RM Calendar 2014

Total Page:16

File Type:pdf, Size:1020Kb

RM Calendar 2014 Rudi Mathematici x4–8224x3+25360856 x2–34775906944 x+17860393921680=0 www.rudimathematici.com 1 W (1803) Guglielmo Libri Carucci dalla Sommaja RM132 (1878) Agner Krarup Erlang Rudi Mathematici (1894) Satyendranath Bose RM168 (1912) Boris Gnedenko 2 T (1822) Rudolf Julius Emmanuel Clausius (1905) Lev Genrichovich Shnirelman (1938) Anatoly Samoilenko 3 F (1917) Yuri Alexeievich Mitropolsky January 4 S (1643) Isaac Newton RM071 5 S (1723) Nicole-Reine Etable de Labrière Lepaute (1838) Marie Ennemond Camille Jordan (1871) Federigo Enriques RM084 Putnam 1999, A1 (1871) Gino Fano Find polynomials f(x) , g(x) and h(x) , if they exist, such 2 6 M (1807) Jozeph Mitza Petzval that for all x: (1841) Rudolf Sturm −1 if x −< 1 7 T (1871) Felix Edouard Justin Emile Borel |()xf |− | ( ) | ( )=xh+xg 3x + 2 if 1 x ≤≤− 0 (1907) Raymond Edward Alan Christopher Paley − 2x + 2 if x > 0 8 W (1888) Richard Courant RM156 (1924) Paul Moritz Cohn (1942) Stephen William Hawking The Amazing U 9 T (1864) Vladimir Adreievich Steklov “Has anyone had problems with the computer (1915) Mollie Orshansky accounts?” 10 F (1875) Issai Schur “Yes, I don’t have one.” (1905) Ruth Moufang “Okay, you can send mail to one of the tutors...” 11 S (1545) Guidobaldo del Monte RM120 - E. D'Azevedo Computer Science 372 (1707) Vincenzo Riccati (1734) Achille Pierre Dionis du Sejour Weird, but true 12 S (1906) Kurt August Hirsch The First Law of Applied Mathematics: All infinite series (1915) Herbert Ellis Robbins RM156 converge, and moreover converge to the first term. 3 13 M (1864) Wilhelm Karl Werner Otto Fritz Franz Wien (1876) Luther Pfahler Eisenhart (1876) Erhard Schmidt Wir müssen wissen. Wir werden wissen. (We must know. (1902) Karl Menger We will know). 14 T (1902) Alfred Tarski RM096 [Speech in Königsberg in 1930, now on his tomb in 15 W (1704) Johann Castillon Göttingen] (1717) Mattew Stewart David Hilbert (1850) Sofia Vasilievna Kovalevskaja RM144 16 T (1801) Thomas Klausen Galileo was no idiot. Only an idiot could believe that 17 F (1647) Catherina Elisabetha Koopman Hevelius science requires martyrdom – that may be necessary in (1847) Nikolay Egorovich Zukowsky religion, but in time a scientific result will establish (1858) Gabriel Koenigs itself. 18 S (1856) Luigi Bianchi David Hilbert (1880) Paul Ehrenfest 19 S (1813) Rudolf Friedrich Alfred Clebsch (1879) Guido Fubini The reader will find no figures in this work. The (1908) Aleksandr Gennadievich Kurosh methods which I set forth do not require either 4 20 M (1775) André Marie Ampère constructions or geometrical or mechanical reasonings: (1895) Gabor Szegő but only algebraic operations, subject to a regular and (1904) Renato Caccioppoli RM072 uniform rule of procedure. 21 T (1846) Pieter Hendrik Schoute Joseph-Louis Lagrange (1915) Yuri Vladimirovich Linnik 22 W (1592) Pierre Gassendi We lay down a fundamental principle of generalization (1886) John William Navin Sullivan by abstraction: “The existence of analogies between (1908) Lev Davidovich Landau RM063 central features of various theories implies the existence 23 T (1840) Ernst Abbe of a general theory which underlies the particular (1862) David Hilbert RM060 theories and unifies them with respect to those central 24 F (1891) Abram Samoilovitch Besicovitch features....” (1914) Vladimir Petrovich Potapov Eliakim Hastings Moore 25 S (1627) Robert Boyle (1736) Joseph-Louis Lagrange RM048 (1843) Karl Hermann Amandus Schwarz Mathematical study and research are very suggestive of 26 S (1799) Benoît Paul Émile Clapeyron mountaineering. Whymper made several efforts before (1862) Eliakim Hastings Moore he climbed the Matterhorn in the 1860's and even then 5 27 M (1832) Charles Lutwidge Dodgson RM108 it cost the life of four of his party. Now, however, any 28 T (1701) Charles Marie de La Condamine tourist can be hauled up for a small cost, and perhaps (1888) Louis Joel Mordell does not appreciate the difficulty of the original ascent. (1892) Carlo Emilio Bonferroni So in mathematics, it may be found hard to realise the 29 W (1817) William Ferrel great initial difficulty of making a little step which now (1888) Sidney Chapman seems so natural and obvious, and it may not be 30 T (1619) Michelangelo Ricci surprising if such a step has been found and lost again. 31 F (1715) Giovanni Francesco Fagnano dei Toschi Louis Joel Mordell (1841) Samuel Loyd (1896) Sofia Alexandrovna Janowskaja (1945) Persi Warren Diaconis (1900) John Charles Burkill (1522) Lodovico Ferrari www.rudimathematici.com 1 S (1900) John Charles Burkill 2 S (1522) Lodovico Ferrari Rudi Mathematici (1893) Cornelius Lanczos (1897) Gertrude Blanch 6 3 M (1893) Gaston Maurice Julia RM073 4 T (1905) Eric Cristopher Zeeman 5 W (1757) Jean Marie Constant Duhamel 6 T (1465) Scipione del Ferro RM064 February (1612) Antoine Arnauld (1695) Nicolaus (II) Bernoulli RM093 7 F (1877) Godfried Harold Hardy RM049 Putnam 1999, A2 (1883) Eric Temple Bell 8 S (1700) Daniel Bernoulli RM093 Let p(x) be a polynomial that is nonnegative for all real (1875) Francis Ysidro Edgeworth x. Prove that for some k, there are polynomials f1(x), …, (1928) Ennio de Giorgi RM133 fk(x) such that: k 9 S (1775) Farkas Wolfgang Bolyai ()()()2 =xp ∑ j xf (1907) Harold Scott Macdonald Coxeter RM097 =j 1 7 10 M (1747) Aida Yasuaki RM121 (1932) Vivienne Malone-Mayes 11 T (1657) Bernard Le Bovier de Fontenelle The Amazing U (1800) William Henry Fox Talbot “If that makes any sense to you, you have a big (1839) Josiah Willard Gibbs problem.” (1915) Richard Wesley Hamming - C. Durance Computer Science 234 12 W (1914) Hanna Caemmerer Neumann (1921) Kathleen Rita Mcnulty Mauchly Antonelli Weird, but true 13 T (1805) Johann Peter Gustav Lejeune Dirichlet RM145 There are two groups of people in the world: those who believe 14 F (1468) Johann Werner that the world can be divided into two groups of people, and (1849) Hermann Hankel those who don’t. (1877) Edmund Georg Hermann Landau RM063 (1896) Edward Artur Milne 15 S (1564) Galileo Galilei RM085 It is the perennial youthfulness of mathematics itself (1850) Sophie Willock Bryant which marks it off with a disconcerting immortality (1861) Alfred North Whitehead from the other sciences. (1946) Douglas Hofstadter Eric Temple Bell 16 S (1822) Francis Galton (1853) Gregorio Ricci-Curbastro “Obvious” is the most dangerous word in mathematics. (1903) Beniamino Segre Eric Temple Bell 8 17 M (1890) Sir Ronald Aylmer Fisher (1891) Adolf Abraham Halevi Fraenkel (1905) Rózsa Péter Finally we shall place the Sun himself at the center of 18 T (1404) Leon Battista Alberti RM157 the Universe. All this is suggested by the systematic (1919) Clifford Truesdell procession of events and the harmony of the whole 19 W (1473) Nicolaus Copernicus Universe, if only we face the facts, as they say, ‘with both 20 T (1844) Ludwig Boltzmann RM061 eyes open’. 21 F (1591) Girard Desargues Nicolaus Copernicus (1915) Evgeny Michailovich Lifshitz 22 S (1857) Heinrich Rudolf Hertz Mathematicians are like lovers. Grant a mathematician (1903) Frank Plumpton Ramsey the least principle, and he will draw from it a 23 S (1583) Jean-Baptiste Morin consequence which you must also grant him, and from (1922) Anneli Cahn Lax this consequence another. (1951) Shigefumi Mori Bernard Le Bovier De Fontenelle (1561) Henry Briggs RM169 9 24 M (1871) Felix Bernstein 25 T (1827) Henry Watson Does anyone believe that the difference between the 26 W (1786) Dominique Francois Jean Arago Lebesgue and Riemann integrals can have physical significance, and that whether say, an airplane would 27 T (1881) Luitzen Egbertus Jan Brouwer or would not fly could depend on this difference? If such 28 F (1735) Alexandre Theophile Vandermonde were claimed, I should not care to fly in that plane. 29 (1860) Herman Hollerith RM109 Richard Wesley Hamming www.rudimathematici.com 1 S (1611) John Pell (1879) Robert Daniel Carmichael Rudi Mathematici 2 S (1836) Julius Weingarten 10 3 M (1838) George William Hill (1845) Georg Cantor RM062 (1916) Paul Richard Halmos 4 T (1822) Jules Antoine Lissajous 5 W (1512) Gerardus Mercator March (1759) Benjamin Gompertz (1817) Angelo Genocchi (1885) Pauline Sperry Putnam 1999, A3 (1915) Laurent Schwartz Consider the power series expansion: (1931) Vera Pless 1 ∞ 6 T (1866) Ettore Bortolotti = xa n − − 2 ∑ n 7 F (1792) William Herschel RM146 1 2x x =n 0 (1824) Delfino Codazzi Prove that, for each integer n≥0, there is an integer m 2 2 (1922) Olga Alexandrovna Ladyzhenskaya such that a n + a n+1 = am. 8 S (1851) George Chrystal 9 S (1818) Ferdinand Joachimsthal The Amazing U (1900) Howard Hathaway Aiken “Let’s make ethanol green this afternoon.” 11 10 M (1864) William Fogg Osgood - R. Friesen Chemistry 124 (1872) Mary Ann Elizabeth Stephansen 11 T (1811) Urbain Jean Joseph Le Verrier (1853) Salvatore Pincherle Weird, but true (1870) Louis Bachelier RM158 Theorem: All the numbers are boring Proof (by contradiction): 12 W (1685) George Berkeley Suppose x is the first non-boring number. Who cares? (1824) Gustav Robert Kirchhoff (1859) Ernesto Cesaro He who can digest a second or third fluxion, a second or 13 T (1861) Jules Joseph Drach third difference, need not, we think, be squeamish about (1957) Rudy D'Alembert any point of divinity. 14 F (1864) Jozef Kurschak George Berkeley (1879) Albert Einstein RM074 (1904) Lyudmila Vsevolodovna Keldysh 15 S (1860) Walter Frank Raphael Weldon If I found any new truths in the sciences, I can say that (1868) Grace Chisolm Young they follow from, or depend on, five or six principal 16 S (1750) Caroline Herschel RM146 problems which I succeeded in solving and which I regard (1789) Georg Simon Ohm as so many battles where the fortunes of war were on my (1846) Magnus Gosta Mittag-Leffler side.
Recommended publications
  • Mathematics Is a Gentleman's Art: Analysis and Synthesis in American College Geometry Teaching, 1790-1840 Amy K
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 2000 Mathematics is a gentleman's art: Analysis and synthesis in American college geometry teaching, 1790-1840 Amy K. Ackerberg-Hastings Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Higher Education and Teaching Commons, History of Science, Technology, and Medicine Commons, and the Science and Mathematics Education Commons Recommended Citation Ackerberg-Hastings, Amy K., "Mathematics is a gentleman's art: Analysis and synthesis in American college geometry teaching, 1790-1840 " (2000). Retrospective Theses and Dissertations. 12669. https://lib.dr.iastate.edu/rtd/12669 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margwis, and improper alignment can adversely affect reproduction. in the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted.
    [Show full text]
  • The Smith Family…
    BRIGHAM YOUNG UNIVERSITY PROVO. UTAH Digitized by the Internet Archive in 2010 with funding from Brigham Young University http://www.archive.org/details/smithfamilybeingOOread ^5 .9* THE SMITH FAMILY BEING A POPULAR ACCOUNT OF MOST BRANCHES OF THE NAME—HOWEVER SPELT—FROM THE FOURTEENTH CENTURY DOWNWARDS, WITH NUMEROUS PEDIGREES NOW PUBLISHED FOR THE FIRST TIME COMPTON READE, M.A. MAGDALEN COLLEGE, OXFORD \ RECTOR OP KZNCHESTER AND VICAR Or BRIDGE 50LLARS. AUTHOR OP "A RECORD OP THE REDEt," " UH8RA CCELI, " CHARLES READS, D.C.L. I A MEMOIR," ETC ETC *w POPULAR EDITION LONDON ELLIOT STOCK 62 PATERNOSTER ROW, E.C. 1904 OLD 8. LEE LIBRARY 6KIGHAM YOUNG UNIVERSITY PROVO UTAH TO GEORGE W. MARSHALL, ESQ., LL.D. ROUGE CROIX PURSUIVANT-AT-ARM3, LORD OF THE MANOR AND PATRON OP SARNESFIELD, THE ABLEST AND MOST COURTEOUS OP LIVING GENEALOGISTS WITH THE CORDIAL ACKNOWLEDGMENTS OP THE COMPILER CONTENTS CHAPTER I. MEDLEVAL SMITHS 1 II. THE HERALDS' VISITATIONS 9 III. THE ELKINGTON LINE . 46 IV. THE WEST COUNTRY SMITHS—THE SMITH- MARRIOTTS, BARTS 53 V. THE CARRINGTONS AND CARINGTONS—EARL CARRINGTON — LORD PAUNCEFOTE — SMYTHES, BARTS. —BROMLEYS, BARTS., ETC 66 96 VI. ENGLISH PEDIGREES . vii. English pedigrees—continued 123 VIII. SCOTTISH PEDIGREES 176 IX IRISH PEDIGREES 182 X. CELEBRITIES OF THE NAME 200 265 INDEX (1) TO PEDIGREES .... INDEX (2) OF PRINCIPAL NAMES AND PLACES 268 PREFACE I lay claim to be the first to produce a popular work of genealogy. By "popular" I mean one that rises superior to the limits of class or caste, and presents the lineage of the fanner or trades- man side by side with that of the nobleman or squire.
    [Show full text]
  • Chasles' Bad Relations
    Chasles' bad relations Christophe Ritzenthaler September 10, 2004 Michel Chasles (1793-1880) 1 Introduction We give here a very atypical orientation to Chasles' life. In particular we will not deal with the ordinary aspects of his life and work. This can be found in many places (in particular [1]). We mention only that, as a mathemati- cian, he synthesized and generalized the whole geometric knowledge of his time (projective geometry, conic sections, duality and homography) - even if sometimes, (as he didn't speak German), he merely rediscovered some of these results - ([3]). Also, as a historian of mathematics, he wrote a history of geometry ([5] and two controversial essays ( [2],[4]). The following list of honors should convince us of the seriousness of this character : Membre de l'Institut, professeur de Géométrie supérieure à la faculté des Sciences de Paris, membre de la Société royale de Londres, membre honoraire de la Société royale d'Irlande, de la Société philosophique de Cambridge, de l'Académie impériale des Sciences de Saint-Pétersbourg, associé de l'Académie royale des Sciences de Brux- elles,correspondant de l'académie ponticale des Nuovi Lincei de Rome, membre de lAcadémie royale de Berlin, de l'Académie royale des Sciences de Turin, de l'Académie royale des Sciences de Naples, de l'Académie de Lincei de Rome, de la Société royale danoise des Sciences de Copenhague, de l'Académie royale des Sciences de Stockholm, de l'Académie des Sciences de l'Institut de Bologne, de l'Institut roual lombard de Milan, de la Société italienne des Sciences de Modène, correspondant de l'Académie royale des Sciences de Madrid, de l'Institut vénitien des Sciences, Lettres et Arts, membre honoraire de l'Académie royale des Sciences, Lettres et Arts de Modène, de l'Athénée vénitien des Sciences et Lettres, de l'Université d'Odessa, de l'Académie américaine des Sciences et Arts de Boston, de l'Académie nationale des sciences d'Amérique.
    [Show full text]
  • Writing the History of Dynamical Systems and Chaos
    Historia Mathematica 29 (2002), 273–339 doi:10.1006/hmat.2002.2351 Writing the History of Dynamical Systems and Chaos: View metadata, citation and similar papersLongue at core.ac.uk Dur´ee and Revolution, Disciplines and Cultures1 brought to you by CORE provided by Elsevier - Publisher Connector David Aubin Max-Planck Institut fur¨ Wissenschaftsgeschichte, Berlin, Germany E-mail: [email protected] and Amy Dahan Dalmedico Centre national de la recherche scientifique and Centre Alexandre-Koyre,´ Paris, France E-mail: [email protected] Between the late 1960s and the beginning of the 1980s, the wide recognition that simple dynamical laws could give rise to complex behaviors was sometimes hailed as a true scientific revolution impacting several disciplines, for which a striking label was coined—“chaos.” Mathematicians quickly pointed out that the purported revolution was relying on the abstract theory of dynamical systems founded in the late 19th century by Henri Poincar´e who had already reached a similar conclusion. In this paper, we flesh out the historiographical tensions arising from these confrontations: longue-duree´ history and revolution; abstract mathematics and the use of mathematical techniques in various other domains. After reviewing the historiography of dynamical systems theory from Poincar´e to the 1960s, we highlight the pioneering work of a few individuals (Steve Smale, Edward Lorenz, David Ruelle). We then go on to discuss the nature of the chaos phenomenon, which, we argue, was a conceptual reconfiguration as
    [Show full text]
  • View Front and Back Matter from The
    TRANSACTIONS OF THE American Mathematical Society EDITED BY ElilAKIM HASTINGS MOOBE EDWARD BURR VAN VLECK HENRY SEELY WHITE WITH THE COOPERATION OF CHARLES LEONARD BOTJTON LEONARD EUGENE DICKSON JOHN IHWIN HUTCHINSON EDWARD KASNEH EDWIN BLDWELL WILSON J'UBLIWHEll QCABTEILT BI THE tSOCIKTT WITH THB BUPPOBT OF Yale University Nobthwestekn University Columbia University The University of Illinois Wesleyan University Cornell University ilavehfobd college the university of chicago The University of Missouri Stanford University Volume 8 1907 Lancaster, Pa., and New Yobk THE MACMIIXAN COMPANY Agents fob the Society 1907 Reprinted with the permission of The American Mathematical Society Johnson Reprint Corporation 111 Fifth Avenue, New York 3, N. Y. Johnson Reprint Company Limited Berkeley Square House, London, W. 1 First Reprinting, 1963, Johnson Reprint Corporation TABLE OF CONTENTS VOLUME 8 1907 PAGES Blichfeldt, H. F., of Stanford University, Cal. On modular groups isomorphic with a given linear group.30- 32 Bliss, Gilbert Ames, of Princeton, N. J. A new form of the simplest problem of the calculus of variations.405—414 Bolza, Oskar, of Chicago, 111. Existence proof for a field of extremals tangent to a given curve.399-404 Dickson, Leonard Eugene, of Chicago, 111. Invariants of binary forms under modular transformations.205-232 _Modular theory of group-matrices.389—398 Eisenhart, Luther Pfahler, of Princeton, N. J. Applicable surfaces with asymptotic lines of one surface corresponding to a conjugate system of another.113—134 Fite, William Benjamin, of Ithaca, N. Y. Irreducible linear homogeneous groups whose orders are powers of a prime . 107—112 Fréchet, Maurice, of Paris, France.
    [Show full text]
  • Rudi Mathematici
    Rudi Mathematici Y2K Rudi Mathematici Gennaio 2000 52 1 S (1803) Guglielmo LIBRI Carucci dalla Somaja Olimpiadi Matematiche (1878) Agner Krarup ERLANG (1894) Satyendranath BOSE P1 (1912) Boris GNEDENKO 2 D (1822) Rudolf Julius Emmanuel CLAUSIUS Due matematici "A" e "B" si sono inventati una (1905) Lev Genrichovich SHNIRELMAN versione particolarmente complessa del "testa o (1938) Anatoly SAMOILENKO croce": viene scritta alla lavagna una matrice 1 3 L (1917) Yuri Alexeievich MITROPOLSHY quadrata con elementi interi casuali; il gioco (1643) Isaac NEWTON consiste poi nel calcolare il determinante: 4 M (1838) Marie Ennemond Camille JORDAN 5 M Se il determinante e` pari, vince "A". (1871) Federigo ENRIQUES (1871) Gino FANO Se il determinante e` dispari, vince "B". (1807) Jozeph Mitza PETZVAL 6 G (1841) Rudolf STURM La probabilita` che un numero sia pari e` 0.5, (1871) Felix Edouard Justin Emile BOREL 7 V ma... Quali sono le probabilita` di vittoria di "A"? (1907) Raymond Edward Alan Christopher PALEY (1888) Richard COURANT P2 8 S (1924) Paul Moritz COHN (1942) Stephen William HAWKING Dimostrare che qualsiasi numero primo (con (1864) Vladimir Adreievich STELKOV l'eccezione di 2 e 5) ha un'infinita` di multipli 9 D nella forma 11....1 2 10 L (1875) Issai SCHUR (1905) Ruth MOUFANG "Die Energie der Welt ist konstant. Die Entroopie 11 M (1545) Guidobaldo DEL MONTE der Welt strebt einem Maximum zu" (1707) Vincenzo RICCATI (1734) Achille Pierre Dionis DU SEJOUR Rudolph CLAUSIUS 12 M (1906) Kurt August HIRSCH " I know not what I appear to the world,
    [Show full text]
  • The Art of the Intelligible
    JOHN L. BELL Department of Philosophy, University of Western Ontario THE ART OF THE INTELLIGIBLE An Elementary Survey of Mathematics in its Conceptual Development To my dear wife Mimi The purpose of geometry is to draw us away from the sensible and the perishable to the intelligible and eternal. Plutarch TABLE OF CONTENTS FOREWORD page xi ACKNOWLEDGEMENTS xiii CHAPTER 1 NUMERALS AND NOTATION 1 CHAPTER 2 THE MATHEMATICS OF ANCIENT GREECE 9 CHAPTER 3 THE DEVELOPMENT OF THE NUMBER CONCEPT 28 THE THEORY OF NUMBERS Perfect Numbers. Prime Numbers. Sums of Powers. Fermat’s Last Theorem. The Number π . WHAT ARE NUMBERS? CHAPTER 4 THE EVOLUTION OF ALGEBRA, I 53 Greek Algebra Chinese Algebra Hindu Algebra Arabic Algebra Algebra in Europe The Solution of the General Equation of Degrees 3 and 4 The Algebraic Insolubility of the General Equation of Degree Greater than 4 Early Abstract Algebra 70 CHAPTER 5 THE EVOLUTION OF ALGEBRA, II 72 Hamilton and Quaternions. Grassmann’s “Calculus of Extension”. Finite Dimensional Linear Algebras. Matrices. Lie Algebras. CHAPTER 6 THE EVOLUTION OF ALGEBRA, III 89 Algebraic Numbers and Ideals. ABSTRACT ALGEBRA Groups. Rings and Fields. Ordered Sets. Lattices and Boolean Algebras. Category Theory. CHAPTER 7 THE DEVELOPMENT OF GEOMETRY, I 111 COORDINATE/ALGEBRAIC/ANALYTIC GEOMETRY Algebraic Curves. Cubic Curves. Geometric Construction Problems. Higher Dimensional Spaces. NONEUCLIDEAN GEOMETRY CHAPTER 8 THE DEVELOPMENT OF GEOMETRY, II 129 PROJECTIVE GEOMETRY DIFFERENTIAL GEOMETRY The Theory of Surfaces. Riemann’s Conception of Geometry. TOPOLOGY Combinatorial Topology. Point-set topology. CHAPTER 9 THE CALCULUS AND MATHEMATICAL ANALYSIS 151 THE ORIGINS AND BASIC NOTIONS OF THE CALCULUS MATHEMATICAL ANALYSIS Infinite Series.
    [Show full text]
  • Mathematical Genealogy of the Wellesley College Department Of
    Nilos Kabasilas Mathematical Genealogy of the Wellesley College Department of Mathematics Elissaeus Judaeus Demetrios Kydones The Mathematics Genealogy Project is a service of North Dakota State University and the American Mathematical Society. http://www.genealogy.math.ndsu.nodak.edu/ Georgios Plethon Gemistos Manuel Chrysoloras 1380, 1393 Basilios Bessarion 1436 Mystras Johannes Argyropoulos Guarino da Verona 1444 Università di Padova 1408 Cristoforo Landino Marsilio Ficino Vittorino da Feltre 1462 Università di Firenze 1416 Università di Padova Angelo Poliziano Theodoros Gazes Ognibene (Omnibonus Leonicenus) Bonisoli da Lonigo 1477 Università di Firenze 1433 Constantinople / Università di Mantova Università di Mantova Leo Outers Moses Perez Scipione Fortiguerra Demetrios Chalcocondyles Jacob ben Jehiel Loans Thomas à Kempis Rudolf Agricola Alessandro Sermoneta Gaetano da Thiene Heinrich von Langenstein 1485 Université Catholique de Louvain 1493 Università di Firenze 1452 Mystras / Accademia Romana 1478 Università degli Studi di Ferrara 1363, 1375 Université de Paris Maarten (Martinus Dorpius) van Dorp Girolamo (Hieronymus Aleander) Aleandro François Dubois Jean Tagault Janus Lascaris Matthaeus Adrianus Pelope Johann (Johannes Kapnion) Reuchlin Jan Standonck Alexander Hegius Pietro Roccabonella Nicoletto Vernia Johannes von Gmunden 1504, 1515 Université Catholique de Louvain 1499, 1508 Università di Padova 1516 Université de Paris 1472 Università di Padova 1477, 1481 Universität Basel / Université de Poitiers 1474, 1490 Collège Sainte-Barbe
    [Show full text]
  • Lewis Fry Richardson: Scientist, Visionary and Pacifist
    Lett Mat Int DOI 10.1007/s40329-014-0063-z Lewis Fry Richardson: scientist, visionary and pacifist Angelo Vulpiani Ó Centro P.RI.ST.EM, Universita` Commerciale Luigi Bocconi 2014 Abstract The aim of this paper is to present the main The last of seven children in a thriving English Quaker aspects of the life of Lewis Fry Richardson and his most family, in 1898 Richardson enrolled in Durham College of important scientific contributions. Of particular importance Science, and two years later was awarded a grant to study are the seminal concepts of turbulent diffusion, turbulent at King’s College in Cambridge, where he received a cascade and self-similar processes, which led to a profound diverse education: he read physics, mathematics, chemis- transformation of the way weather forecasts, turbulent try, meteorology, botany, and psychology. At the beginning flows and, more generally, complex systems are viewed. of his career he was quite uncertain about which road to follow, but he later resolved to work in several areas, just Keywords Lewis Fry Richardson Á Weather forecasting Á like the great German scientist Helmholtz, who was a Turbulent diffusion Á Turbulent cascade Á Numerical physician and then a physicist, but following a different methods Á Fractals Á Self-similarity order. In his words, he decided ‘‘to spend the first half of my life under the strict discipline of physics, and after- Lewis Fry Richardson (1881–1953), while undeservedly wards to apply that training to researches on living things’’. little known, had a fundamental (often posthumous) role in In addition to contributing important results to meteo- twentieth-century science.
    [Show full text]
  • RM Calendar 2017
    Rudi Mathematici x3 – 6’135x2 + 12’545’291 x – 8’550’637’845 = 0 www.rudimathematici.com 1 S (1803) Guglielmo Libri Carucci dalla Sommaja RM132 (1878) Agner Krarup Erlang Rudi Mathematici (1894) Satyendranath Bose RM168 (1912) Boris Gnedenko 1 2 M (1822) Rudolf Julius Emmanuel Clausius (1905) Lev Genrichovich Shnirelman (1938) Anatoly Samoilenko 3 T (1917) Yuri Alexeievich Mitropolsky January 4 W (1643) Isaac Newton RM071 5 T (1723) Nicole-Reine Etable de Labrière Lepaute (1838) Marie Ennemond Camille Jordan Putnam 2002, A1 (1871) Federigo Enriques RM084 Let k be a fixed positive integer. The n-th derivative of (1871) Gino Fano k k n+1 1/( x −1) has the form P n(x)/(x −1) where P n(x) is a 6 F (1807) Jozeph Mitza Petzval polynomial. Find P n(1). (1841) Rudolf Sturm 7 S (1871) Felix Edouard Justin Emile Borel A college football coach walked into the locker room (1907) Raymond Edward Alan Christopher Paley before a big game, looked at his star quarterback, and 8 S (1888) Richard Courant RM156 said, “You’re academically ineligible because you failed (1924) Paul Moritz Cohn your math mid-term. But we really need you today. I (1942) Stephen William Hawking talked to your math professor, and he said that if you 2 9 M (1864) Vladimir Adreievich Steklov can answer just one question correctly, then you can (1915) Mollie Orshansky play today. So, pay attention. I really need you to 10 T (1875) Issai Schur concentrate on the question I’m about to ask you.” (1905) Ruth Moufang “Okay, coach,” the player agreed.
    [Show full text]
  • (November 12-13)- Page 545
    College Park Program (October 30-31) - Page 531 Baton Rouge Program (November 12-13)- Page 545 Notices of the American Mathematical Society < 2.. c: 3 ('1) ~ z c: 3 C" ..,('1) 0'1 October 1982, Issue 220 Volume 29, Number 6, Pages 497-616 Providence, Rhode Island USA ISSN 0002-9920 Calendar of AMS Meetings THIS CALENDAR lists all meetings which have been approved by the Council prior to the date this issue of the Notices was sent to press. The summer and annual meetings are joint meetings of the Mathematical Association of America and the Ameri· can Mathematical Society. The meeting dates which fall rather far in the future are subject to change; this is particularly true of meetings to which no numbers have yet been assigned. Programs of the meetings will appear in the issues indicated below. First and second announcements of the meetings will have appeared in earlier issues. ABSTRACTS OF PAPERS presented at a meeting of the Society are published in the journal Abstracts of papers presented to the American Mathematical Society in the issue corresponding to that of the Notices which contains the program of the meet· ing. Abstracts should be submitred on special forms which are available in many departments of mathematics and from the office of the Society in Providence. Abstracts of papers to be presented at the meeting must be received at the headquarters of the Society in Providence, Rhode Island, on or before the deadline given below for the meeting. Note that the deadline for ab· stracts submitted for consideration for presentation at special sessions is usually three weeks earlier than that specified below.
    [Show full text]
  • EGU 2018 EGU – Abstracts
    CEN @ EGU 2018 EGU – abstracts Summary of Presentations, Sessions, Orals, PICOs and Posters by CEN/ CliSAP Scientists www.clisap.de www.cen.uni-hamburg.de https://twitter.com/CENunihh Presentations @ EGU 2018 CliSAP/CEN/UHH Member/Presenter; CliSAP/CEN/UHH Member Monday, 9th of April Sessions TS10.2 Hypervelocity impact cratering: Mechanics and environmental consequences Convener: Ulrich Riller | Co-Convener: Michael Poelchau Orals / Mon, 09 Apr, 10:30–12:00 / Room 1.61 Posters / Attendance Mon, 09 Apr, 17:30–19:00 / Hall X2 Orals BG1.1, Application of stable isotopes in Biogeosciences (co-organized by the European Association of Geochemistry (EAG) , Orals, 08:30–10:00, Room 2.20 09:00– EGU2018-19620 Nitrate sources in the catchment basin of the Rhône River by 09:15 Alexander Bratek, Kirstin Daehnke, Tina Sanders, and Jürgen Möbius OS2.4, Oceanography at coastal scales. Modelling, coupling, observations and benefits from coastal Research Infrastructures , Orals, 10:30–12:00, Room 1.85 EGU2018-7112 Synergy between satellite observations and model simulations 11:15– during extreme events by Anne Wiese, Joanna Staneva, Arno Behrens, Johannes 11:30 Schulz-Stellenfleth, and Luciana Fenoglio-Marc Sessions / Orals / Posters TS10.2, Hypervelocity impact cratering: Mechanics and environmental consequences , Orals, 10:30–12:00, Room 1.61 11:30– EGU2018-4309 Dynamics of the thermal aureole of the Sudbury impact melt 11:45 sheet, Canada by Paul Göllner and Ulrich Riller GD8.3/GMPV9.4/TS9.10, The geology of the Azores: a comprehensive approach to understanding a unique geological, geochemical and geodynamic setting (co-organized) , PICO, 15:30–17:00, PICO spot 3 15:30– EGU2018-8375 The submarine geology of the Azores Plateau – insights from 15:32 marine reflection seismic and multi-beam imaging by Christian Huebscher PICO3.1 15:56– EGU2018-9441 Extensional forces in intraplate magmatism: constraints from 15:58 Faial Island, Azores by René H.W.
    [Show full text]