Writing the History of Dynamical Systems and Chaos
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Stability Analysis of Fitzhughâ•Finagumo With
Proceedings of GREAT Day Volume 2011 Article 4 2012 Stability Analysis of FitzHugh–Nagumo with Smooth Periodic Forcing Tyler Massaro SUNY Geneseo Follow this and additional works at: https://knightscholar.geneseo.edu/proceedings-of-great-day Creative Commons Attribution 4.0 License This work is licensed under a Creative Commons Attribution 4.0 License. Recommended Citation Massaro, Tyler (2012) "Stability Analysis of FitzHugh–Nagumo with Smooth Periodic Forcing," Proceedings of GREAT Day: Vol. 2011 , Article 4. Available at: https://knightscholar.geneseo.edu/proceedings-of-great-day/vol2011/iss1/4 This Article is brought to you for free and open access by the GREAT Day at KnightScholar. It has been accepted for inclusion in Proceedings of GREAT Day by an authorized editor of KnightScholar. For more information, please contact [email protected]. Massaro: Stability Analysis of FitzHugh–Nagumo with Smooth Periodic Forcin Stability Analysis of FitzHugh – Nagumo with Smooth Periodic Forcing Tyler Massaro 1 Background Since the concentration of K+ ions is so much higher inside the cell than outside, there is a As Izhikevich so aptly put it, tendency for K+ to flow out of these leak channels “If somebody were to put a gun to the head of along its concentration gradient. When this the author of this book and ask him to name the happens, there is a negative charge left behind by single most important concept in brain science, he the K+ ions immediately leaving the cell. This would say it is the concept of a neuron[16].” build-up of negative charge is actually enough to, in a sense, catch the K+ ions in the act of leaving By no means are the concepts forwarded in his and momentarily halt the flow of charge across the book restricted to brain science. -
Robust Learning of Chaotic Attractors
Robust Learning of Chaotic Attractors Rembrandt Bakker* Jaap C. Schouten Marc-Olivier Coppens Chemical Reactor Engineering Chemical Reactor Engineering Chemical Reactor Engineering Delft Univ. of Technology Eindhoven Univ. of Technology Delft Univ. of Technology [email protected]·nl [email protected] [email protected]·nl Floris Takens C. Lee Giles Cor M. van den Bleek Dept. Mathematics NEC Research Institute Chemical Reactor Engineering University of Groningen Princeton Nl Delft Univ. of Technology F. [email protected] [email protected] [email protected]·nl Abstract A fundamental problem with the modeling of chaotic time series data is that minimizing short-term prediction errors does not guarantee a match between the reconstructed attractors of model and experiments. We introduce a modeling paradigm that simultaneously learns to short-tenn predict and to locate the outlines of the attractor by a new way of nonlinear principal component analysis. Closed-loop predictions are constrained to stay within these outlines, to prevent divergence from the attractor. Learning is exceptionally fast: parameter estimation for the 1000 sample laser data from the 1991 Santa Fe time series competition took less than a minute on a 166 MHz Pentium PC. 1 Introduction We focus on the following objective: given a set of experimental data and the assumption that it was produced by a deterministic chaotic system, find a set of model equations that will produce a time-series with identical chaotic characteristics, having the same chaotic attractor. The common approach consists oftwo steps: (1) identify a model that makes accurate short tenn predictions; and (2) generate a long time-series with the model and compare the nonlinear-dynamic characteristics of this time-series with the original, measured time-series. -
Fractal (Mandelbrot and Julia) Zero-Knowledge Proof of Identity
Journal of Computer Science 4 (5): 408-414, 2008 ISSN 1549-3636 © 2008 Science Publications Fractal (Mandelbrot and Julia) Zero-Knowledge Proof of Identity Mohammad Ahmad Alia and Azman Bin Samsudin School of Computer Sciences, University Sains Malaysia, 11800 Penang, Malaysia Abstract: We proposed a new zero-knowledge proof of identity protocol based on Mandelbrot and Julia Fractal sets. The Fractal based zero-knowledge protocol was possible because of the intrinsic connection between the Mandelbrot and Julia Fractal sets. In the proposed protocol, the private key was used as an input parameter for Mandelbrot Fractal function to generate the corresponding public key. Julia Fractal function was then used to calculate the verified value based on the existing private key and the received public key. The proposed protocol was designed to be resistant against attacks. Fractal based zero-knowledge protocol was an attractive alternative to the traditional number theory zero-knowledge protocol. Key words: Zero-knowledge, cryptography, fractal, mandelbrot fractal set and julia fractal set INTRODUCTION Zero-knowledge proof of identity system is a cryptographic protocol between two parties. Whereby, the first party wants to prove that he/she has the identity (secret word) to the second party, without revealing anything about his/her secret to the second party. Following are the three main properties of zero- knowledge proof of identity[1]: Completeness: The honest prover convinces the honest verifier that the secret statement is true. Soundness: Cheating prover can’t convince the honest verifier that a statement is true (if the statement is really false). Fig. 1: Zero-knowledge cave Zero-knowledge: Cheating verifier can’t get anything Zero-knowledge cave: Zero-Knowledge Cave is a other than prover’s public data sent from the honest well-known scenario used to describe the idea of zero- prover. -
CHAOS and DYNAMICAL SYSTEMS Spring 2021 Lectures: Monday, Wednesday, 11:00–12:15PM ET Recitation: Friday, 12:30–1:45PM ET
MATH-UA 264.001 – CHAOS AND DYNAMICAL SYSTEMS Spring 2021 Lectures: Monday, Wednesday, 11:00–12:15PM ET Recitation: Friday, 12:30–1:45PM ET Objectives Dynamical systems theory is the branch of mathematics that studies the properties of iterated action of maps on spaces. It provides a mathematical framework to characterize a great variety of time-evolving phenomena in areas such as physics, ecology, and finance, among many other disciplines. In this class we will study dynamical systems that evolve in discrete time, as well as continuous-time dynamical systems described by ordinary di↵erential equations. Of particular focus will be to explore and understand the qualitative properties of dynamics, such as the existence of attractors, periodic orbits and chaos. We will do this by means of mathematical analysis, as well as simple numerical experiments. List of topics • One- and two-dimensional maps. • Linearization, stable and unstable manifolds. • Attractors, chaotic behavior of maps. • Linear and nonlinear continuous-time systems. • Limit sets, periodic orbits. • Chaos in di↵erential equations, Lyapunov exponents. • Bifurcations. Contact and office hours • Instructor: Dimitris Giannakis, [email protected]. Office hours: Monday 5:00-6:00PM and Wednesday 4:30–5:30PM ET. • Recitation Leader: Wenjing Dong, [email protected]. Office hours: Tuesday 4:00-5:00PM ET. Textbooks • Required: – Alligood, Sauer, Yorke, Chaos: An Introduction to Dynamical Systems, Springer. Available online at https://link.springer.com/book/10.1007%2Fb97589. • Recommended: – Strogatz, Nonlinear Dynamics and Chaos. – Hirsch, Smale, Devaney, Di↵erential Equations, Dynamical Systems, and an Introduction to Chaos. Available online at https://www.sciencedirect.com/science/book/9780123820105. -
Dynamical Systems Theory for Causal Inference with Application to Synthetic Control Methods
Dynamical Systems Theory for Causal Inference with Application to Synthetic Control Methods Yi Ding Panos Toulis University of Chicago University of Chicago Department of Computer Science Booth School of Business Abstract In this paper, we adopt results in nonlinear time series analysis for causal inference in dynamical settings. Our motivation is policy analysis with panel data, particularly through the use of “synthetic control” methods. These methods regress pre-intervention outcomes of the treated unit to outcomes from a pool of control units, and then use the fitted regres- sion model to estimate causal effects post- intervention. In this setting, we propose to screen out control units that have a weak dy- Figure 1: A Lorenz attractor plotted in 3D. namical relationship to the treated unit. In simulations, we show that this method can mitigate bias from “cherry-picking” of control However, in many real-world settings, different vari- units, which is usually an important concern. ables exhibit dynamic interdependence, sometimes We illustrate on real-world applications, in- showing positive correlation and sometimes negative. cluding the tobacco legislation example of Such ephemeral correlations can be illustrated with Abadie et al.(2010), and Brexit. a popular dynamical system shown in Figure1, the Lorenz system (Lorenz, 1963). The trajectory resem- bles a butterfly shape indicating varying correlations 1 Introduction at different times: in one wing of the shape, variables X and Y appear to be positively correlated, and in the In causal inference, we compare outcomes of units who other they are negatively correlated. Such dynamics received the treatment with outcomes from units who present new methodological challenges for causal in- did not. -
A General Representation of Dynamical Systems for Reservoir Computing
A general representation of dynamical systems for reservoir computing Sidney Pontes-Filho∗,y,x, Anis Yazidi∗, Jianhua Zhang∗, Hugo Hammer∗, Gustavo B. M. Mello∗, Ioanna Sandvigz, Gunnar Tuftey and Stefano Nichele∗ ∗Department of Computer Science, Oslo Metropolitan University, Oslo, Norway yDepartment of Computer Science, Norwegian University of Science and Technology, Trondheim, Norway zDepartment of Neuromedicine and Movement Science, Norwegian University of Science and Technology, Trondheim, Norway Email: [email protected] Abstract—Dynamical systems are capable of performing com- TABLE I putation in a reservoir computing paradigm. This paper presents EXAMPLES OF DYNAMICAL SYSTEMS. a general representation of these systems as an artificial neural network (ANN). Initially, we implement the simplest dynamical Dynamical system State Time Connectivity system, a cellular automaton. The mathematical fundamentals be- Cellular automata Discrete Discrete Regular hind an ANN are maintained, but the weights of the connections Coupled map lattice Continuous Discrete Regular and the activation function are adjusted to work as an update Random Boolean network Discrete Discrete Random rule in the context of cellular automata. The advantages of such Echo state network Continuous Discrete Random implementation are its usage on specialized and optimized deep Liquid state machine Discrete Continuous Random learning libraries, the capabilities to generalize it to other types of networks and the possibility to evolve cellular automata and other dynamical systems in terms of connectivity, update and learning rules. Our implementation of cellular automata constitutes an reservoirs [6], [7]. Other systems can also exhibit the same initial step towards a general framework for dynamical systems. dynamics. The coupled map lattice [8] is very similar to It aims to evolve such systems to optimize their usage in reservoir CA, the only exception is that the coupled map lattice has computing and to model physical computing substrates. -
A Gentle Introduction to Dynamical Systems Theory for Researchers in Speech, Language, and Music
A Gentle Introduction to Dynamical Systems Theory for Researchers in Speech, Language, and Music. Talk given at PoRT workshop, Glasgow, July 2012 Fred Cummins, University College Dublin [1] Dynamical Systems Theory (DST) is the lingua franca of Physics (both Newtonian and modern), Biology, Chemistry, and many other sciences and non-sciences, such as Economics. To employ the tools of DST is to take an explanatory stance with respect to observed phenomena. DST is thus not just another tool in the box. Its use is a different way of doing science. DST is increasingly used in non-computational, non-representational, non-cognitivist approaches to understanding behavior (and perhaps brains). (Embodied, embedded, ecological, enactive theories within cognitive science.) [2] DST originates in the science of mechanics, developed by the (co-)inventor of the calculus: Isaac Newton. This revolutionary science gave us the seductive concept of the mechanism. Mechanics seeks to provide a deterministic account of the relation between the motions of massive bodies and the forces that act upon them. A dynamical system comprises • A state description that indexes the components at time t, and • A dynamic, which is a rule governing state change over time The choice of variables defines the state space. The dynamic associates an instantaneous rate of change with each point in the state space. Any specific instance of a dynamical system will trace out a single trajectory in state space. (This is often, misleadingly, called a solution to the underlying equations.) Description of a specific system therefore also requires specification of the initial conditions. In the domain of mechanics, where we seek to account for the motion of massive bodies, we know which variables to choose (position and velocity). -
EMERGENT COMPUTATION in CELLULAR NEURRL NETWORKS Radu Dogaru
IENTIFIC SERIES ON Series A Vol. 43 EAR SCIENC Editor: Leon 0. Chua HI EMERGENT COMPUTATION IN CELLULAR NEURRL NETWORKS Radu Dogaru World Scientific EMERGENT COMPUTATION IN CELLULAR NEURAL NETWORKS WORLD SCIENTIFIC SERIES ON NONLINEAR SCIENCE Editor: Leon O. Chua University of California, Berkeley Series A. MONOGRAPHS AND TREATISES Volume 27: The Thermomechanics of Nonlinear Irreversible Behaviors — An Introduction G. A. Maugin Volume 28: Applied Nonlinear Dynamics & Chaos of Mechanical Systems with Discontinuities Edited by M. Wiercigroch & B. de Kraker Volume 29: Nonlinear & Parametric Phenomena* V. Damgov Volume 30: Quasi-Conservative Systems: Cycles, Resonances and Chaos A. D. Morozov Volume 31: CNN: A Paradigm for Complexity L O. Chua Volume 32: From Order to Chaos II L. P. Kadanoff Volume 33: Lectures in Synergetics V. I. Sugakov Volume 34: Introduction to Nonlinear Dynamics* L Kocarev & M. P. Kennedy Volume 35: Introduction to Control of Oscillations and Chaos A. L. Fradkov & A. Yu. Pogromsky Volume 36: Chaotic Mechanics in Systems with Impacts & Friction B. Blazejczyk-Okolewska, K. Czolczynski, T. Kapitaniak & J. Wojewoda Volume 37: Invariant Sets for Windows — Resonance Structures, Attractors, Fractals and Patterns A. D. Morozov, T. N. Dragunov, S. A. Boykova & O. V. Malysheva Volume 38: Nonlinear Noninteger Order Circuits & Systems — An Introduction P. Arena, R. Caponetto, L Fortuna & D. Porto Volume 39: The Chaos Avant-Garde: Memories of the Early Days of Chaos Theory Edited by Ralph Abraham & Yoshisuke Ueda Volume 40: Advanced Topics in Nonlinear Control Systems Edited by T. P. Leung & H. S. Qin Volume 41: Synchronization in Coupled Chaotic Circuits and Systems C. W. Wu Volume 42: Chaotic Synchronization: Applications to Living Systems £. -
A Cell Dynamical System Model for Simulation of Continuum Dynamics of Turbulent Fluid Flows A
A Cell Dynamical System Model for Simulation of Continuum Dynamics of Turbulent Fluid Flows A. M. Selvam and S. Fadnavis Email: [email protected] Website: http://www.geocities.com/amselvam Trends in Continuum Physics, TRECOP ’98; Proceedings of the International Symposium on Trends in Continuum Physics, Poznan, Poland, August 17-20, 1998. Edited by Bogdan T. Maruszewski, Wolfgang Muschik, and Andrzej Radowicz. Singapore, World Scientific, 1999, 334(12). 1. INTRODUCTION Atmospheric flows exhibit long-range spatiotemporal correlations manifested as the fractal geometry to the global cloud cover pattern concomitant with inverse power-law form for power spectra of temporal fluctuations of all scales ranging from turbulence (millimeters-seconds) to climate (thousands of kilometers-years) (Tessier et. al., 1996) Long-range spatiotemporal correlations are ubiquitous to dynamical systems in nature and are identified as signatures of self-organized criticality (Bak et. al., 1988) Standard models for turbulent fluid flows in meteorological theory cannot explain satisfactorily the observed multifractal (space-time) structures in atmospheric flows. Numerical models for simulation and prediction of atmospheric flows are subject to deterministic chaos and give unrealistic solutions. Deterministic chaos is a direct consequence of round-off error growth in iterative computations. Round-off error of finite precision computations doubles on an average at each step of iterative computations (Mary Selvam, 1993). Round- off error will propagate to the mainstream computation and give unrealistic solutions in numerical weather prediction (NWP) and climate models which incorporate thousands of iterative computations in long-term numerical integration schemes. A recently developed non-deterministic cell dynamical system model for atmospheric flows (Mary Selvam, 1990; Mary Selvam et. -
Chaos Theory
By Nadha CHAOS THEORY What is Chaos Theory? . It is a field of study within applied mathematics . It studies the behavior of dynamical systems that are highly sensitive to initial conditions . It deals with nonlinear systems . It is commonly referred to as the Butterfly Effect What is a nonlinear system? . In mathematics, a nonlinear system is a system which is not linear . It is a system which does not satisfy the superposition principle, or whose output is not directly proportional to its input. Less technically, a nonlinear system is any problem where the variable(s) to be solved for cannot be written as a linear combination of independent components. the SUPERPOSITION PRINCIPLE states that, for all linear systems, the net response at a given place and time caused by two or more stimuli is the sum of the responses which would have been caused by each stimulus individually. So that if input A produces response X and input B produces response Y then input (A + B) produces response (X + Y). So a nonlinear system does not satisfy this principal. There are 3 criteria that a chaotic system satisfies 1) sensitive dependence on initial conditions 2) topological mixing 3) periodic orbits are dense 1) Sensitive dependence on initial conditions . This is popularly known as the "butterfly effect” . It got its name because of the title of a paper given by Edward Lorenz titled Predictability: Does the Flap of a Butterfly’s Wings in Brazil set off a Tornado in Texas? . The flapping wing represents a small change in the initial condition of the system, which causes a chain of events leading to large-scale phenomena. -
At Work in Qualitative Analysis: a Case Study of the Opposite
HISTORIA MATHEMATICA 25 (1998), 379±411 ARTICLE NO. HM982211 The ``Essential Tension'' at Work in Qualitative Analysis: A Case Study of the Opposite Points of View of Poincare and Enriques on the Relationships between Analysis and Geometry* View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Giorgio Israel and Marta Menghini Dipartimento di Matematica, UniversitaÁ di Roma ``La Sapienza,'' P. le A. Moro, 2, I00185 Rome, Italy An analysis of the different philosophic and scienti®c visions of Henri Poincare and Federigo Enriques relative to qualitative analysis provides us with a complex and interesting image of the ``essential tension'' between ``tradition'' and ``innovation'' within the history of science. In accordance with his scienti®c paradigm, Poincare viewed qualitative analysis as a means for preserving the nucleus of the classical reductionist program, even though it meant ``bending the rules'' somewhat. To Enriques's mind, qualitative analysis represented the af®rmation of a synthetic, geometrical vision that would supplant the analytical/quantitative conception characteristic of 19th-century mathematics and mathematical physics. Here, we examine the two different answers given at the turn of the century to the question of the relationship between geometry and analysis and between mathematics, on the one hand, and mechanics and physics, on the other. 1998 Academic Press Un'analisi delle diverse posizioni ®loso®che e scienti®che di Henri Poincare e Federigo Enriques nei riguardi dell'analisi qualitativa fornisce un'immagine complessa e interessante della ``tensione essenziale'' tra ``tradizione'' e ``innovazione'' nell'ambito della storia della scienza. -
Thermodynamic Properties of Coupled Map Lattices 1 Introduction
Thermodynamic properties of coupled map lattices J´erˆome Losson and Michael C. Mackey Abstract This chapter presents an overview of the literature which deals with appli- cations of models framed as coupled map lattices (CML’s), and some recent results on the spectral properties of the transfer operators induced by various deterministic and stochastic CML’s. These operators (one of which is the well- known Perron-Frobenius operator) govern the temporal evolution of ensemble statistics. As such, they lie at the heart of any thermodynamic description of CML’s, and they provide some interesting insight into the origins of nontrivial collective behavior in these models. 1 Introduction This chapter describes the statistical properties of networks of chaotic, interacting el- ements, whose evolution in time is discrete. Such systems can be profitably modeled by networks of coupled iterative maps, usually referred to as coupled map lattices (CML’s for short). The description of CML’s has been the subject of intense scrutiny in the past decade, and most (though by no means all) investigations have been pri- marily numerical rather than analytical. Investigators have often been concerned with the statistical properties of CML’s, because a deterministic description of the motion of all the individual elements of the lattice is either out of reach or uninteresting, un- less the behavior can somehow be described with a few degrees of freedom. However there is still no consistent framework, analogous to equilibrium statistical mechanics, within which one can describe the probabilistic properties of CML’s possessing a large but finite number of elements.