Chaos Theory

Total Page:16

File Type:pdf, Size:1020Kb

Chaos Theory By Nadha CHAOS THEORY What is Chaos Theory? . It is a field of study within applied mathematics . It studies the behavior of dynamical systems that are highly sensitive to initial conditions . It deals with nonlinear systems . It is commonly referred to as the Butterfly Effect What is a nonlinear system? . In mathematics, a nonlinear system is a system which is not linear . It is a system which does not satisfy the superposition principle, or whose output is not directly proportional to its input. Less technically, a nonlinear system is any problem where the variable(s) to be solved for cannot be written as a linear combination of independent components. the SUPERPOSITION PRINCIPLE states that, for all linear systems, the net response at a given place and time caused by two or more stimuli is the sum of the responses which would have been caused by each stimulus individually. So that if input A produces response X and input B produces response Y then input (A + B) produces response (X + Y). So a nonlinear system does not satisfy this principal. There are 3 criteria that a chaotic system satisfies 1) sensitive dependence on initial conditions 2) topological mixing 3) periodic orbits are dense 1) Sensitive dependence on initial conditions . This is popularly known as the "butterfly effect” . It got its name because of the title of a paper given by Edward Lorenz titled Predictability: Does the Flap of a Butterfly’s Wings in Brazil set off a Tornado in Texas? . The flapping wing represents a small change in the initial condition of the system, which causes a chain of events leading to large-scale phenomena. Had the butterfly not flapped its wings, the trajectory of the system might have been vastly different. A consequence of sensitivity to initial conditions is that if we start with only a finite amount of information about the system, then beyond a certain time the system will no longer be predictable. This is most familiar in the case of weather, which is generally predictable only about a week ahead. 2) Topological Mixing . Topological mixing means that the system will evolve over time so that any given region or open set of its phase space will eventually overlap with any other given region. This mathematical concept of "mixing" corresponds to the standard intuition. The mixing of colored dyes or fluids is an example of a chaotic system. 3) Dense Periodicity . Density of periodic orbits means that every point in the space is approached arbitrarily closely by periodic orbits. This means that there is no true periodicity . There is only quasi- periodicity . Quasiperiodic orbits: Periodic solutions with at least two incommensurable frequencies (i.e., the ratio of the frequencies is an irrational number). The Butterfly Effect . Edward Lorenz. In 1960, he was working on the problem of weather prediction. He had a computer set up, with a set of twelve equations to model the weather. It didn't predict the weather itself. However this computer program did theoretically predict what the weather might be. The Butterfly Effect Figure 1: Lorenz's experiment: the difference between the starting values of these curves is only .000127. (Ian Stewart, Does God Play Dice? The Mathematics of Chaos, pg. 141) The Butterfly Effect . One day in 1961, he wanted to see a particular sequence again. To save time, he started in the middle of the sequence, instead of the beginning. He entered the number off his printout and left to let it run. When he came back an hour later, the sequence had evolved differently. Instead of the same pattern as before, it diverged from the pattern, ending up completely different from the original. The Butterfly Effect • This effect came to be known as the butterfly effect. The amount of difference in the starting points of the two curves is so small that it is comparable to a butterfly flapping its wings. • The flapping of a single butterfly's wing today produces a tiny change in the state of the atmosphere. Over a period of time, the atmosphere actually does diverge from what it would have been. So, in a month's time, a tornado that would have devastated the Indonesian coast doesn't happen. Or maybe one that wasn't going to happen, does. (Ian Stewart, Does God Play Dice? The Mathematics of Chaos, pg. 141) So… to sum up so far . Chaos theory is the study of nonlinear dynamics, where seemingly random events are actually predictable from simple deterministic equations. Deterministic Chaos . Most prominent effect of nonlinear dynamics . A key element of deterministic chaos is the sensitive dependence of the trajectory on the initial conditions . http://www.elmer.unibas.ch/pendulum/chaos .htm Deterministic Chaos . A horizontally driven pendulum . Both initial conditions differ in one arcsec only. But 10 seconds later they behave very differently. Deterministic Chaos . At the beginning the distance of the trajectories increases on average exponentially (see the inset which shows the distance in phase space). The rate of divergence is measured by the largest Lyapunov exponent. The Lyapunov exponent . The Lyapunov exponent characterises the extent of the sensitivity to initial conditions. Quantitatively, two trajectories in phase space with initial separation diverge . where λ is the Lyapunov exponent. It is common to just refer to the largest one, i.e. to the Maximal Lyapunov Exponent (MLE), because it determines the overall predictability of the system. A positive MLE is usually taken as an indication that the system is chaotic. Stability and Instability . Local instability versus global stability: In order to have amplification of small errors and noise, the behavior must be locally unstable: over short times nearby states move away from each other. But for the system to consistently produce stable behavior, over long times the set of behaviors must fall back into itself. The tension of these two properties leads to very elegantly structured chaotic attractors. http://www.exploratorium.edu/complexity/Com pLexicon/chaos.html Some examples of chaotic systems . Double Pendulum . Rayleigh-Bénard convection Double Pendulum . This is considered to be a dynamical system . It is a pendulum with another pendulum attached to its end . The motion of this system is controlled by a set of coupled ordinary differential equations . This motion can be considered chaotic Double Pendulum Video: To demonstrate the motion of the double pendulum within its constraints Motion of the double compound pendulum (from numerical integration of the equations of motion) Double Pendulum Double Pendulum long exposure, tracked with LED light at its end. http://en.wikipedia.org/ wiki/File:DPLE.jpg Rayleigh-Bénard convection . An example of a self- organizing nonlinear system . A type of natural convection that occurs in a plane of fluid heated from below . The fluid develops a regular pattern of convection cells known as Benard cells . It is well studied because of its accessibility both experimentally and analytically Rayleigh-Bénard convection . The experimental set-up uses a layer of liquid, e.g. water, between two parallel planes. The height of the layer is small compared to the horizontal dimension. We can consider different cases . 1) The temperature of the bottom plane is the same as the top plane. The liquid will then tend towards an equilibrium, where its temperature is the same as its surroundings. At equilibrium, the liquid is perfectly uniform: to an observer it would appear the same from any position Rayleigh-Bénard convection . 2) If the temperature of the bottom plane is increased slightly yielding a flow of thermal energy conducted through the liquid. The system will begin to have a structure of thermal conductivity Rayleigh-Bénard convection . The temperature, and the density and pressure with it, will vary linearly between the bottom and top plane. A uniform linear gradient of temperature will be established. Once conduction is established, the microscopic random movement spontaneously becomes ordered on a macroscopic level, forming Bénard convection cells, with a characteristic correlation length. Convection cells in a gravity field Simulation of Rayleigh-Bénard convection in 3D Rayleigh-Bénard convection . the deterministic law at the microscopic level produces a non-deterministic arrangement of the cells: if the experiment is repeated, a particular position in the experiment will be in a clockwise cell in some cases, and a counter-clockwise cell in others. Microscopic perturbations of the initial conditions are enough to produce a (non- deterministic) macroscopic effect. This inability to predict long-range conditions and sensitivity to initial-conditions are characteristics of chaotic systems (i.e., the butterfly effect). If the temperature of the bottom plane was to be further increased, the structure would become more complex in space and time; the turbulent flow would become chaotic. THE END.
Recommended publications
  • Mixing, Chaotic Advection, and Turbulence
    Annual Reviews www.annualreviews.org/aronline Annu. Rev. Fluid Mech. 1990.22:207-53 Copyright © 1990 hV Annual Reviews Inc. All r~hts reserved MIXING, CHAOTIC ADVECTION, AND TURBULENCE J. M. Ottino Department of Chemical Engineering, University of Massachusetts, Amherst, Massachusetts 01003 1. INTRODUCTION 1.1 Setting The establishment of a paradigm for mixing of fluids can substantially affect the developmentof various branches of physical sciences and tech- nology. Mixing is intimately connected with turbulence, Earth and natural sciences, and various branches of engineering. However, in spite of its universality, there have been surprisingly few attempts to construct a general frameworkfor analysis. An examination of any library index reveals that there are almost no works textbooks or monographs focusing on the fluid mechanics of mixing from a global perspective. In fact, there have been few articles published in these pages devoted exclusively to mixing since the first issue in 1969 [one possible exception is Hill’s "Homogeneous Turbulent Mixing With Chemical Reaction" (1976), which is largely based on statistical theory]. However,mixing has been an important component in various other articles; a few of them are "Mixing-Controlled Supersonic Combustion" (Ferri 1973), "Turbulence and Mixing in Stably Stratified Waters" (Sherman et al. 1978), "Eddies, Waves, Circulation, and Mixing: Statistical Geofluid Mechanics" (Holloway 1986), and "Ocean Tur- bulence" (Gargett 1989). It is apparent that mixing appears in both indus- try and nature and the problems span an enormous range of time and length scales; the Reynolds numberin problems where mixing is important varies by 40 orders of magnitude(see Figure 1).
    [Show full text]
  • Stat 8112 Lecture Notes Stationary Stochastic Processes Charles J
    Stat 8112 Lecture Notes Stationary Stochastic Processes Charles J. Geyer April 29, 2012 1 Stationary Processes A sequence of random variables X1, X2, ::: is called a time series in the statistics literature and a (discrete time) stochastic process in the probability literature. A stochastic process is strictly stationary if for each fixed positive integer k the distribution of the random vector (Xn+1;:::;Xn+k) has the same distribution for all nonnegative integers n. A stochastic process having second moments is weakly stationary or sec- ond order stationary if the expectation of Xn is the same for all positive integers n and for each nonnegative integer k the covariance of Xn and Xn+k is the same for all positive integers n. 2 The Birkhoff Ergodic Theorem The Birkhoff ergodic theorem is to strictly stationary stochastic pro- cesses what the strong law of large numbers (SLLN) is to independent and identically distributed (IID) sequences. In effect, despite the different name, it is the SLLN for stationary stochastic processes. Suppose X1, X2, ::: is a strictly stationary stochastic process and X1 has expectation (so by stationary so do the rest of the variables). Write n 1 X X = X : n n i i=1 To introduce the Birkhoff ergodic theorem, it says a.s. Xn −! Y; (1) where Y is a random variable satisfying E(Y ) = E(X1). More can be said about Y , but we will have to develop some theory first. 1 The SSLN for IID sequences says the same thing as the Birkhoff ergodic theorem (1) except that in the SLLN for IID sequences the limit Y = E(X1) is constant.
    [Show full text]
  • Pointwise and L1 Mixing Relative to a Sub-Sigma Algebra
    POINTWISE AND L1 MIXING RELATIVE TO A SUB-SIGMA ALGEBRA DANIEL J. RUDOLPH Abstract. We consider two natural definitions for the no- tion of a dynamical system being mixing relative to an in- variant sub σ-algebra H. Both concern the convergence of |E(f · g ◦ T n|H) − E(f|H)E(g ◦ T n|H)| → 0 as |n| → ∞ for appropriate f and g. The weaker condition asks for convergence in L1 and the stronger for convergence a.e. We will see that these are different conditions. Our goal is to show that both these notions are robust. As is quite standard we show that one need only consider g = f and E(f|H) = 0, and in this case |E(f · f ◦ T n|H)| → 0. We will see rather easily that for L1 convergence it is enough to check an L2-dense family. Our major result will be to show the same is true for pointwise convergence making this a verifiable condition. As an application we will see that if T is mixing then for any ergodic S, S × T is relatively mixing with respect to the first coordinate sub σ-algebra in the pointwise sense. 1. Introduction Mixing properties for ergodic measure preserving systems gener- ally have versions “relative” to an invariant sub σ-algebra (factor algebra). For most cases the fundamental theory for the abso- lute case lifts to the relative case. For example one can say T is relatively weakly mixing with respect to a factor algebra H if 1) L2(µ) has no finite dimensional invariant submodules over the subspace of H-measurable functions, or Date: August 31, 2005.
    [Show full text]
  • On Li-Yorke Measurable Sensitivity
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 143, Number 6, June 2015, Pages 2411–2426 S 0002-9939(2015)12430-6 Article electronically published on February 3, 2015 ON LI-YORKE MEASURABLE SENSITIVITY JARED HALLETT, LUCAS MANUELLI, AND CESAR E. SILVA (Communicated by Nimish Shah) Abstract. The notion of Li-Yorke sensitivity has been studied extensively in the case of topological dynamical systems. We introduce a measurable version of Li-Yorke sensitivity, for nonsingular (and measure-preserving) dynamical systems, and compare it with various mixing notions. It is known that in the case of nonsingular dynamical systems, a conservative ergodic Cartesian square implies double ergodicity, which in turn implies weak mixing, but the converses do not hold in general, though they are all equivalent in the finite measure- preserving case. We show that for nonsingular systems, an ergodic Cartesian square implies Li-Yorke measurable sensitivity, which in turn implies weak mixing. As a consequence we obtain that, in the finite measure-preserving case, Li-Yorke measurable sensitivity is equivalent to weak mixing. We also show that with respect to totally bounded metrics, double ergodicity implies Li-Yorke measurable sensitivity. 1. Introduction The notion of sensitive dependence for topological dynamical systems has been studied by many authors; see, for example, the works [3, 7, 10] and the references therein. Recently, various notions of measurable sensitivity have been explored in ergodic theory; see for example [2, 9, 11–14]. In this paper we are interested in formulating a measurable version of the topolog- ical notion of Li-Yorke sensitivity for the case of nonsingular and measure-preserving dynamical systems.
    [Show full text]
  • Turbulence, Fractals, and Mixing
    Turbulence, fractals, and mixing Paul E. Dimotakis and Haris J. Catrakis GALCIT Report FM97-1 17 January 1997 Firestone Flight Sciences Laboratory Guggenheim Aeronautical Laboratory Karman Laboratory of Fluid Mechanics and Jet Propulsion Pasadena Turbulence, fractals, and mixing* Paul E. Dimotakis and Haris J. Catrakis Graduate Aeronautical Laboratories California Institute of Technology Pasadena, California 91125 Abstract Proposals and experimenta1 evidence, from both numerical simulations and laboratory experiments, regarding the behavior of level sets in turbulent flows are reviewed. Isoscalar surfaces in turbulent flows, at least in liquid-phase turbulent jets, where extensive experiments have been undertaken, appear to have a geom- etry that is more complex than (constant-D) fractal. Their description requires an extension of the original, scale-invariant, fractal framework that can be cast in terms of a variable (scale-dependent) coverage dimension, Dd(X). The extension to a scale-dependent framework allows level-set coverage statistics to be related to other quantities of interest. In addition to the pdf of point-spacings (in 1-D), it can be related to the scale-dependent surface-to-volume (perimeter-to-area in 2-D) ratio, as well as the distribution of distances to the level set. The application of this framework to the study of turbulent -jet mixing indicates that isoscalar geometric measures are both threshold and Reynolds-number dependent. As regards mixing, the analysis facilitated by the new tools, as well as by other criteria, indicates en- hanced mixing with increasing Reynolds number, at least for the range of Reynolds numbers investigated. This results in a progressively less-complex level-set geom- etry, at least in liquid-phase turbulent jets, with increasing Reynolds number.
    [Show full text]
  • Synchronization in Nonlinear Systems and Networks
    Synchronization in Nonlinear Systems and Networks Yuri Maistrenko E-mail: [email protected] you can find me in the room EW 632, Wednesday 13:00-14:00 Lecture 4 - 23.11.2011 1 Chaos actually … is everywhere Web Book CHAOS = BUTTERFLY EFFECT Henri Poincaré (1880) “ It so happens that small differences in the initial state of the system can lead to very large differences in its final state. A small error in the former could then produce an enormous one in the latter. Prediction becomes impossible, and the system appears to behave randomly.” Ray Bradbury “A Sound of Thunder “ (1952) THE ESSENCE OF CHAOS • processes deterministic fully determined by initial state • long-term behavior unpredictable butterfly effect PHYSICAL “DEFINITION “ OF CHAOS “To say that a certain system exhibits chaos means that the system obeys deterministic law of evolution but that the outcome is highly sensitive to small uncertainties in the specification of the initial state. In chaotic system any open ball of initial conditions, no matter how small, will in finite time spread over the extent of the entire asymptotically admissible phase space” Predrag Cvitanovich . Appl.Chaos 1992 EXAMPLES OF CHAOTIC SYSTEMS • the solar system (Poincare) • the weather (Lorenz) • turbulence in fluids • population growth • lots and lots of other systems… “HOT” APPLICATIONS • neuronal networks of the brain • genetic networks UNPREDICTIBILITY OF THE WEATHER Edward Lorenz (1963) Difficulties in predicting the weather are not related to the complexity of the Earths’ climate but to CHAOS in the climate equations! Dynamical systems Dynamical system: a system of one or more variables which evolve in time according to a given rule Two types of dynamical systems: • Differential equations: time is continuous (called flow) dx N f (x), t R dt • Difference equations (iterated maps): time is discrete (called cascade) xn1 f (xn ), n 0, 1, 2,..
    [Show full text]
  • Writing the History of Dynamical Systems and Chaos
    Historia Mathematica 29 (2002), 273–339 doi:10.1006/hmat.2002.2351 Writing the History of Dynamical Systems and Chaos: View metadata, citation and similar papersLongue at core.ac.uk Dur´ee and Revolution, Disciplines and Cultures1 brought to you by CORE provided by Elsevier - Publisher Connector David Aubin Max-Planck Institut fur¨ Wissenschaftsgeschichte, Berlin, Germany E-mail: [email protected] and Amy Dahan Dalmedico Centre national de la recherche scientifique and Centre Alexandre-Koyre,´ Paris, France E-mail: [email protected] Between the late 1960s and the beginning of the 1980s, the wide recognition that simple dynamical laws could give rise to complex behaviors was sometimes hailed as a true scientific revolution impacting several disciplines, for which a striking label was coined—“chaos.” Mathematicians quickly pointed out that the purported revolution was relying on the abstract theory of dynamical systems founded in the late 19th century by Henri Poincar´e who had already reached a similar conclusion. In this paper, we flesh out the historiographical tensions arising from these confrontations: longue-duree´ history and revolution; abstract mathematics and the use of mathematical techniques in various other domains. After reviewing the historiography of dynamical systems theory from Poincar´e to the 1960s, we highlight the pioneering work of a few individuals (Steve Smale, Edward Lorenz, David Ruelle). We then go on to discuss the nature of the chaos phenomenon, which, we argue, was a conceptual reconfiguration as
    [Show full text]
  • Tom W B Kibble Frank H Ber
    Classical Mechanics 5th Edition Classical Mechanics 5th Edition Tom W.B. Kibble Frank H. Berkshire Imperial College London Imperial College Press ICP Published by Imperial College Press 57 Shelton Street Covent Garden London WC2H 9HE Distributed by World Scientific Publishing Co. Pte. Ltd. 5 Toh Tuck Link, Singapore 596224 USA office: Suite 202, 1060 Main Street, River Edge, NJ 07661 UK office: 57 Shelton Street, Covent Garden, London WC2H 9HE Library of Congress Cataloging-in-Publication Data Kibble, T. W. B. Classical mechanics / Tom W. B. Kibble, Frank H. Berkshire, -- 5th ed. p. cm. Includes bibliographical references and index. ISBN 1860944248 -- ISBN 1860944353 (pbk). 1. Mechanics, Analytic. I. Berkshire, F. H. (Frank H.). II. Title QA805 .K5 2004 531'.01'515--dc 22 2004044010 British Library Cataloguing-in-Publication Data A catalogue record for this book is available from the British Library. Copyright © 2004 by Imperial College Press All rights reserved. This book, or parts thereof, may not be reproduced in any form or by any means, electronic or mechanical, including photocopying, recording or any information storage and retrieval system now known or to be invented, without written permission from the Publisher. For photocopying of material in this volume, please pay a copying fee through the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, USA. In this case permission to photocopy is not required from the publisher. Printed in Singapore. To Anne and Rosie vi Preface This book, based on courses given to physics and applied mathematics stu- dents at Imperial College, deals with the mechanics of particles and rigid bodies.
    [Show full text]
  • Annotated List of References Tobias Keip, I7801986 Presentation Method: Poster
    Personal Inquiry – Annotated list of references Tobias Keip, i7801986 Presentation Method: Poster Poster Section 1: What is Chaos? In this section I am introducing the topic. I am describing different types of chaos and how individual perception affects our sense for chaos or chaotic systems. I am also going to define the terminology. I support my ideas with a lot of examples, like chaos in our daily life, then I am going to do a transition to simple mathematical chaotic systems. Larry Bradley. (2010). Chaos and Fractals. Available: www.stsci.edu/~lbradley/seminar/. Last accessed 13 May 2010. This website delivered me with a very good introduction into the topic as there are a lot of books and interesting web-pages in the “References”-Sektion. Gleick, James. Chaos: Making a New Science. Penguin Books, 1987. The book gave me a very general introduction into the topic. Harald Lesch. (2003-2007). alpha-Centauri . Available: www.br-online.de/br- alpha/alpha-centauri/alpha-centauri-harald-lesch-videothek-ID1207836664586.xml. Last accessed 13. May 2010. A web-page with German video-documentations delivered a lot of vivid examples about chaos for my poster. Poster Section 2: Laplace's Demon and the Butterfly Effect In this part I describe the idea of the so called Laplace's Demon and the theory of cause-and-effect chains. I work with a lot of examples, especially the famous weather forecast example. Also too I introduce the mathematical concept of a dynamic system. Jeremy S. Heyl (August 11, 2008). The Double Pendulum Fractal. British Columbia, Canada.
    [Show full text]
  • Instructional Experiments on Nonlinear Dynamics & Chaos (And
    Bibliography of instructional experiments on nonlinear dynamics and chaos Page 1 of 20 Colorado Virtual Campus of Physics Mechanics & Nonlinear Dynamics Cluster Nonlinear Dynamics & Chaos Lab Instructional Experiments on Nonlinear Dynamics & Chaos (and some related theory papers) overviews of nonlinear & chaotic dynamics prototypical nonlinear equations and their simulation analysis of data from chaotic systems control of chaos fractals solitons chaos in Hamiltonian/nondissipative systems & Lagrangian chaos in fluid flow quantum chaos nonlinear oscillators, vibrations & strings chaotic electronic circuits coupled systems, mode interaction & synchronization bouncing ball, dripping faucet, kicked rotor & other discrete interval dynamics nonlinear dynamics of the pendulum inverted pendulum swinging Atwood's machine pumping a swing parametric instability instabilities, bifurcations & catastrophes chemical and biological oscillators & reaction/diffusions systems other pattern forming systems & self-organized criticality miscellaneous nonlinear & chaotic systems -overviews of nonlinear & chaotic dynamics To top? Briggs, K. (1987), "Simple experiments in chaotic dynamics," Am. J. Phys. 55 (12), 1083-9. Hilborn, R. C. (2004), "Sea gulls, butterflies, and grasshoppers: a brief history of the butterfly effect in nonlinear dynamics," Am. J. Phys. 72 (4), 425-7. Hilborn, R. C. and N. B. Tufillaro (1997), "Resource Letter: ND-1: nonlinear dynamics," Am. J. Phys. 65 (9), 822-34. Laws, P. W. (2004), "A unit on oscillations, determinism and chaos for introductory physics students," Am. J. Phys. 72 (4), 446-52. Sungar, N., J. P. Sharpe, M. J. Moelter, N. Fleishon, K. Morrison, J. McDill, and R. Schoonover (2001), "A laboratory-based nonlinear dynamics course for science and engineering students," Am. J. Phys. 69 (5), 591-7. http://carbon.cudenver.edu/~rtagg/CVCP/Ctr_dynamics/Lab_nonlinear_dyn/Bibex_nonline..
    [Show full text]
  • Summary of Unit 3 Chaos and the Butterfly Effect
    Summary of Unit 3 Chaos and the Butterfly Effect Introduction to Dynamical Systems and Chaos http://www.complexityexplorer.org The Logistic Equation ● A very simple model of a population where there is some limit to growth ● f(x) = rx(1-x) ● r is a growth parameter ● x is measured as a fraction of the “annihilation” parameter. ● f(x) gives the population next year given x, the population this year. David P. Feldman Introduction to Dynamical Systems http://www.complexityexplorer.org and Chaos Iterating the Logistic Equation ● We used an online program to iterate the logistic equation for different r values and make time series plots ● We found attracting periodic behavior of different periods and... David P. Feldman Introduction to Dynamical Systems http://www.complexityexplorer.org and Chaos Aperiodic Orbits ● For r=4 (and other values), the orbit is aperiodic. It never repeats. ● Applying the same function over and over again does not result in periodic behavior. David P. Feldman Introduction to Dynamical Systems http://www.complexityexplorer.org and Chaos Comparing Initial Conditions ● We used a different online program to compare time series for two different initial conditions. ● The bottom plot is the difference between the two time series in the top plot. David P. Feldman Introduction to Dynamical Systems http://www.complexityexplorer.org and Chaos Sensitive Dependence on Initial Conditions ● When r=4.0, two orbits that start very close together eventually end up far apart ● This is known as sensitive dependence on initial conditions, or the butterfly effect. David P. Feldman Introduction to Dynamical Systems http://www.complexityexplorer.org and Chaos Sensitive Dependence on Initial Conditions ● For any initial condition x there is another initial condition very near to it that eventually ends up far away ● To predict the behavior of a system with SDIC requires knowing the initial condition with impossible accuracy.
    [Show full text]
  • Blocking Conductance and Mixing in Random Walks
    Blocking conductance and mixing in random walks Ravindran Kannan Department of Computer Science Yale University L´aszl´oLov´asz Microsoft Research and Ravi Montenegro Georgia Institute of Technology Contents 1 Introduction 3 2 Continuous state Markov chains 7 2.1 Conductance and other expansion measures . 8 3 General mixing results 11 3.1 Mixing time estimates in terms of a parameter function . 11 3.2 Faster convergence to stationarity . 13 3.3 Constructing mixweight functions . 13 3.4 Explicit conductance bounds . 16 3.5 Finite chains . 17 3.6 Further examples . 18 4 Random walks in convex bodies 19 4.1 A logarithmic Cheeger inequality . 19 4.2 Mixing of the ball walk . 21 4.3 Sampling from a convex body . 21 5 Proofs I: Markov Chains 22 5.1 Proof of Theorem 3.1 . 22 5.2 Proof of Theorem 3.2 . 24 5.3 Proof of Theorem 3.3 . 26 1 6 Proofs II: geometry 27 6.1 Lemmas . 27 6.2 Proof of theorem 4.5 . 29 6.3 Proof of theorem 4.6 . 30 6.4 Proof of Theorem 4.3 . 32 2 Abstract The notion of conductance introduced by Jerrum and Sinclair [JS88] has been widely used to prove rapid mixing of Markov Chains. Here we introduce a bound that extends this in two directions. First, instead of measuring the conductance of the worst subset of states, we bound the mixing time by a formula that can be thought of as a weighted average of the Jerrum-Sinclair bound (where the average is taken over subsets of states with different sizes).
    [Show full text]