. C Chang On the structure of summability fields 130 P. Bundschuh/1. Shiokawa A measure for the linear inde- pendence of certain numbers 145 P. L. Butzer/R. J. Nessel/E. L. Stark Eduard Helly (1884-1943) in memoriam 154 A. S. Cavaretta jr./H. P. Dikshit/ A. Sharma An extension of a theorem of Walsh 164 R. Fritsch The transcendence of ir has been known for about a century-but who was the man who discovered it? 184 Y. Hirano/H. Tominaga On simple ring extensions gener- ated by two idempotents 190 J. Joussen Eine Bemerkung zu einem Satz von Sylvester 192 H. Karzel/C. J. Maxson Fibered groups with non-trivial centers 209 H. Meiert G. Rosenberger Hecke-Integrale mit rationalen periodischen Funktionen und Dirichlet-Reihen mit Funk• tionalgleichung 234 G. Schiffels/M. Stemel Einbettung von topologischen Ringen in Quotientenringe Short Communications on Mathematical Dissertations 249 G. BaszenskijW. Schempp TAXT Konvergenzbeschleunigung von Orthogonal-Doppelreihen The Journal Copyright RESULTS IN MATHEMATICS It is a fundamental condition of publication that submitted RESULTATE DER MATHEMATIK manuscripts have not been published, nor will be simulta- publishes mainly research papers in all Heids of pure and applied mathematics. In addition, it publishes summaries of any mathematical neously submitted or published elsewhere. By submitting a field and surveys of any mathematical subject provided they are de- manuscript, the authors agree that the Copyright for their signed to advance some recent mathematical development.
    [Show full text]
  • Sieb Band 12
    Ralf Krömer und Gregor Nickel (Hrsg.) Band 12 • 2019 SieB – Siegener Beiträge zur Siegener Beiträge zur Geschichte und Philosophie Geschichte und Philosophie der Mathematik SieB der Mathematik Bd. 12 (2019) Wilhelm Fiedler (1832 – 1912) war Lehrer an der höheren Gewerbe- schule Chemnitz, dann Professor an den polytechnischen Schulen in Prag und Zürich, der heutigen ETH. Er vertrat das Fach darstellende Geometrie, dem damals in der Ausbildung zukünftiger Ingenieure eine Schlüsselrolle zukam. Aber seine Sicht der darstellenden Geometrie war viel umfassender; die gesamte Geometrie sollte darstellend wer- den, wie er sich ausdrückte. In Zürich bildete Fiedler auch zukünftige Fachlehrer aus und entwickelte mit seiner Konzeption der Geometrie und ihres Unterrichts einen nachhaltigen Einfuss auf das höhere Schul- wesen seiner Wahlheimat, der auch außerhalb der Schweiz breit wahr- genommen wurde. Fiedler korrespondierte mit sehr vielen Partnern in der Fachwelt, seine erhaltene und im Archiv der ETH aufbewahrte Korrespondenz umfasst . Confalonieri / P.-M. Schmidt / K. Volkert (Hrsg.) Schmidt / K. Volkert . Confalonieri / P.-M. ca. 1.800 Briefe. Im vorliegenden Band wird erstmals hieraus eine grö- S Der Briefwechsel von Wilhelm Fiedler ßere Auswahl veröffentlicht. In den abgedruckten Briefen geht es u. a. um den Kampf für die Geometrie, die in der zweiten Hälfte des 19. Jhs. vor allem an den Universitäten an Bedeutung verlor, um Aufbau und Funktion eines technisch-gewerblichen Bildungswesens, eine Aufgabe, die in Italien nach der Vereinigung drängend war, um Netzwerke und Stellenbesetzungen, aber auch um einige große politische Ereignisse der zweiten Hälfte des 19. Jhs. wie den deutschen Krieg von 1866 und die Einigungen von Deutschland und Italien. Es entsteht so ein authentisches Bild, das unsere Auffassung von der Entwicklung der Mathematik in der zweiten Hälfte des 19.
    [Show full text]
  • University of Groningen Theory and History of Geometric Models
    University of Groningen Theory and history of geometric models Polo-Blanco, Irene IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below. Document Version Publisher's PDF, also known as Version of record Publication date: 2007 Link to publication in University of Groningen/UMCG research database Citation for published version (APA): Polo-Blanco, I. (2007). Theory and history of geometric models. s.n. Copyright Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons). Take-down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum. Download date: 12-11-2019 RIJKSUNIVERSITEIT GRONINGEN Theory and History of Geometric Models Proefschrift ter verkrijging van het doctoraat in de Wiskunde en Natuurwetenschappen aan de Rijksuniversiteit Groningen op gezag van de Rector Magnificus, dr. F. Zwarts, in het openbaar te verdedigen op vrijdag 4 mei 2007 om 14:45 uur door Irene Polo-Blanco geboren op 5 april 1977 te Vitoria, Spanje Promotores: Prof. dr. M. van der Put Prof.
    [Show full text]
  • Declaralion of Fhe Professors of the Universities Andtechnical Colleges of the German Empire
    Declaralion of fhe professors of the Universities andTechnical Colleges of the German Empire. * <23erltn, ben 23. Öftober 1914. (grfftfcung ber i)0d)fd)uttel)rer Declaration of the professors of the Universities and Technical Colleges of the German Empire. ^Btr £e£rer an ®eutfd)tanbg Slniöerjttäten unb iöod)= We, the undersigned, teachers at the Universities fcfyulen bienen ber <2Biffenfd^aff unb treiben ein <2Qett and Technical Colleges of Qermany, are scien­ be§ •Jrtebeng. 'tHber e3 erfüllt ung mit ©ttrüftung, tific men whose profession is a peaceful one. But bafj bie <5eittbe ©eutfcbjanbg, (Snglanb an ber Spttje, we feel indignant that the enemies of Germany, angeblich ju unfern ©unften einen ©egenfatj machen especially England, pretend that this scientific spirit wollen ättnfdjen bem ©elfte ber beutfd)en <2Biffenfct)aff is opposed to what they call Prussian Militarism unb bem, toag fte benpreufjif^enSOftlitariSmuS nennen. and even mean to favour us by this distinction. 3n bem beutfcfyen ioeere ift fein anberer ©eift als in The same spirit that rules the German army per- bem beutfd>en 93oKe, benn beibe ftnb eins, unb t»ir vades the whole German nation, for both are one gehören aucb, bagu. Slnfer £>eer pflegt aud) bie and we form part of it. Scientific research is culti- •JBiffenfcfyaft unb banft t^>r nicfyt gutn »enigften feine vated in our army, and to it the army owes £eiftungen. ©er ©tenft im &eere tnacfyt unfere Sugenb a large part of its successes. Military service tüct>tig aud) für alte "SBerfe be3 "JriebenS, aud) für trains the growing generation for all peaceful bie *3Biffenfd)aft.
    [Show full text]
  • To “Applied” Mathematics: Tracing an Important Dimension of Mathematics and Its History
    Mathematisches Forschungsinstitut Oberwolfach Report No. 12/2013 DOI: 10.4171/OWR/2013/12 From “Mixed” to “Applied” Mathematics: Tracing an important dimension of mathematics and its history Organised by Moritz Epple, Frankfurt Tinne Hoff Kjeldsen, Roskilde Reinhard Siegmund-Schultze, Kristiansand 3 March – 9 March 2013 Abstract. The workshop investigated historical variations of the ways in which historically boundaries were drawn between ‘pure’ mathematics on the one hand and ‘mixed’ or ‘applied’ mathematics on the other from about 1500 until today. It brought together historians and philosophers of mathematics as well as several mathematicians working on applications. Emphasis was laid upon the clarification of the relation between the historical use and the historiographical usefulness and philosophical soundness of the various cate- gories. Mathematics Subject Classification (2010): 01A40 to 01A99. Introduction by the Organisers For a long time, research in the history of mathematics has mostly focused on developments in pure mathematics. In recent years, however, some significant research has changed this situation. The conference brought together historians of mathematics actively involved in this reorientation, in order to take stock of what has been achieved, and to identify historical problems yet to be solved. In having done so, the organizers hope to have advanced the general understanding of the relations of mathematics with neighbouring scientific fields, and with technological, economic and social practices involving mathematical methods, in the period since ca. 1500. A fundamental historical insight provided a starting point for planning this meeting: There is no, and there has never been, a once and for all fixed notion of ‘applied’ mathematics.
    [Show full text]
  • An Inquiry Into Alfred Clebsch's Geschlecht
    “Are the genre and the Geschlecht one and the same number?” An inquiry into Alfred Clebsch’s Geschlecht François Lê∗ Postprint version, April 2020 Abstract This article is aimed at throwing new light on the history of the notion of genus, whose paternity is usually attributed to Bernhard Riemann while its original name Geschlecht is often credited to Alfred Clebsch. By comparing the approaches of the two mathematicians, we show that Clebsch’s act of naming was rooted in a projective geometric reinterpretation of Riemann’s research, and that his Geschlecht was actually a different notion than that of Riemann. We also prove that until the beginning of the 1880s, mathematicians clearly distinguished between the notions of Clebsch and Riemann, the former being mainly associated with algebraic curves, and the latter with surfaces and Riemann surfaces. In the concluding remarks, we discuss the historiographic issues raised by the use of phrases like “the genus of a Riemann surface”—which began to appear in some works of Felix Klein at the very end of the 1870s—to describe Riemann’s original research. Keywords: History of geometry; Alfred Clebsch; Bernhard Riemann; genus; connectivity; algebraic curves MCS: 01A55, 01A85, 14-03, 30-03, 51-03 This story has been told many times. Around 1880, while he was seeking to clarify and continue Lazarus Fuchs’s work on linear differential equations, Henri Poincaré recognized the importance of some special complex functions which he proposed to call Fuchsian functions. On June 12 1881, after having read Poincaré’s first papers on these functions, [Poincaré 1881c], Felix Klein wrote him a letter (the first of a long series) where he explained the similarity between these papers and the research on elliptic functions and algebraic equations that he had done shortly before, [Klein 1879a,b,c,d,e, 1880].
    [Show full text]
  • RM Calendar 2018
    Rudi Mathematici x3 – 6’138 x2 + 12’557’564 x – 8’563’189’272 = 0 www.rudimathematici.com 1 1 M (1803) Guglielmo Libri Carucci dalla Sommaja RM132 (1878) Agner Krarup Erlang Rudi Mathematici (1894) Satyendranath Bose RM168 (1912) Boris Gnedenko 2 T (1822) Rudolf Julius Emmanuel Clausius (1905) Lev Genrichovich Shnirelman (1938) Anatoly Samoilenko 3 W (1917) Yuri Alexeievich Mitropolsky January 4 T (1643) Isaac Newton RM071 5 F (1723) Nicole-Reine Étable de Labrière Lepaute (1838) Marie Ennemond Camille Jordan Putnam 2003, A1 (1871) Federigo Enriques RM084 Let n be a fixed positive integer. How many ways are (1871) Gino Fano there to write n as a sum of positive integers, n = a1 + 6 S (1807) Jozeph Mitza Petzval a2 + … + ak, with k an arbitrary positive integer and a1 (1841) Rudolf Sturm ≤ a2 ≤ … ≤ ak ≤ a1+1? For example, for n=4 there are 7 S (1871) Felix Edouard Justin Émile Borel four ways: 4; 2+2; 2+1+1, 1+1+1+1. (1907) Raymond Edward Alan Christopher Paley 2 8 M (1888) Richard Courant RM156 Invited to the Great Ball of Scientists... (1924) Paul Moritz Cohn ... Ampere was following the current. (1942) Stephen William Hawking 9 T (1864) Vladimir Adreievich Steklov How do mathematicians do it? (1915) Mollie Orshansky Möbius always did it on the same side. 10 W (1875) Issai Schur (1905) Ruth Moufang If a man will begin with certainties, he shall end in 11 T (1545) Guidobaldo del Monte RM120 doubts; but if he will be content to begin with doubts, he (1707) Vincenzo Riccati shall end in certainties.
    [Show full text]
  • Georgia Augusta 6 | 2008 7 ZAHLEN, FORMELN, UNGELÖSTE RÄTSEL
    GEORGIA UGUSTA Wissenschaftsmagazin A der Georg-August-Universität Göttingen ZAHLEN, FORMELN, UNGELÖSTE RÄTSEL Ausgabe 6 · Dezember 2008 Herausgegeben vom Präsidenten der Universität in Zusammenarbeit mit dem Universitätsbund Göttingen GEORG-AUGUST-UNIVERSITÄT GÖTTINGEN Alumni Göttingen Internationale Alumni-Vereinigung Alumni Göttingen Internationale Alumni-Vereinigung Georg-August-Universität Göttingen Postanschrift Alumni Göttingen Georg-August-Universität Göttingen Wilhelmsplatz 1 · 37073 Göttingen Alumni Göttingen ist das internatio- Internet nale Netzwerk von Ehemaligen, www.alumni.uni-goettingen.de Absolventen und Studierenden al- ler Fachrichtungen, Wissenschaft- Alumni-Büro Bernd Hackstette · Geschäftsführer Alumni Göttingen e.V. lern, Mitarbeitern sowie Freunden Tel. 0551 / 39 13276 · Fax 0551 / 39 185380 und Förderern der Universität Göt- [email protected] tingen. Dieses Netzwerk wird ge- Susanne Schmidt · Sekretariat tragen von dem gemeinnützigen Tel. 0551 / 39 5380 · Fax 0551 / 39 185380 Verein Alumni Göttingen e.V., der [email protected] im Jahr 2001 gegründet wurde. Der Verein zählt inzwischen mehr als 3.000 Mitglieder und ermög- licht die kontinuierliche und le- bendige Teilhabe und das aktive Mitwirken an der Entwicklung der Georgia Augusta. EDITORIAL Zahlen, Formeln, ungelöste Rätsel Die Mathematik nimmt im System matik und von Göttingen als der der Wissenschaften eine »schil- Wiege der modernen Naturwis- lernde Stellung« ein, wie der Göt- senschaften. Die beeindruckende tinger Mathematiker Felix Klein es Ahnengalerie wird angeführt von einmal formulierte. Die von Carl Gauß, der über ein halbes Jahr- Friedrich Gauß als »Königin der hundert in Göttingen lebte und Wissenschaften« titulierte Mathe- forschte. Sein Wirken verhalf der matik gehört nicht zu den Natur- Disziplin und ihren Anwendungen wissenschaften, da sie keine empi- an der Göttinger Universität zu ei- rische Wissenschaft ist.
    [Show full text]
  • Felix Klein Professor Der Mathematik
    Niedersächsische Staats- und Universitätsbibliothek Göttingen Nachlass Felix Klein Professor der Mathematik 1849 – 1925 Provenienzen: Cod. Ms. F. Klein 1 . 22: Geschenk der Erben (Acc. 1926.6500; Acc. 1928.5381; Acc. 1930.3154) Cod. Ms. F. Klein 30 – 58: Geschenk von Walther Lietzmann (Acc. Mss. 1943.2) Cod. Ms. F. Klein 22 B / Beil.: Albert Einstein Estate (Acc. Mss. 1966.17) Cod. Ms. F. Klein 18 A / Beil.: Mathematisches Institut Göttingen (Acc. Mss. 1978.23) Cod. Ms. F. Klein 22 M: antiquarische Erwerbung (Acc. Mss. 1990.7) Cod. Ms. F. Klein 101 – 117: Mathematisches Institut Göttingen (Acc. Mss. 2000.24) Umfang: 33 Kästen, 1 Truhe Göttingen 2013 Inhaltsverzeichnis Seite Cod. Ms. F. Klein 1 – 7 3 Akten und Briefe (in der von F. Klein angelegten Ordnung; Verzeichnung nach Cod. Ms. F. Klein 23) Cod. Ms. F. Klein 8 – 12 11 Allgemeine Korrespondenz (1973 verzeichnet von Gerhart Unger; überarbeitet 2012) Cod. Ms. F. Klein 13 – 21 77 Entwürfe für Vorlesungen, Übungen, Vorträge (Verzeichnung nach Cod. Ms. F. Klein 23) Cod. Ms. F. Klein 22 87 Verschiedenes (Verzeichnung nach Cod. Ms. F. Klein 23) Cod. Ms. F. Klein 23-24 Ältere Nachlassverzeichnisse (Dieses Verzeichnis folgt im wesentlichen diesen beiden älteren Verzeichnissen.) Cod. Ms. F. Klein 25 – 29: nicht besetzt Cod. Ms. F. Klein 30 -58 89 Pädagogische Korrespondenz (erstmals – unter Nennung nur der wichtigsten Korrespondenzpartner - verzeichnet 1986) Cod. Ms. F. Klein 101 – 117 94 Urkunden, Medaillen, Varia Der Nachlass Felix Klein ist auch beschrieben in: Spezialinventar zur Geschichte der Mathematik und Naturwissenschaften an der Universität Göttingen von 1880 - 1933 : ein Führer zu den archivalischen Quellen / bearb.
    [Show full text]