Georgia Augusta 6 | 2008 7 ZAHLEN, FORMELN, UNGELÖSTE RÄTSEL

Total Page:16

File Type:pdf, Size:1020Kb

Georgia Augusta 6 | 2008 7 ZAHLEN, FORMELN, UNGELÖSTE RÄTSEL GEORGIA UGUSTA Wissenschaftsmagazin A der Georg-August-Universität Göttingen ZAHLEN, FORMELN, UNGELÖSTE RÄTSEL Ausgabe 6 · Dezember 2008 Herausgegeben vom Präsidenten der Universität in Zusammenarbeit mit dem Universitätsbund Göttingen GEORG-AUGUST-UNIVERSITÄT GÖTTINGEN Alumni Göttingen Internationale Alumni-Vereinigung Alumni Göttingen Internationale Alumni-Vereinigung Georg-August-Universität Göttingen Postanschrift Alumni Göttingen Georg-August-Universität Göttingen Wilhelmsplatz 1 · 37073 Göttingen Alumni Göttingen ist das internatio- Internet nale Netzwerk von Ehemaligen, www.alumni.uni-goettingen.de Absolventen und Studierenden al- ler Fachrichtungen, Wissenschaft- Alumni-Büro Bernd Hackstette · Geschäftsführer Alumni Göttingen e.V. lern, Mitarbeitern sowie Freunden Tel. 0551 / 39 13276 · Fax 0551 / 39 185380 und Förderern der Universität Göt- [email protected] tingen. Dieses Netzwerk wird ge- Susanne Schmidt · Sekretariat tragen von dem gemeinnützigen Tel. 0551 / 39 5380 · Fax 0551 / 39 185380 Verein Alumni Göttingen e.V., der [email protected] im Jahr 2001 gegründet wurde. Der Verein zählt inzwischen mehr als 3.000 Mitglieder und ermög- licht die kontinuierliche und le- bendige Teilhabe und das aktive Mitwirken an der Entwicklung der Georgia Augusta. EDITORIAL Zahlen, Formeln, ungelöste Rätsel Die Mathematik nimmt im System matik und von Göttingen als der der Wissenschaften eine »schil- Wiege der modernen Naturwis- lernde Stellung« ein, wie der Göt- senschaften. Die beeindruckende tinger Mathematiker Felix Klein es Ahnengalerie wird angeführt von einmal formulierte. Die von Carl Gauß, der über ein halbes Jahr- Friedrich Gauß als »Königin der hundert in Göttingen lebte und Wissenschaften« titulierte Mathe- forschte. Sein Wirken verhalf der matik gehört nicht zu den Natur- Disziplin und ihren Anwendungen wissenschaften, da sie keine empi- an der Göttinger Universität zu ei- rische Wissenschaft ist. Zugleich ner herausragenden Stellung, die wäre es jedoch, so einer der Auto- in den nachfolgenden Jahren durch Disziplinen vorstellen. Am Ende ren in diesem Forschungsmaga- Dirichlet, Riemann, Klein und wollen wir erlebbar machen, was zin, »gewaltsam«, sie den Geistes- Hilbert weiter ausgebaut wurde. David Hilbert über seine Wissen- wissenschaften zuzuordnen. Sie Auf dieser Grundlage konnte in schaft gesagt hat: »Die Mathema- sei weder eine Buchwissenschaft, der Verknüpfung von Mathematik tik ist das Instrument, welches die noch befasse sie sich mit dem mit Chemie und Physik entstehen, Vermittlung bewirkt zwischen Menschen und dessen Kulturleis- was als Göttinger Nobelpreiswun- Theorie und Praxis, zwischen tungen. Andererseits stellt sie je- der bis heute das Ansehen unserer Denken und Beobachten: sie baut doch selbst eine sehr freie Kultur- Universität mitbestimmt und das die verbindende Brücke und ge- leistung dar. Sie ist letztlich nur wir im Rahmen unseres Zukunfts- staltet sie immer tragfähiger. Da- dem Denken verantwortlich, und konzeptes in der Exzellenzinitiative her kommt es, dass unsere ganze ihre Erkenntnis liegt überwiegend mit neuem Leben füllen wollen. gegenwärtige Kultur, soweit sie im Verstehen von Zusammenhän- Im »Jahr der Mathematik« soll auf der geistigen Durchdringung gen, ohne dass die Empirie das diese Ausgabe unseres Wissen- und Dienstbarmachung der Natur letzte Wort hätte. schaftsmagazins »Georgia Augu- beruht, ihre Grundlage in der Ma- Die Georgia Augusta hat Wis- sta« über die große Geschichte thematik findet.« senschaftsgeschichte geschrieben, der Mathematik hinaus ihre heuti- man spricht im frühen 20. Jahrhun- gen Herausforderungen und ihre Prof. Dr. Kurt von Figura dert von einem Mekka der Mathe- Anwendungen in verschiedenen Präsident Numbers, formulae, unsolved riddles As the Göttingen mathematician standing connections, without physics, made Göttingen’s ›Nobel Felix Klein once put it, mathema- empiricism having the final say. Prize Wonder‹ possible and con- tics occupies an ›enigmatic posi- Scientific history has been writ- tributes to the shaping of our Uni- tion‹ within the systematic order of ten by the Georg-August-Universi- versity’s reputation to this day. In the sciences. Deemed the ›queen tät: in the context of the early 20th realising our institutional strategy of the sciences‹ by Carl Friedrich century the University is referred for the future, as articulated in the Gauss, mathematics does not be- to as a Mecca of mathematics, Excellence Initiative for the pro- long to the natural sciences, since and Göttingen as the cradle of the motion of top-level research in it is not an empirical subject. Yet modern natural sciences. At the Germany, we intend to endow it at the same time it would be an head of the impressive ancestral with new life. »act of force«, according to one of gallery is Gauss, who lived and re- In this, the »Year of Mathema- our authors in this research maga- searched in Göttingen for more tics«, our research magazine goes zine, to assign it to the humanities. than half a century. It was his work beyond presenting the subject’s It is neither a science of the book, that led mathematics and its ap- great history to consider the chal- nor does it deal with the human plications at Göttingen University lenges confronting mathematics being and her cultural achieve- to assume a position of special today and its applications within ments. On the other hand, it itself prominence, a position enhanced various other disciplines. We wish represents a cultural achievement yet further in subsequent years by you stimulating reading. enjoying considerable freedom. Dirichlet, Riemann, Klein and Hil- Mathematics is ultimately ac- bert. What came about on this ba- countable only to thought, and its sis, through the interaction of Prof. Dr. Kurt von Figura findings lie primarily in under- mathematics with chemistry and President INHALTSVERZEICHNIS Prof. Dr. Felix Mühlhölzer MATHEMATIK LÖST PROBLEME 4 Philosophieren über Mathematik: Warum es so schwer ist Prof. Dr. Florentin Wörgötter 55 Lernende Systeme Mathematik – der Klebstoff für interdisziplinäre MATHEMATIK MACHT GESCHICHTE Forschung Prof. Dr. Benno Artmann 14 Hochburg der Mathematik Die Göttinger Mathematik und ihre Protagonisten Prof. Dr. Yuri Tschinkel 24 Die Felix Klein Protokolle Aus dem »Giftschrank« der Mathematischen Fakultät Prof. Dr. Hubert Goenner Prof. Dr. Axel Munk 30 Exzellenz für die Mathematik 62 … und Gott würfelt doch – aber mit System David Hilbert – Felix Klein – Hermann Minkowski Mit Statistik den Zufall kontrollieren 67 Deutsch-Schweizer Statistik-Forschergruppe: Dr. Cordula Tollmien Statistische Regularisierung unter qualitativen 38 Weibliches Genie Nebenbedingungen – Inferenz, Algorithmen, Frau und Mathematiker: Emmy Noether Asymptotik und Anwendungen Prof. Stephan Klasen, Ph.D. 69 Armut messen, erklären und überwinden Armutsforschung, Mathematik und Statistik 73 Courant Forschungszentrum »Armut, Ungleichheit und Wachstum in Entwicklungsländern: Statistische Methoden und empirische Analysen« 75 Tatyana Krivobokova: Die Realität hinter den Daten Von Heidi Niemann Prof. Dr. Anita Schöbel 76 Warten oder nicht warten? 45 Sofja Kowalewskaja (1850 bis 1891) Optimierung im öffentlichen Verkehr die erste promovierte Mathematikerin und die 83 Interdisziplinäre Lehre: Neue Projekte in der erste Professorin im Europa der Neuzeit Mathematik Von Cordula Tollmien Dr. Axel Wittmann 46 Sterne, Zahlen und Dreiecke Carl Friedrich Gauß – der Fürst der Mathematik als Astronom und Geodät 86 Mathematik-Olympiade: Früh übt sich ... ...wer ein guter Mathematiker werden will Prof. Dr. Rainer Kreß 88 Mathematische Methoden in Medizin und Technik Inverse Probleme und Tomographie 92 Graduiertenkolleg »Identifikation in mathematischen Modellen: Synergie stochastischer und numerischer Methoden« ZAHLEN, FORMELN, UNGELÖSTE RÄTSEL MATHEMATIK SCHAFFT WISSEN MATHEMATIK IST KUNST Prof. Dr. Ralf Meyer Prof. Dr. Thomas Noll 96 Der Raum hinter den Räumen 126 Nach Maß, Zahl und Gewicht Nichtkommutative Geometrie Zahlen und ihre Bedeutung in der christlichen Kunst 103 Graduiertenkolleg »Mathematische Strukturen Prof. Dr. Andreas Waczkat in der modernen Quantenphysik« 136 ars musica – ars mathematica? Musik als quadriviale Kunst und Wissenschaft. Prof. Dr. Thomas Schick Ein antikes Konzept und sein neuzeitliches Erbe 104 Die vierte Dimension ... oder wann ist die Krümmung positiv? 106 Courant Forschungszentrum »Strukturen höherer Ordnung in der Mathematik« Prof. Dr. Xiaoming Fu, Prof. Dr. Dieter Hogrefe, Prof. Dr. Henning Schulzrinne 112 Kein Tempolimit für die Datenautobahn Visionen für das Internet der Zukunft 116 Zentrum für Informatik 143 Verzeichnis der Autoren und Forschungseinrichtungen IMPRESSUM Herausgeber: Der Präsident der Universität Göttingen in Zusammenarbeit mit dem Privatdozentin Dr. Katharina Habermann Universitätsbund Göttingen e.V. 119 Informationsspezialisten am Werk Redaktion: Marietta Fuhrmann-Koch (verantwortlich), Die Göttinger Universitätsbibliothek und ihr Beate Hentschel Sondersammelgebiet »Reine Mathematik« Englischsprachige Texte: Victoria Viebahn Wissenschaftlicher Prof. Dr. med. Matthias Bähr 122 Das Zentralarchiv für Mathematiker-Nachlässe an Beirat: Prof. Dr. Dr. Bertram Brenig Prof. Dr. Rüdiger Hardeland der Niedersächsischen Staats- und Universitäts- Prof. Dr. Reinhard Gregor Kratz bibliothek Göttingen Prof. Dr. Konrad Samwer Prof. Dr. Eva Schumann Ilse Stein Prof. Dr. Dr. h.c. Lutz F. Tietze Thedel von Wallmoden Prof. Dr. Simone Winko Für den Universitätsbund Göttingen
Recommended publications
  • Arnold Sommerfeld in Einigen Zitaten Von Ihm Und Über Ihn1
    K.-P. Dostal, Arnold Sommerfeld in einigen Zitaten von ihm und über ihn Seite 1 Karl-Peter Dostal, Arnold Sommerfeld in einigen Zitaten von ihm und über ihn1 Kurze biographische Bemerkungen Arnold Sommerfeld [* 5. Dezember 1868 in Königsberg, † 26. April 1951 in München] zählt neben Max Planck, Albert Einstein und Niels Bohr zu den Begründern der modernen theoretischen Physik. Durch die Ausarbeitung der Bohrschen Atomtheorie, als Lehrbuchautor (Atombau und Spektrallinien, Vorlesungen über theoretische Physik) und durch seine „Schule“ (zu der etwa die Nobelpreisträger Peter Debye, Wolfgang Pauli, Werner Heisenberg und Hans Bethe gehören) sorgte Sommerfeld wie kein anderer für die Verbreitung der modernen Physik.2 Je nach Auswahl könnte Sommerfeld [aber] nicht nur als theoretischer Physiker, sondern auch als Mathematiker, Techniker oder Wissenschaftsjournalist porträtiert werden.3 Als Schüler der Mathematiker Ferdinand von Lindemann, Adolf Hurwitz, David Hilbert und Felix Klein hatte sich Sommerfeld zunächst vor allem der Mathematik zugewandt (seine erste Professur: 1897 - 1900 für Mathematik an der Bergakademie Clausthal). Als Professor an der TH Aachen von 1900 - 1906 gewann er zunehmendes Interesse an der Technik. 1906 erhielt er den seit Jahren verwaisten Lehrstuhl für theoretische Physik in München, an dem er mit wenigen Unterbrechungen noch bis 1940 (und dann wieder ab 19464) unterrichtete. Im Gegensatz zur etablierten Experimen- talphysik war die theoretische Physik anfangs des 20. Jh. noch eine junge Disziplin. Sie wurde nun zu
    [Show full text]
  • Mathematisches Forschungsinstitut Oberwolfach the Arithmetic of Fields
    Mathematisches Forschungsinstitut Oberwolfach Report No. 05/2009 The Arithmetic of Fields Organised by Moshe Jarden (Tel Aviv) Florian Pop (Philadelphia) Leila Schneps (Paris) February 1st – February 7th, 2009 Abstract. The workshop “The Arithmetic of Fields” focused on a series of problems concerning the interplay between number theory, arithmetic and al- gebraic geometry, Galois theory, and model theory, such as: the Galois theory of function fields / covers of varieties, rational points on varieties, Galois co- homology, local-global principles, lifting/specializing covers of curves, model theory of finitely generated fields, etc. Mathematics Subject Classification (2000): 12E30. Introduction by the Organisers The sixth conference on “The Arithmetic of Fields” was organized by Moshe Jar- den (Tel Aviv), Florian Pop (Philadelphia), and Leila Schneps (Paris), and was held in the week February 1–7, 2009. The participants came from 14 countries: Germany (14), USA (11), France (7), Israel (7), Canada (2), England (2), Austria (1), Brazil (1), Hungary (1), Italy (1), Japan (1), South Africa (1), Switzerland (1), and The Netherlands (1). All together, 51 people attended the conference; among the participants there were thirteen young researchers, and eight women. Most of the talks concentrated on the main theme of Field Arithmetic, namely Galois theory and its interplay with the arithmetic of the fields. Several talks had an arithmetical geometry flavour. All together, the organizers find the blend of young and experienced researchers and the variety of subjects covered very satisfactory. The Arithmetic of Fields 3 Workshop: The Arithmetic of Fields Table of Contents Moshe Jarden New Fields With Free Absolute Galois Groups ......................
    [Show full text]
  • Mathematicians Fleeing from Nazi Germany
    Mathematicians Fleeing from Nazi Germany Mathematicians Fleeing from Nazi Germany Individual Fates and Global Impact Reinhard Siegmund-Schultze princeton university press princeton and oxford Copyright 2009 © by Princeton University Press Published by Princeton University Press, 41 William Street, Princeton, New Jersey 08540 In the United Kingdom: Princeton University Press, 6 Oxford Street, Woodstock, Oxfordshire OX20 1TW All Rights Reserved Library of Congress Cataloging-in-Publication Data Siegmund-Schultze, R. (Reinhard) Mathematicians fleeing from Nazi Germany: individual fates and global impact / Reinhard Siegmund-Schultze. p. cm. Includes bibliographical references and index. ISBN 978-0-691-12593-0 (cloth) — ISBN 978-0-691-14041-4 (pbk.) 1. Mathematicians—Germany—History—20th century. 2. Mathematicians— United States—History—20th century. 3. Mathematicians—Germany—Biography. 4. Mathematicians—United States—Biography. 5. World War, 1939–1945— Refuges—Germany. 6. Germany—Emigration and immigration—History—1933–1945. 7. Germans—United States—History—20th century. 8. Immigrants—United States—History—20th century. 9. Mathematics—Germany—History—20th century. 10. Mathematics—United States—History—20th century. I. Title. QA27.G4S53 2008 510.09'04—dc22 2008048855 British Library Cataloging-in-Publication Data is available This book has been composed in Sabon Printed on acid-free paper. ∞ press.princeton.edu Printed in the United States of America 10 987654321 Contents List of Figures and Tables xiii Preface xvii Chapter 1 The Terms “German-Speaking Mathematician,” “Forced,” and“Voluntary Emigration” 1 Chapter 2 The Notion of “Mathematician” Plus Quantitative Figures on Persecution 13 Chapter 3 Early Emigration 30 3.1. The Push-Factor 32 3.2. The Pull-Factor 36 3.D.
    [Show full text]
  • Abraham Robinson, 1918 - 1974
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY Volume 83, Number 4, July 1977 ABRAHAM ROBINSON, 1918 - 1974 BY ANGUS J. MACINTYRE 1. Abraham Robinson died in New Haven on April 11, 1974, some six months after the diagnosis of an incurable cancer of the pancreas. In the fall of 1973 he was vigorously and enthusiastically involved at Yale in joint work with Peter Roquette on a new model-theoretic approach to diophantine problems. He finished a draft of this in November, shortly before he underwent surgery. He spoke of his satisfaction in having finished this work, and he bore with unforgettable dignity the loss of his strength and the fading of his bright plans. He was supported until the end by Reneé Robinson, who had shared with him since 1944 a life given to science and art. There is common consent that Robinson was one of the greatest of mathematical logicians, and Gödel has stressed that Robinson more than any other brought logic closer to mathematics as traditionally understood. His early work on metamathematics of algebra undoubtedly guided Ax and Kochen to the solution of the Artin Conjecture. One can reasonably hope that his memory will be further honored by future applications of his penetrating ideas. Robinson was a gentleman, unfailingly courteous, with inexhaustible enthu­ siasm. He took modest pleasure in his many honors. He was much respected for his willingness to listen, and for the sincerity of his advice. As far as I know, nothing in mathematics was alien to him. Certainly his work in logic reveals an amazing store of general mathematical knowledge.
    [Show full text]
  • Rudi Mathematici
    Rudi Mathematici Y2K Rudi Mathematici Gennaio 2000 52 1 S (1803) Guglielmo LIBRI Carucci dalla Somaja Olimpiadi Matematiche (1878) Agner Krarup ERLANG (1894) Satyendranath BOSE P1 (1912) Boris GNEDENKO 2 D (1822) Rudolf Julius Emmanuel CLAUSIUS Due matematici "A" e "B" si sono inventati una (1905) Lev Genrichovich SHNIRELMAN versione particolarmente complessa del "testa o (1938) Anatoly SAMOILENKO croce": viene scritta alla lavagna una matrice 1 3 L (1917) Yuri Alexeievich MITROPOLSHY quadrata con elementi interi casuali; il gioco (1643) Isaac NEWTON consiste poi nel calcolare il determinante: 4 M (1838) Marie Ennemond Camille JORDAN 5 M Se il determinante e` pari, vince "A". (1871) Federigo ENRIQUES (1871) Gino FANO Se il determinante e` dispari, vince "B". (1807) Jozeph Mitza PETZVAL 6 G (1841) Rudolf STURM La probabilita` che un numero sia pari e` 0.5, (1871) Felix Edouard Justin Emile BOREL 7 V ma... Quali sono le probabilita` di vittoria di "A"? (1907) Raymond Edward Alan Christopher PALEY (1888) Richard COURANT P2 8 S (1924) Paul Moritz COHN (1942) Stephen William HAWKING Dimostrare che qualsiasi numero primo (con (1864) Vladimir Adreievich STELKOV l'eccezione di 2 e 5) ha un'infinita` di multipli 9 D nella forma 11....1 2 10 L (1875) Issai SCHUR (1905) Ruth MOUFANG "Die Energie der Welt ist konstant. Die Entroopie 11 M (1545) Guidobaldo DEL MONTE der Welt strebt einem Maximum zu" (1707) Vincenzo RICCATI (1734) Achille Pierre Dionis DU SEJOUR Rudolph CLAUSIUS 12 M (1906) Kurt August HIRSCH " I know not what I appear to the world,
    [Show full text]
  • Bolyai, János
    JÁNOS BOLYAI (December 15, 1802 – January 27, 1860) by Heinz Klaus Strick, Germany The portrait of the young man depicted on the Hungarian postage stamp of 1960 is that of JÁNOS BOLYAI, one of Hungary’s most famous mathematicians. The portrait, however, was painted only after his death, so it is anyone’s guess whether it is a good likeness. JÁNOS grew up in Transylvania (at the time, part of the Habsburg Empire, today part of Romania) as the son of the respected mathematician FARKAS BOLYAI. JÁNOS’s father, born in 1775, has attended school only until the age of 12, and was then appointed tutor to the eight-year-old son, SIMON, a scion of the wealthy noble KEMÉNY family. Three years later, he and his young charge together continued their educations at the Calvinist College in Kolozsvár. In 1796, he accompanied SIMON first to Jena, and then to Göttingen, where they attended university together. FARKAS had many interests, but now he finally had enough time to devote himself systematically to the study of mathematics. Through lectures given by ABRAHAM GOTTHELF KÄSTNER, he came to know his contemporary CARL FRIEDRICH GAUSS, and the two became friends. In autumn 1798, SIMON KEMÉNY returned home, leaving his “tutor” penniless in Göttingen; it was only a year later that FARKAS was able to return home, on foot. There he married and took an (ill-paying) position as a lecturer in mathematics, physics, and chemistry at the Calvinist College in Marosvásárhely (today Târgu Mures, Romania). To supplement his income, he wrote plays and built furnaces.
    [Show full text]
  • Doing Mathematics in Emmy Noether's Time
    Doing mathematics in Emmy Noether’s time: A survey on the study and work situation of women mathematicians in Germany between the two World Wars Prof.Dr.habil. Ilka Agricola Philipps-Universit¨at Marburg Madrid, April 2019 — a tribute to the 100th anniversary of Noether’s habilitation — 1 What this talk is about. • History of science, because science is done by scientists, so their working and living conditions influence scientific progress • To be seen in historical context: Industrialisation and wars lead to deep changes in society, the formation of a working class, the need for engineers and other professionals, and sometimes a shortage of male employees • Partially based on a case study carried out in Marburg (2017/18) about the first generation of female math students in Marburg (see refs.) • Applies mainly to Germany and, to some extent, neighbouring countries; very different from situation in South Europe and elsewhere 1 Marburg: An old traditional university • Founded in 1527 by Philip I, Landgrave of Hesse • oldest protestant university in the world • Of relevance for us: As a consequence of the Austro-Prussian War (1866), Marburg and G¨ottingen became part of Prussia (the Electorate of Hesse and and the Kingdom of Hannover disappeared) • Hence, Marburg is typical for the development of universities in Germany’s largest state – to be honest, they developed much better after 1866. 1 Das ‘Mathematische Seminar’ • Mathematics was taught in Marburg since the foundation of the university 1527 (Papin, Wolff. ) • 1817: Foundation of the ‘Mathematisch- physikalisches Institut’ by Christian Gerling (student of C.F. Gauß) • 1885: Foudation of the Faculty by H.
    [Show full text]
  • An Inquiry Into Alfred Clebsch's Geschlecht
    ”Are the genre and the Geschlecht one and the same number?” An inquiry into Alfred Clebsch’s Geschlecht François Lê To cite this version: François Lê. ”Are the genre and the Geschlecht one and the same number?” An inquiry into Alfred Clebsch’s Geschlecht. Historia Mathematica, Elsevier, 2020, 53, pp.71-107. hal-02454084v2 HAL Id: hal-02454084 https://hal.archives-ouvertes.fr/hal-02454084v2 Submitted on 19 Aug 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. “Are the genre and the Geschlecht one and the same number?” An inquiry into Alfred Clebsch’s Geschlecht François Lê∗ Postprint version, April 2020 Abstract This article is aimed at throwing new light on the history of the notion of genus, whose paternity is usually attributed to Bernhard Riemann while its original name Geschlecht is often credited to Alfred Clebsch. By comparing the approaches of the two mathematicians, we show that Clebsch’s act of naming was rooted in a projective geometric reinterpretation of Riemann’s research, and that his Geschlecht was actually a different notion than that of Riemann. We also prove that until the beginning of the 1880s, mathematicians clearly distinguished between the notions of Clebsch and Riemann, the former being mainly associated with algebraic curves, and the latter with surfaces and Riemann surfaces.
    [Show full text]
  • From Riemann Surfaces to Complex Spaces Reinhold Remmert∗
    From Riemann Surfaces to Complex Spaces Reinhold Remmert∗ We must always have old memories and young hopes Abstract This paper analyzes the development of the theory of Riemann surfaces and complex spaces, with emphasis on the work of Rie- mann, Klein and Poincar´e in the nineteenth century and on the work of Behnke-Stein and Cartan-Serre in the middle of this cen- tury. R´esum´e Cet article analyse le d´eveloppement de la th´eorie des surfaces de Riemann et des espaces analytiques complexes, en ´etudiant notamment les travaux de Riemann, Klein et Poincar´eauXIXe si`ecle et ceux de Behnke-Stein et Cartan-Serre au milieu de ce si`ecle. Table of Contents 1. Riemann surfaces from 1851 to 1912 1.1. Georg Friedrich Bernhard Riemann and the covering principle 1.1∗. Riemann’s doctorate 1.2. Christian Felix Klein and the atlas principle 1.3. Karl Theodor Wilhelm Weierstrass and analytic configurations AMS 1991 Mathematics Subject Classification: 01A55, 01A60, 30-03, 32-03 ∗Westf¨alische Wilhelms–Universit¨at, Mathematisches Institut, D–48149 Munster,¨ Deutschland This expos´e is an enlarged version of my lecture given in Nice. Gratias ago to J.-P. Serre for critical comments. A detailed exposition of sections 1 and 2 will appear elsewhere. SOCIET´ EMATH´ EMATIQUE´ DE FRANCE 1998 204 R. REMMERT 1.4. The feud between G¨ottingen and Berlin 1.5. Jules Henri Poincar´e and automorphic functions 1.6. The competition between Klein and Poincar´e 1.7. Georg Ferdinand Ludwig Philipp Cantor and countability of the topology 1.8.
    [Show full text]
  • Professor ADDRESS: Department of Mathematics University of Florida
    CURRICULUM VITAE NAME: Krishnaswami Alladi PRESENT POSITION: Professor ADDRESS: Department of Mathematics University of Florida Gainesville, Florida 32611 Ph: (352) 294-2290 e-mail: alladik@ufl.edu BORN: October 5, 1955 Trivandrum, India DEGREES: Ph.D., U.C.L.A. - 1978; Advisor-E.G. Straus M.A., U.C.L.A. - 1976 B.Sc., Madras University, India - 1975 RESEARCH INTERESTS: Number Theory - Analytic Number Theory, Sieve Methods, Probabilistic Number Theory, Diophantine Approximations, Partitions, q-hypergeometric identities PROFESSIONAL EXPERIENCE: T.H. Hildebrandt Research Assistant Professor, University of Michigan, Ann Arbor, Michigan, 1978-1981. Visiting Member, Institute for Advanced Study, Princeton, New Jersey, 1981-1982. Visiting Associate Professor, University of Texas, Austin, Texas, 1982-1983. Visiting Associate Professor, University of Hawaii, Honolulu, Hawaii, 1984-1985. Associate Professor, Institute of Mathematical Sciences, Madras, India, 1981-1986. Associate Professor, University of Florida, 1986-1989. Professor, University of Florida, 1989-present. Visiting Professor, Pennsylvania State University, University Park, Pennsylvania, in 1992-93 (on sabbatical from University of Florida) and in Fall 1994. Chairman, Department of Mathematics, University of Florida, 1998-2008 AWARDS AND HONORS: Chancellor's Fellowship for the Ph.D., 1975-78, UCLA. Alumni Medal for one of 5 best Ph.D. theses (all subjects) at UCLA in 1978. CLAS Research Awards at University of Florida thrice: 1987, 1994, 2000 TIP Award for distinguished teaching at the University of Florida in 1994-95. STEP/SPP Awards for distinguished performance in the rank of Full Professor at the University of Florida twice: 2001, 2010. Elected Fellow of the American Mathematical Society in 2012-13 during inaugural year of the Fellows Program of the AMS.
    [Show full text]
  • 50 Mathematical Ideas You Really Need to Know
    50 mathematical ideas you really need to know Tony Crilly 2 Contents Introduction 01 Zero 02 Number systems 03 Fractions 04 Squares and square roots 05 π 06 e 07 Infinity 08 Imaginary numbers 09 Primes 10 Perfect numbers 11 Fibonacci numbers 12 Golden rectangles 13 Pascal’s triangle 14 Algebra 15 Euclid’s algorithm 16 Logic 17 Proof 3 18 Sets 19 Calculus 20 Constructions 21 Triangles 22 Curves 23 Topology 24 Dimension 25 Fractals 26 Chaos 27 The parallel postulate 28 Discrete geometry 29 Graphs 30 The four-colour problem 31 Probability 32 Bayes’s theory 33 The birthday problem 34 Distributions 35 The normal curve 36 Connecting data 37 Genetics 38 Groups 4 39 Matrices 40 Codes 41 Advanced counting 42 Magic squares 43 Latin squares 44 Money mathematics 45 The diet problem 46 The travelling salesperson 47 Game theory 48 Relativity 49 Fermat’s last theorem 50 The Riemann hypothesis Glossary Index 5 Introduction Mathematics is a vast subject and no one can possibly know it all. What one can do is explore and find an individual pathway. The possibilities open to us here will lead to other times and different cultures and to ideas that have intrigued mathematicians for centuries. Mathematics is both ancient and modern and is built up from widespread cultural and political influences. From India and Arabia we derive our modern numbering system but it is one tempered with historical barnacles. The ‘base 60’ of the Babylonians of two or three millennia BC shows up in our own culture – we have 60 seconds in a minute and 60 minutes in an hour; a right angle is still 90 degrees and not 100 grads as revolutionary France adopted in a first move towards decimalization.
    [Show full text]
  • The Birth of Non-Euclidean Geometry
    The Birth of non-Euclidean Geometry Irina Kogan Department of Math., North Carolina State University, [email protected] https://iakogan.math.ncsu.edu/ Triangle Math Teachers’ Circle, January 23, 2021. https://trianglemtc.wordpress.com/ 1 Euclid of Alexandria Mid-4th century BC - Mid-3th century BC 350 - 250 BC Geometry that we learn at school is called Euclidean geometry. It is based on the Euclidean postulates Why is this man so famous? What is a postulate? 2 How did Euclid look like? Raffaello Sanzio from Wikipedia (Raphael), Jusepe de (source ?) c. 1510, Palazzi Ribera, c. 1630- Pontifici, Vatican 1635, J. Paul Getty Museum 3 Euclid’s Elements circa 300 BC. A fragment of Euclid’s Elements on part of the Oxyrhynchus papyri ∼ 100 AD 4 The earliest preserved complete version: c. 850 AD, First English the Vatican Library version, 1570 4 Elements consist of 13 books containing 465 Propositions about planar and 3D geometry, as well as number theory. This includes: • Most of the theorems for planar geometry we learn at school. • Euclid’s algorithm for finding the greatest common divisor and the least common multiple. • Proof is irrationality of the square roots of non-square integers (e.g. p 2) • Volumes of cones, pyramids, and cylinders in detail by using the method of exhaustion, a precursor to integration. 5 Most of the results are not original! According to W.W. Rouse Ball,“ A Short Account of the History of Mathematics”, 1908 • Pythagoras (c. 570 - 495 BC) was probably the source for most of books I and II; • Hippocrates of Chios (c.
    [Show full text]