Sieb Band 12

Total Page:16

File Type:pdf, Size:1020Kb

Sieb Band 12 Ralf Krömer und Gregor Nickel (Hrsg.) Band 12 • 2019 SieB – Siegener Beiträge zur Siegener Beiträge zur Geschichte und Philosophie Geschichte und Philosophie der Mathematik SieB der Mathematik Bd. 12 (2019) Wilhelm Fiedler (1832 – 1912) war Lehrer an der höheren Gewerbe- schule Chemnitz, dann Professor an den polytechnischen Schulen in Prag und Zürich, der heutigen ETH. Er vertrat das Fach darstellende Geometrie, dem damals in der Ausbildung zukünftiger Ingenieure eine Schlüsselrolle zukam. Aber seine Sicht der darstellenden Geometrie war viel umfassender; die gesamte Geometrie sollte darstellend wer- den, wie er sich ausdrückte. In Zürich bildete Fiedler auch zukünftige Fachlehrer aus und entwickelte mit seiner Konzeption der Geometrie und ihres Unterrichts einen nachhaltigen Einfuss auf das höhere Schul- wesen seiner Wahlheimat, der auch außerhalb der Schweiz breit wahr- genommen wurde. Fiedler korrespondierte mit sehr vielen Partnern in der Fachwelt, seine erhaltene und im Archiv der ETH aufbewahrte Korrespondenz umfasst . Confalonieri / P.-M. Schmidt / K. Volkert (Hrsg.) Schmidt / K. Volkert . Confalonieri / P.-M. ca. 1.800 Briefe. Im vorliegenden Band wird erstmals hieraus eine grö- S Der Briefwechsel von Wilhelm Fiedler ßere Auswahl veröffentlicht. In den abgedruckten Briefen geht es u. a. um den Kampf für die Geometrie, die in der zweiten Hälfte des 19. Jhs. vor allem an den Universitäten an Bedeutung verlor, um Aufbau und Funktion eines technisch-gewerblichen Bildungswesens, eine Aufgabe, die in Italien nach der Vereinigung drängend war, um Netzwerke und Stellenbesetzungen, aber auch um einige große politische Ereignisse der zweiten Hälfte des 19. Jhs. wie den deutschen Krieg von 1866 und die Einigungen von Deutschland und Italien. Es entsteht so ein authentisches Bild, das unsere Auffassung von der Entwicklung der Mathematik in der zweiten Hälfte des 19. Jhs. wesentlich bereichert Bd 12 (2019) • und korrigiert, und Informationen aus erster Hand zu einigen wichtigen Akteuren der mathematischen Gemeinschaft jener Zeit liefert. SieB Sara Confalonieri, Peter-Maximilian Schmidt, Klaus Volkert (Hrsg.) Der Briefwechsel von Wilhelm Fiedler mit Alfred Clebsch, Felix Klein und ISSN 2197-5590 italienischen Mathematikern Der Briefwechsel von Wilhelm Fiedler mit Alfred Clebsch, Felix Klein und italienischen Mathematikern SieB Siegener Beiträge zur Geschichte und Philosophie der Mathematik Herausgegeben von Ralf Krömer und Gregor Nickel Band 12 Sara Confalonieri, Peter-Maximilian Schmidt, Klaus Volkert Der Briefwechsel von Wilhelm Fiedler mit Alfred Clebsch, Felix Klein und italienischen Mathematikern Sara Confalonieri Université Paris Diderot 5 rue Thomas Mann 75013 Paris [email protected] Peter-Maximilian Schmidt ETH-Zürich Rämistrasse 101 CH-8092 Zürich [email protected] Klaus Volkert Didaktik und Geschichte der Mathematik Universität Wuppertal Gaußstr. 20, Raum F 12.06 D-42119 Wuppertal [email protected] Siegener Beiträge zur Geschichte und Philosophie der Mathematik Bd. 12 (2019) Herausgeber: Ralf Krömer (Wuppertal) und Gregor Nickel (Siegen) Rechte: bei den Herausgebern/den Autoren universi – Universitätsverlag Siegen 2019 Diese Publikation erscheint unter Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Natio- nalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb. dnb.de abrufbar. Umschlaggestaltung: Sebastian Schorcht Vertrieb: Druck: UniPrint, Universität Siegen universi – Universitätsverlag Siegen Am Eichenhang 50 gedruckt auf holz- und säurefreiem Papier 57076 Siegen [email protected] ISSN: 2197-5590 www.uni-siegen.de/universi Zum Geleit Mit dem nunmehr vorliegenden zwölften Band der Siegener Beiträge betreten wir Neuland: nachdem in der Reihe bisher vier Monographien und sieben Sammelbän- de mit Aufsätzen erschienen sind, legen wir nun erstmals eine historische Quel- lenedition vor. Geschichte der Mathematik, wie sie den Siegener Beiträgen neben der Philosophie der Mathematik ja zentrales Anliegen ist, ist ohne Quellen nicht denkbar, und die Arbeit an Quellen auf breiterer Basis ist kaum möglich, solange diese in Archiven schlummern und der wissenschaftlichen Öffentlichkeit nicht oder nur mit großer Mühe zugänglich sind. So ist es eine Selbstverständlichkeit, dass wir uns an der (mühsamen und leider nicht immer ebenso dankbaren, jedenfalls aber aus unserer Sicht eminent wichtigen) Aufgabe des Quellenedierens beteiligen. Wir freuen uns also sehr über die Initiative von Sara Confalonieri, Peter-Maximilian Schmidt und Klaus Volkert, einen ausgesprochen reichhaltigen Quellenbestand (großenteils aus dem Archiv der ETH in Zürich), nämlich den Briefwechsel von Wilhelm Fiedler (1831-1912) mit Alfred Clebsch, Felix Klein und italienischen Mathematikern, zu edieren — und wir danken sehr herzlich dafür, dass sie sich entschieden haben, dieses Projekt mit den Siegener Beiträgen zu realisieren. Angesichts der genannten Namen (hinter den “italienischen Mathematikern” ver- bergen sich Beltrami, Cremona, Padova, Torelli und Veronese) und des Umfangs von knapp 300 Seiten bzw. ca. 150 Briefen dürfte den Sachkundigen klar sein, dass es sich hier um eine Quellensammlung ersten Ranges für die Geschichte der Geometrie in der zweiten Hälfte des 19. Jahrhunderts handelt. Das Editorenteam hat hierbei vieles getan, diese Quellen den (insbesondere deutschsprachigen) Le- serinnen und Lesern leichter zugänglich zu machen. Das Werk beginnt mit einer Einführung in den Briefwechsel, gefolgt von einer biographischen Notiz sowie einem Schriftenverzeichnis Fiedlers. Jeder einzelne Briefwechsel wird jeweils begleitet von einer inhaltlichen Einführung, Kurzbiographie und Werkverzeichnis (in Auswahl) des jeweiligen Korrespondenten, weiterführender Literatur (ebenfalls in Auswahl) sowie – vielleicht besonders nützlich – einer Übersicht über die Korrespondenz, in der sich eine stichwortartige Inhaltsangabe zu jedem Brief findet. (Damit geht die Ausgabe im Allgemeinen deutlich über das hinaus, was die Kataloge der jewei- ligen Archive zur Verfügung stellen.) Die Briefe, die ursprünglich in italienischer ii Sprache verfasst waren, liegen hier (erstmals) in deutscher Übersetzung vor. Wir sind überzeugt, dass all dies die hier vorgelegte Ausgabe zu einem sehr nützlichen Instrument der Forschung macht, und wünschen ihr den entsprechenden Erfolg. Unser Dank gilt darüber hinaus Sebastian Schorcht für die Gestaltung der Ti- telgraphik, Robert Wengel und Fabian Amberg für die LATEX-Bearbeitung des Manuskripts sowie Kordula Lindner-Jarchow für die verlagsseitige Betreuung der Reihe. Ralf Krömer Gregor Nickel Inhaltsverzeichnis Zum Geleit i 1 Einleitung 1 2 Alfred Clebsch 13 3 Felix Klein 83 4 Eugenio Beltrami 155 5 Luigi Cremona 171 6 Ernesto Padova 229 7 Gabriele Torelli 267 8 Giuseppe Veronese 281 1 Einleitung Otto Wilhelm Fiedler (1832 – 1912) wirkte nach einer gut zehnjährigen Zeit als Lehrer an der Gewerbeschule Chemnitz am Polytechnikum Prag (1864 – 1867) und dann an der eidgenössischen polytechnischen Schule in Zürich (1867 – 1907). Er vertrat in erster Linie das Fach darstellende Geometrie, also ein Kernfach der Aus- bildung von Ingenieuren und Technikern. Aber Fiedler hatte eine viel umfassendere Vision von seinem Fach; er propagierte eine umfassende Synthese von darstellen- der und projektiver, von analytisch und synthetisch verfahrender Geometrie. Die darstellende Geometrie war für ihn eine Sichtweise, die in vielen Bereichen vorteil- haft eingenommen werden kann. „Alle Geometrie muss darstellend werden“, war die von Fiedler ausgegebene Parole. Fiedler lebte in einer Zeit, die von mannigfaltigen Kämpfen gekennzeichnet war. Das gilt sowohl für die allgemeine Geschichte mit den großen Ereignissen Deutscher Krieg und Deutsch-Französischer Krieg, mit der Einigung Italiens und der Grün- dung des Zweiten deutschen Kaiserreichs als auch für Zivilisation und Bildungs- wesen mit dem Aufkommen neuer Technologien wie Eisenbahnen, Elektrotechnik und Telegraphie. Kurz: Die Moderne wurde geboren. Die klassische humanistische Bildung bekam Konkurrenz durch das Aufkommen des realistischen insbesondere technischen Bildungswesens, in dem wiederum Zeichnen und darstellende Geome- trie eine wichtige Rolle spielten. Die Mathematik sah den Aufstieg von Göttingen zum Weltzentrum der Mathema- tik und damit zum Konkurrenten von Paris, das wiederum im letzten Drittel des Jahrhunderts von Berlin abgelöst wurde. Die Geometrie verlor ihre führende Rol- le, Analysis und Funktionentheorie drängten immer stärker in den Vordergrund. Strenge wurde zu einem Schlüsselbegriff des mathematischen Diskurses. Die Ge- genbewegung, die auf die Verteidigung der Geometrie und ihrer wichtigen Rolle im Gesamt der Mathematik abzielte – gar, wie im Falle Fiedlers gestützt, auf Vorstel- lungen eines organischen Aufbaus ihrer Theorie à la Steiner – geriet letztlich ins Hintertreffen; die Historiographie der Mathematik hat sie weitgehend vergessen. Wilhelm Fiedler fühlte sich oft isoliert. In Chemnitz, wo er Lehrer war, ist das leicht nachvollziehbar, in Prag und vor allem in Zürich jedoch hatte Fiedler Kollegen in 2 der Mathematik, mit denen er den Austausch hätte suchen können. Vermutlich ging es Fiedler aber mehr um Gleichgesinnte, weshalb ihm vor allem die Korre- spondenz als Mittel des Austauschs blieb. Die umfangreiche Korrespondenz von Fiedler, genauer heißt das, die an ihn gerichteten Briefe, sind erhalten und im Hochschularchiv der Eidgenössischen Technischen Hochschule, wie das Polytech- nikum seit
Recommended publications
  • An Inquiry Into Alfred Clebsch's Geschlecht
    ”Are the genre and the Geschlecht one and the same number?” An inquiry into Alfred Clebsch’s Geschlecht François Lê To cite this version: François Lê. ”Are the genre and the Geschlecht one and the same number?” An inquiry into Alfred Clebsch’s Geschlecht. Historia Mathematica, Elsevier, 2020, 53, pp.71-107. hal-02454084v2 HAL Id: hal-02454084 https://hal.archives-ouvertes.fr/hal-02454084v2 Submitted on 19 Aug 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. “Are the genre and the Geschlecht one and the same number?” An inquiry into Alfred Clebsch’s Geschlecht François Lê∗ Postprint version, April 2020 Abstract This article is aimed at throwing new light on the history of the notion of genus, whose paternity is usually attributed to Bernhard Riemann while its original name Geschlecht is often credited to Alfred Clebsch. By comparing the approaches of the two mathematicians, we show that Clebsch’s act of naming was rooted in a projective geometric reinterpretation of Riemann’s research, and that his Geschlecht was actually a different notion than that of Riemann. We also prove that until the beginning of the 1880s, mathematicians clearly distinguished between the notions of Clebsch and Riemann, the former being mainly associated with algebraic curves, and the latter with surfaces and Riemann surfaces.
    [Show full text]
  • From Riemann Surfaces to Complex Spaces Reinhold Remmert∗
    From Riemann Surfaces to Complex Spaces Reinhold Remmert∗ We must always have old memories and young hopes Abstract This paper analyzes the development of the theory of Riemann surfaces and complex spaces, with emphasis on the work of Rie- mann, Klein and Poincar´e in the nineteenth century and on the work of Behnke-Stein and Cartan-Serre in the middle of this cen- tury. R´esum´e Cet article analyse le d´eveloppement de la th´eorie des surfaces de Riemann et des espaces analytiques complexes, en ´etudiant notamment les travaux de Riemann, Klein et Poincar´eauXIXe si`ecle et ceux de Behnke-Stein et Cartan-Serre au milieu de ce si`ecle. Table of Contents 1. Riemann surfaces from 1851 to 1912 1.1. Georg Friedrich Bernhard Riemann and the covering principle 1.1∗. Riemann’s doctorate 1.2. Christian Felix Klein and the atlas principle 1.3. Karl Theodor Wilhelm Weierstrass and analytic configurations AMS 1991 Mathematics Subject Classification: 01A55, 01A60, 30-03, 32-03 ∗Westf¨alische Wilhelms–Universit¨at, Mathematisches Institut, D–48149 Munster,¨ Deutschland This expos´e is an enlarged version of my lecture given in Nice. Gratias ago to J.-P. Serre for critical comments. A detailed exposition of sections 1 and 2 will appear elsewhere. SOCIET´ EMATH´ EMATIQUE´ DE FRANCE 1998 204 R. REMMERT 1.4. The feud between G¨ottingen and Berlin 1.5. Jules Henri Poincar´e and automorphic functions 1.6. The competition between Klein and Poincar´e 1.7. Georg Ferdinand Ludwig Philipp Cantor and countability of the topology 1.8.
    [Show full text]
  • The Transcendence of Pi Has Been Known for About a Century
    Results in Mathematics Contents 117 J. Bair/F. Jongmans Volume 7/No. 2/1984 Some remarks about recent result Pages 117-250 on the asymptotic cone 119 W. Beekmann/S. C Chang On the structure of summability fields 130 P. Bundschuh/1. Shiokawa A measure for the linear inde- pendence of certain numbers 145 P. L. Butzer/R. J. Nessel/E. L. Stark Eduard Helly (1884-1943) in memoriam 154 A. S. Cavaretta jr./H. P. Dikshit/ A. Sharma An extension of a theorem of Walsh 164 R. Fritsch The transcendence of ir has been known for about a century-but who was the man who discovered it? 184 Y. Hirano/H. Tominaga On simple ring extensions gener- ated by two idempotents 190 J. Joussen Eine Bemerkung zu einem Satz von Sylvester 192 H. Karzel/C. J. Maxson Fibered groups with non-trivial centers 209 H. Meiert G. Rosenberger Hecke-Integrale mit rationalen periodischen Funktionen und Dirichlet-Reihen mit Funk• tionalgleichung 234 G. Schiffels/M. Stemel Einbettung von topologischen Ringen in Quotientenringe Short Communications on Mathematical Dissertations 249 G. BaszenskijW. Schempp TAXT Konvergenzbeschleunigung von Orthogonal-Doppelreihen The Journal Copyright RESULTS IN MATHEMATICS It is a fundamental condition of publication that submitted RESULTATE DER MATHEMATIK manuscripts have not been published, nor will be simulta- publishes mainly research papers in all Heids of pure and applied mathematics. In addition, it publishes summaries of any mathematical neously submitted or published elsewhere. By submitting a field and surveys of any mathematical subject provided they are de- manuscript, the authors agree that the Copyright for their signed to advance some recent mathematical development.
    [Show full text]
  • An Inquiry Into Alfred Clebsch's Geschlecht
    “Are the genre and the Geschlecht one and the same number?” An inquiry into Alfred Clebsch’s Geschlecht François Lê∗ Postprint version, April 2020 Abstract This article is aimed at throwing new light on the history of the notion of genus, whose paternity is usually attributed to Bernhard Riemann while its original name Geschlecht is often credited to Alfred Clebsch. By comparing the approaches of the two mathematicians, we show that Clebsch’s act of naming was rooted in a projective geometric reinterpretation of Riemann’s research, and that his Geschlecht was actually a different notion than that of Riemann. We also prove that until the beginning of the 1880s, mathematicians clearly distinguished between the notions of Clebsch and Riemann, the former being mainly associated with algebraic curves, and the latter with surfaces and Riemann surfaces. In the concluding remarks, we discuss the historiographic issues raised by the use of phrases like “the genus of a Riemann surface”—which began to appear in some works of Felix Klein at the very end of the 1870s—to describe Riemann’s original research. Keywords: History of geometry; Alfred Clebsch; Bernhard Riemann; genus; connectivity; algebraic curves MCS: 01A55, 01A85, 14-03, 30-03, 51-03 This story has been told many times. Around 1880, while he was seeking to clarify and continue Lazarus Fuchs’s work on linear differential equations, Henri Poincaré recognized the importance of some special complex functions which he proposed to call Fuchsian functions. On June 12 1881, after having read Poincaré’s first papers on these functions, [Poincaré 1881c], Felix Klein wrote him a letter (the first of a long series) where he explained the similarity between these papers and the research on elliptic functions and algebraic equations that he had done shortly before, [Klein 1879a,b,c,d,e, 1880].
    [Show full text]
  • RM Calendar 2018
    Rudi Mathematici x3 – 6’138 x2 + 12’557’564 x – 8’563’189’272 = 0 www.rudimathematici.com 1 1 M (1803) Guglielmo Libri Carucci dalla Sommaja RM132 (1878) Agner Krarup Erlang Rudi Mathematici (1894) Satyendranath Bose RM168 (1912) Boris Gnedenko 2 T (1822) Rudolf Julius Emmanuel Clausius (1905) Lev Genrichovich Shnirelman (1938) Anatoly Samoilenko 3 W (1917) Yuri Alexeievich Mitropolsky January 4 T (1643) Isaac Newton RM071 5 F (1723) Nicole-Reine Étable de Labrière Lepaute (1838) Marie Ennemond Camille Jordan Putnam 2003, A1 (1871) Federigo Enriques RM084 Let n be a fixed positive integer. How many ways are (1871) Gino Fano there to write n as a sum of positive integers, n = a1 + 6 S (1807) Jozeph Mitza Petzval a2 + … + ak, with k an arbitrary positive integer and a1 (1841) Rudolf Sturm ≤ a2 ≤ … ≤ ak ≤ a1+1? For example, for n=4 there are 7 S (1871) Felix Edouard Justin Émile Borel four ways: 4; 2+2; 2+1+1, 1+1+1+1. (1907) Raymond Edward Alan Christopher Paley 2 8 M (1888) Richard Courant RM156 Invited to the Great Ball of Scientists... (1924) Paul Moritz Cohn ... Ampere was following the current. (1942) Stephen William Hawking 9 T (1864) Vladimir Adreievich Steklov How do mathematicians do it? (1915) Mollie Orshansky Möbius always did it on the same side. 10 W (1875) Issai Schur (1905) Ruth Moufang If a man will begin with certainties, he shall end in 11 T (1545) Guidobaldo del Monte RM120 doubts; but if he will be content to begin with doubts, he (1707) Vincenzo Riccati shall end in certainties.
    [Show full text]
  • Georgia Augusta 6 | 2008 7 ZAHLEN, FORMELN, UNGELÖSTE RÄTSEL
    GEORGIA UGUSTA Wissenschaftsmagazin A der Georg-August-Universität Göttingen ZAHLEN, FORMELN, UNGELÖSTE RÄTSEL Ausgabe 6 · Dezember 2008 Herausgegeben vom Präsidenten der Universität in Zusammenarbeit mit dem Universitätsbund Göttingen GEORG-AUGUST-UNIVERSITÄT GÖTTINGEN Alumni Göttingen Internationale Alumni-Vereinigung Alumni Göttingen Internationale Alumni-Vereinigung Georg-August-Universität Göttingen Postanschrift Alumni Göttingen Georg-August-Universität Göttingen Wilhelmsplatz 1 · 37073 Göttingen Alumni Göttingen ist das internatio- Internet nale Netzwerk von Ehemaligen, www.alumni.uni-goettingen.de Absolventen und Studierenden al- ler Fachrichtungen, Wissenschaft- Alumni-Büro Bernd Hackstette · Geschäftsführer Alumni Göttingen e.V. lern, Mitarbeitern sowie Freunden Tel. 0551 / 39 13276 · Fax 0551 / 39 185380 und Förderern der Universität Göt- [email protected] tingen. Dieses Netzwerk wird ge- Susanne Schmidt · Sekretariat tragen von dem gemeinnützigen Tel. 0551 / 39 5380 · Fax 0551 / 39 185380 Verein Alumni Göttingen e.V., der [email protected] im Jahr 2001 gegründet wurde. Der Verein zählt inzwischen mehr als 3.000 Mitglieder und ermög- licht die kontinuierliche und le- bendige Teilhabe und das aktive Mitwirken an der Entwicklung der Georgia Augusta. EDITORIAL Zahlen, Formeln, ungelöste Rätsel Die Mathematik nimmt im System matik und von Göttingen als der der Wissenschaften eine »schil- Wiege der modernen Naturwis- lernde Stellung« ein, wie der Göt- senschaften. Die beeindruckende tinger Mathematiker Felix Klein es Ahnengalerie wird angeführt von einmal formulierte. Die von Carl Gauß, der über ein halbes Jahr- Friedrich Gauß als »Königin der hundert in Göttingen lebte und Wissenschaften« titulierte Mathe- forschte. Sein Wirken verhalf der matik gehört nicht zu den Natur- Disziplin und ihren Anwendungen wissenschaften, da sie keine empi- an der Göttinger Universität zu ei- rische Wissenschaft ist.
    [Show full text]
  • RM Calendar 2014
    Rudi Mathematici x4–8224x3+25360856 x2–34775906944 x+17860393921680=0 www.rudimathematici.com 1 W (1803) Guglielmo Libri Carucci dalla Sommaja RM132 (1878) Agner Krarup Erlang Rudi Mathematici (1894) Satyendranath Bose RM168 (1912) Boris Gnedenko 2 T (1822) Rudolf Julius Emmanuel Clausius (1905) Lev Genrichovich Shnirelman (1938) Anatoly Samoilenko 3 F (1917) Yuri Alexeievich Mitropolsky January 4 S (1643) Isaac Newton RM071 5 S (1723) Nicole-Reine Etable de Labrière Lepaute (1838) Marie Ennemond Camille Jordan (1871) Federigo Enriques RM084 Putnam 1999, A1 (1871) Gino Fano Find polynomials f(x) , g(x) and h(x) , if they exist, such 2 6 M (1807) Jozeph Mitza Petzval that for all x: (1841) Rudolf Sturm −1 if x −< 1 7 T (1871) Felix Edouard Justin Emile Borel |()xf |− | ( ) | ( )=xh+xg 3x + 2 if 1 x ≤≤− 0 (1907) Raymond Edward Alan Christopher Paley − 2x + 2 if x > 0 8 W (1888) Richard Courant RM156 (1924) Paul Moritz Cohn (1942) Stephen William Hawking The Amazing U 9 T (1864) Vladimir Adreievich Steklov “Has anyone had problems with the computer (1915) Mollie Orshansky accounts?” 10 F (1875) Issai Schur “Yes, I don’t have one.” (1905) Ruth Moufang “Okay, you can send mail to one of the tutors...” 11 S (1545) Guidobaldo del Monte RM120 - E. D'Azevedo Computer Science 372 (1707) Vincenzo Riccati (1734) Achille Pierre Dionis du Sejour Weird, but true 12 S (1906) Kurt August Hirsch The First Law of Applied Mathematics: All infinite series (1915) Herbert Ellis Robbins RM156 converge, and moreover converge to the first term. 3 13 M (1864) Wilhelm Karl Werner Otto Fritz Franz Wien (1876) Luther Pfahler Eisenhart (1876) Erhard Schmidt Wir müssen wissen.
    [Show full text]
  • Historia Mathematica Article Booklet
    Historia Mathematica 32 (2005) 4–32 www.elsevier.com/locate/hm The rst Chinese translation of the last nine books of Euclid’s Elements and its source Yibao Xu The Graduate School and University Center, City University of New York, 365 Fifth Avenue, New York, NY 10016, USA Available online 16 March 2004 Abstract Books VII to XV of the Elements (Books VII to XIII by Euclid and Books XIV and XV by Hypsicles of Alexandria) were rst translated into Chinese by the British missionary Alexander Wylie and the Chinese mathematician Li Shanlan between the years 1852 and 1856. The translation was subsequently published in 1857. Neither of the translators in their prefaces to the translation or in their other writings mentioned the specic original source. Accordingly, historians have pondered this question ever since. Some took a bold guess that its source was Isaac Barrow’s English translation. This article provides solid evidence to show that the guess is wrong, and argues that the rst English translation of Euclid’s Elements of 1570 by Henry Billingsley was the actual source. 2003 Elsevier Inc. All rights reserved. 2003 Elsevier Inc. All rights reserved. MSC: 01A25; 01A55 Keywords: Euclid; Elements; Henry Billingsley; Isaac Barrow; Alexander Wylie; Li Shanlan; China E-mail address: [email protected]. 0315-0860/$ – see front matter 2003 Elsevier Inc. All rights reserved. doi:10.1016/j.hm.2003.12.002 Y. Xu / Historia Mathematica 32 (2005) 4–32 5 1. Introduction: Euclid’s Elements in China It is widely known among historians that Euclid’s Elements may rst have been known in China as early as the Yuan dynasty, sometime between 1250 and 1270.
    [Show full text]
  • University of Groningen Theory and History of Geometric Models Polo
    University of Groningen Theory and history of geometric models Polo-Blanco, Irene IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below. Document Version Publisher's PDF, also known as Version of record Publication date: 2007 Link to publication in University of Groningen/UMCG research database Citation for published version (APA): Polo-Blanco, I. (2007). Theory and history of geometric models. [s.n.]. Copyright Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons). The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license. More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne- amendment. Take-down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum. Download date: 04-10-2021 Chapter 1 Models of surfaces, a Dutch perspective 1.1 Introduction The collection of more than 100 mathematical models in the University of Groningen gives rise to many questions.
    [Show full text]
  • Klein, Lie, and Their Early Work on Quartic Surfaces
    Klein, Lie, and their early Work on Quartic Surfaces David E. Rowe Mainz University Introduction Special types of quartic surfaces were much studied objects starting in the 1860s, so it should come as no suprise that these played a major role in the early work of Sophus Lie and Felix Klein. This topic was very much in the air when they first met each other in Berlin and attended the famous seminar led by Ernst Eduard Kummer and Karl Weierstrass. Only a few years before, Kummer had published a series of important results on quartic surfaces, including the special ones that today bear his name. Somewhat ironically, it was he and not his former colleague, Jakob Steiner, who first brought Steiner surfaces to the attention of the mathematical world. In what follows, I will begin by briefly recounting this story as well as Lie's early interest in Steiner surfaces, as revealed in his correspondence with Alfred Clebsch. arXiv:1912.02740v1 [math.AG] 5 Dec 2019 Klein's background as an expert in line geometry led him to investi- gate the role of Kummer surfaces in the theory of quadratic complexes, but also the closely related complex surfaces first studied by his former teacher, Julius Pl¨ucker [Clebsch 1872]. In G¨ottingen,Klein befriended Max Noether and learned from him about a technique for mapping the lines of a linear complex to points in 3-space, a mapping closely related to another discovered independently by Lie. Thus, once Klein and Lie met in the fall of 1869, their common interests in these geometrical ideas gave them an enormous impulse to pursue them further.
    [Show full text]
  • "Jewish Mathematics" at Gottingen in the Era of Felix Klein Author(S): David E
    "Jewish Mathematics" at Gottingen in the Era of Felix Klein Author(s): David E. Rowe Reviewed work(s): Source: Isis, Vol. 77, No. 3 (Sep., 1986), pp. 422-449 Published by: The University of Chicago Press on behalf of The History of Science Society Stable URL: http://www.jstor.org/stable/231607 . Accessed: 22/01/2012 15:18 Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at . http://www.jstor.org/page/info/about/policies/terms.jsp JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected]. The University of Chicago Press and The History of Science Society are collaborating with JSTOR to digitize, preserve and extend access to Isis. http://www.jstor.org "Jewish Mathematics" at Gottingen in the Era of Felix Klein By David E. Rowe* I. KLEIN'S DISPUTED LEGACY IN 1936 THE GOTTINGER TAGEBLATT, a right-wing newspaper, printed an article with the headline: "Felix Klein was an Aryan. Which no one, in Got- tingen at least, doubted." According to the Tageblatt, Klein's ancestry was cleared by his family after the Vcilkischer Beobachter, official mouthpiece for the Nazi party, reported that he was of Jewish descent. The source of the error was said to be the Jewish Encyclopedia, but the Tageblatt added, "It is well known that the Jews love to stamp famous men as Jewish in order to increase the pres- tige of their people."1 Of course, the Nazi party was very diligent when it came to tracing a suspi- cious family's ethnic background.
    [Show full text]