Contributions to the History of Number Theory in the 20Th Century Author

Total Page:16

File Type:pdf, Size:1020Kb

Contributions to the History of Number Theory in the 20Th Century Author Peter Roquette, Oberwolfach, March 2006 Peter Roquette Contributions to the History of Number Theory in the 20th Century Author: Peter Roquette Ruprecht-Karls-Universität Heidelberg Mathematisches Institut Im Neuenheimer Feld 288 69120 Heidelberg Germany E-mail: [email protected] 2010 Mathematics Subject Classification (primary; secondary): 01-02, 03-03, 11-03, 12-03 , 16-03, 20-03; 01A60, 01A70, 01A75, 11E04, 11E88, 11R18 11R37, 11U10 ISBN 978-3-03719-113-2 The Swiss National Library lists this publication in The Swiss Book, the Swiss national bibliography, and the detailed bibliographic data are available on the Internet at http://www.helveticat.ch. This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broad- casting, reproduction on microfilms or in other ways, and storage in data banks. For any kind of use permission of the copyright owner must be obtained. © 2013 European Mathematical Society Contact address: European Mathematical Society Publishing House Seminar for Applied Mathematics ETH-Zentrum SEW A27 CH-8092 Zürich Switzerland Phone: +41 (0)44 632 34 36 Email: [email protected] Homepage: www.ems-ph.org Typeset using the author’s TEX files: I. Zimmermann, Freiburg Printing and binding: Beltz Bad Langensalza GmbH, Bad Langensalza, Germany ∞ Printed on acid free paper 9 8 7 6 5 4 3 2 1 To my friend Günther Frei who introduced me to and kindled my interest in the history of number theory Preface This volume contains my articles on the history of number theory except those which are already included in my “Collected Papers”. All articles have been checked and reedited. Two articles which originally were written in German have been translated. I would like to thank all the people who have helped me to prepare this volume, foremost Keith Conrad and also Milena Hering who have streamlined my translation. Particular thanks go to my wife Erika who has meticulously read and corrected the whole manuscript. November 2012 Peter Roquette Contents Preface vii List of figures xi 1 The Brauer–Hasse–Noether Theorem 1 2 The remarkable career of Otto Grün 77 3 At Emmy Noether’s funeral 117 4 Emmy Noether and Hermann Weyl 129 5 Emmy Noether: The testimonials 163 6 Abraham Robinson and his infinitesimals 175 7 Cahit Arf and his invariant 189 8 Hasse–Arf–Langlands 223 9 Ernst Steinitz and abstract field theory 227 10 Heinrich-Wolfgang Leopoldt 239 11 On Hoechsmann’s Theorem 245 Acknowledgements 255 Bibliography 257 Name Index 273 Subject Index 277 List of Figures Richard Brauer, Helmut Hasse, Emmy Noether 2 Otto Grün 79 Noether’s tomb 125 Emmy Noether, Hermann Weyl 146 Emmy Noether 1933 165 Abraham Robinson 176 Cahit Arf 190 Helmut Hasse, Cahit Arf, Robert Langlands 225 Ernst Steinitz 227 Heinrich-Wolfgang Leopoldt 239 Chapter 1 The Brauer–Hasse–Noether Theorem Revised version of: The Brauer–Hasse–Noether theorem in historical perspective. Schriften der Math.-Phys. Klasse der HeidelbergerAkademie der Wissenschaften Nr. 15 (2005). 1.1 Introduction 1 1.2 The Main Theorem: cyclic algebras 3 1.3 The paper: dedication to Hensel 6 1.4 The Local-Global Principle 11 1.5 From the LGP to the Main Theorem 20 1.6 The Brauer group and class field theory 31 1.7 The team: Noether, Brauer and Hasse 45 1.8 The American connection: Albert 56 1.9 Epilogue: Käte Hey 73 1.1 Introduction The legacy of Helmut Hasse, consisting of letters, manuscripts and other papers, is kept at the Handschriftenabteilung of the University Library at Göttingen. Hasse had an extensive correspondence; he liked to exchange mathematical ideas, results and methods freely with his colleagues. There are more than 8 000 documents preserved. Although not all of them are of equal mathematical interest, searching through this treasure can help us to assess the development of Number Theory through the 1920s and 1930s. Unfortunately, most of the correspondence is preserved on one side only, i.e., the letters sent to Hasse are available whereas many of the letters which had been sent from him, often handwritten, seem to be lost. So we have to interpolate, as far as possible, from the replies to Hasse and from other contexts, in order to find out what he had written in his outgoing letters.1 1An exception is the correspondence between Hasse and Richard Brauer. Thanks to Prof. Fred Brauer, the letters from Hasse to Richard Brauer are now available in Göttingen too. 2 1 The Brauer–Hasse–Noether Theorem The present article is largely based on the letters and other documents which I have found concerning the Brauer–Hasse–Noether Theorem in the theory of algebras; this covers the years around 1931. Besides the documents from the Hasse and the Brauer legacy in Göttingen, I shall also use some letters from Emmy Noether to Richard Brauer which are preserved at the Bryn Mawr College Library (Pennsylvania, USA). We should be aware that the Brauer–Hasse–Noether Theorem, although to be rated as a highlight, does not constitute the summit and end point of a development. We have to regard it as a step, important but not final, in a development which leads to the view of class field theory as we see it today. By concentrating on the Brauer– Hasse–Noether Theorem we get only what may be called a snapshot within the great edifice of class field theory. A snapshot is not a panoramic view. Accordingly, the reader might miss several aspects which also could throw some light on the position of the Brauer–Hasse– Noether theorem, its sources and its consequences, not only within algebraic number theory but also in other mathematical disciplines. It would have been impossible to include all these into this paper. Thus I have decided to present it as it is now, being aware of its shortcomings with respect to the range of topics treated, as well as the time span taken into consideration. R. Brauer H. Hasse E. Noether A preliminary version of this article had been written in connection with my lecture at the conference March 22–24, 2001 in Stuttgart which was dedicated to the memory of Richard Brauer on the occasion of his 100th birthday. For Brauer, the cooperation with Noether and Hasse in this project constituted an unforgettable, exciting experience. Let us cite from a letter he wrote many years later, on March 3, 1961, to Helmut Hasse: … ist es 35 Jahre her, daß ich durch Sie mit der Klassenkörpertheorie bekannt geworden bin. Daß ich in Zusammenarbeit mit Ihnen und Emmy 1 The Brauer–Hasse–Noether Theorem 3 Noether ein wenig dazu beitragen konnte, ist auch mir eine der schönsten Erinnerungen, und ich werde die Aufregung der Tage, in denen die Arbeit entstand, nie vergessen. … it is now 35 years since you introduced me to class field theory. It belongs to my most delightful memories that I was able, in cooperation with you and Emmy Noether, to give some little contribution, and I shall never forget the excitement of those days when the paper took shape. The available documents indicate that a similar feeling of excitement was present also in the minds of the other actors in this play. Besides Hasse and Noether we have to mention Artin and also Albert in this connection. Other names will appear in due course. As toA.AdrianAlbert, he had an extended exchange of letters with Hasse, starting in 1931, on the Local-Global Principle for algebras. In the paper of Brauer–Hasse– Noether the authors explain that and how Albert had an independent share in the proof of the Main Theorem. Accordingly some people have suggested that perhaps it would be justified to include his name as an author, i.e., to talk about the “Albert– Brauer–Hasse–Noether Theorem”. But in this article we shall use the original name of the theorem, i.e., without Albert, since this has become standard in the literature. In Section 1.8 we will describe the role of Albert in the proof of the Brauer–Hasse– Noether theorem, based on the relevant part of the correspondence of Albert with Hasse. Acknowledgement. Preliminary versions had been on my homepage for some time. I would like to express my thanks to all who cared to send me their comments each of which I have carefully examined and taken into consideration. Moreover, I wish to thank Falko Lorenz and Keith Conrad for their careful reading, their corrections and valuable comments. Last but not least I would like to express my gratitude to Mrs. Nancy Albert, daughter of A.A.Albert, for letting me share her recollections of her father. This was particularly helpful to me while preparing Section 1.8. 1.2 The Main Theorem: cyclic algebras On December 29, 1931 Kurt Hensel, the mathematician who had discovered p- adic numbers, celebrated his 70th birthday. On this occasion a special volume of Crelle’s Journal was dedicated to him since he was the chief editor of Crelle’s Journal at that time, and had been for almost 30 years. The dedication volume contains the paper [BHN32], authored jointly by Richard Brauer, Helmut Hasse and Emmy Noether, with the title: Beweis eines Hauptsatzes in der Theorie der Algebren 4 1 The Brauer–Hasse–Noether Theorem Proof of a Main Theorem in the theory of algebras The paper starts with the following sentence: Endlich ist es unseren vereinten Bemühungen gelungen, die Richtigkeit des folgenden Satzes zu beweisen, der für die Strukturtheorie der Al- gebren über algebraischen Zahlkörpern sowie auch darüber hinaus von grundlegender Bedeutung ist: … At last our joint endeavours have finally been successful, to prove the following theorem which is of fundamental importance for the structure theory of algebras over number fields, and also beyond … The theorem in question, which has become known as the Brauer–Hasse–Noether Theorem, reads as follows: Hauptsatz.
Recommended publications
  • February 19, 2016
    February 19, 2016 Professor HELGE HOLDEN SECRETARY OF THE INTERNATIONAL MATHEMATICAL UNION Dear Professor Holden, The Turkish Mathematical Society (TMD) as the Adhering Organization, applies to promote Turkey from Group I to Group II as a member of IMU. We attach an overview of the developments of Mathematics in Turkey during the last 10 years (2005- 2015) preceded by a historical account. With best regards, Betül Tanbay President of the Turkish Mathematical Society Report on the state of mathematics in Turkey (2005-2015) This is an overview of the status of Mathematics in Turkey, prepared for the IMU for promotion from Group I to Group II by the adhering organization, the Turkish Mathematical Society (TMD). 1-HISTORICAL BACKGROUND 2-SOCIETIES AND CENTERS RELATED TO MATHEMATICAL SCIENCES 3-NUMBER OF PUBLICATIONS BY SUBJECT CATEGORIES 4-NATIONAL CONFERENCES AND WORKSHOPS HELD IN TURKEY BETWEEN 2013-2015 5-INTERNATIONAL CONFERENCES AND WORKSHOPS HELD IN TURKEY BETWEEN 2013-2015 6-NUMBERS OF STUDENTS AND TEACHING STAFF IN MATHEMATICAL SCIENCES IN TURKEY FOR THE 2013-2014 ACADEMIC YEAR AND THE 2014-2015 ACADEMIC YEAR 7- RANKING AND DOCUMENTS OF TURKEY IN MATHEMATICAL SCIENCES 8- PERIODICALS AND PUBLICATIONS 1-HISTORICAL BACKGROUND Two universities, the Istanbul University and the Istanbul Technical University have been influential in creating a mathematical community in Turkey. The Royal School of Naval Engineering, "Muhendishane-i Bahr-i Humayun", was established in 1773 with the responsibility to educate chart masters and ship builders. Gaining university status in 1928, the Engineering Academy continued to provide education in the fields of engineering and architecture and, in 1946, Istanbul Technical University became an autonomous university which included the Faculties of Architecture, Civil Engineering, Mechanical Engineering, and Electrical and Electronic Engineering.
    [Show full text]
  • Mathematisches Forschungsinstitut Oberwolfach the Arithmetic of Fields
    Mathematisches Forschungsinstitut Oberwolfach Report No. 05/2009 The Arithmetic of Fields Organised by Moshe Jarden (Tel Aviv) Florian Pop (Philadelphia) Leila Schneps (Paris) February 1st – February 7th, 2009 Abstract. The workshop “The Arithmetic of Fields” focused on a series of problems concerning the interplay between number theory, arithmetic and al- gebraic geometry, Galois theory, and model theory, such as: the Galois theory of function fields / covers of varieties, rational points on varieties, Galois co- homology, local-global principles, lifting/specializing covers of curves, model theory of finitely generated fields, etc. Mathematics Subject Classification (2000): 12E30. Introduction by the Organisers The sixth conference on “The Arithmetic of Fields” was organized by Moshe Jar- den (Tel Aviv), Florian Pop (Philadelphia), and Leila Schneps (Paris), and was held in the week February 1–7, 2009. The participants came from 14 countries: Germany (14), USA (11), France (7), Israel (7), Canada (2), England (2), Austria (1), Brazil (1), Hungary (1), Italy (1), Japan (1), South Africa (1), Switzerland (1), and The Netherlands (1). All together, 51 people attended the conference; among the participants there were thirteen young researchers, and eight women. Most of the talks concentrated on the main theme of Field Arithmetic, namely Galois theory and its interplay with the arithmetic of the fields. Several talks had an arithmetical geometry flavour. All together, the organizers find the blend of young and experienced researchers and the variety of subjects covered very satisfactory. The Arithmetic of Fields 3 Workshop: The Arithmetic of Fields Table of Contents Moshe Jarden New Fields With Free Absolute Galois Groups ......................
    [Show full text]
  • Cahit Arf: Exploring His Scientific Influence Using Social Network Analysis and Author Co-Citation Maps
    Cahit Arf: Exploring His Scientific Influence Using Social Network Analysis and Author Co-citation Maps 1 2 Yaşar Tonta and A. Esra Özkan Çelik 1 [email protected] Department of Information Management, Hacettepe University, 06800 Beytepe, Ankara, TR 2 [email protected] Registrar's Office, Hacettepe University, 06800 Beytepe, Ankara, TR Abstract Cahit Arf (1910-1997), a famous Turkish scientist whose picture is depicted in one of the Turkish banknotes, is a well known figure in mathematics with his discoveries named after him (e.g., Arf invariant, Arf rings, the Hasse- Arf theorem). Although Arf may not be considered as a prolific scientist in terms of number of papers (he authored a total of 23 papers), his influence on mathematics and related disciplines was profound. As he was active before, during and after the World War II, Arf’s contributions were not properly listed in citation indexes and thus did not generate that many citations even though several papers with “Arf” in their titles appeared in the literature. This paper traces the influence of Arf in scientific world using citation analysis techniques first. It reviews the scientific impact of Arf by analyzing both the papers authored by Arf and papers whose titles or keywords contain various combinations of “Arf rings”, “Arf invariant”, and so on. The paper then goes on to study Arf’s contributions using social network analysis and author co-citation analysis techniques. CiteSpace and pennant diagrams are used to explore the scientific impact of Arf by mapping his cited references derived from Thomson Reuters’ Web of Science (WoS) database.
    [Show full text]
  • The Arf-Kervaire Invariant Problem in Algebraic Topology: Introduction
    THE ARF-KERVAIRE INVARIANT PROBLEM IN ALGEBRAIC TOPOLOGY: INTRODUCTION MICHAEL A. HILL, MICHAEL J. HOPKINS, AND DOUGLAS C. RAVENEL ABSTRACT. This paper gives the history and background of one of the oldest problems in algebraic topology, along with a short summary of our solution to it and a description of some of the tools we use. More details of the proof are provided in our second paper in this volume, The Arf-Kervaire invariant problem in algebraic topology: Sketch of the proof. A rigorous account can be found in our preprint The non-existence of elements of Kervaire invariant one on the arXiv and on the third author’s home page. The latter also has numerous links to related papers and talks we have given on the subject since announcing our result in April, 2009. CONTENTS 1. Background and history 3 1.1. Pontryagin’s early work on homotopy groups of spheres 3 1.2. Our main result 8 1.3. The manifold formulation 8 1.4. The unstable formulation 12 1.5. Questions raised by our theorem 14 2. Our strategy 14 2.1. Ingredients of the proof 14 2.2. The spectrum Ω 15 2.3. How we construct Ω 15 3. Some classical algebraic topology. 15 3.1. Fibrations 15 3.2. Cofibrations 18 3.3. Eilenberg-Mac Lane spaces and cohomology operations 18 3.4. The Steenrod algebra. 19 3.5. Milnor’s formulation 20 3.6. Serre’s method of computing homotopy groups 21 3.7. The Adams spectral sequence 21 4. Spectra and equivariant spectra 23 4.1.
    [Show full text]
  • Mathematicians Fleeing from Nazi Germany
    Mathematicians Fleeing from Nazi Germany Mathematicians Fleeing from Nazi Germany Individual Fates and Global Impact Reinhard Siegmund-Schultze princeton university press princeton and oxford Copyright 2009 © by Princeton University Press Published by Princeton University Press, 41 William Street, Princeton, New Jersey 08540 In the United Kingdom: Princeton University Press, 6 Oxford Street, Woodstock, Oxfordshire OX20 1TW All Rights Reserved Library of Congress Cataloging-in-Publication Data Siegmund-Schultze, R. (Reinhard) Mathematicians fleeing from Nazi Germany: individual fates and global impact / Reinhard Siegmund-Schultze. p. cm. Includes bibliographical references and index. ISBN 978-0-691-12593-0 (cloth) — ISBN 978-0-691-14041-4 (pbk.) 1. Mathematicians—Germany—History—20th century. 2. Mathematicians— United States—History—20th century. 3. Mathematicians—Germany—Biography. 4. Mathematicians—United States—Biography. 5. World War, 1939–1945— Refuges—Germany. 6. Germany—Emigration and immigration—History—1933–1945. 7. Germans—United States—History—20th century. 8. Immigrants—United States—History—20th century. 9. Mathematics—Germany—History—20th century. 10. Mathematics—United States—History—20th century. I. Title. QA27.G4S53 2008 510.09'04—dc22 2008048855 British Library Cataloging-in-Publication Data is available This book has been composed in Sabon Printed on acid-free paper. ∞ press.princeton.edu Printed in the United States of America 10 987654321 Contents List of Figures and Tables xiii Preface xvii Chapter 1 The Terms “German-Speaking Mathematician,” “Forced,” and“Voluntary Emigration” 1 Chapter 2 The Notion of “Mathematician” Plus Quantitative Figures on Persecution 13 Chapter 3 Early Emigration 30 3.1. The Push-Factor 32 3.2. The Pull-Factor 36 3.D.
    [Show full text]
  • Abraham Robinson, 1918 - 1974
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY Volume 83, Number 4, July 1977 ABRAHAM ROBINSON, 1918 - 1974 BY ANGUS J. MACINTYRE 1. Abraham Robinson died in New Haven on April 11, 1974, some six months after the diagnosis of an incurable cancer of the pancreas. In the fall of 1973 he was vigorously and enthusiastically involved at Yale in joint work with Peter Roquette on a new model-theoretic approach to diophantine problems. He finished a draft of this in November, shortly before he underwent surgery. He spoke of his satisfaction in having finished this work, and he bore with unforgettable dignity the loss of his strength and the fading of his bright plans. He was supported until the end by Reneé Robinson, who had shared with him since 1944 a life given to science and art. There is common consent that Robinson was one of the greatest of mathematical logicians, and Gödel has stressed that Robinson more than any other brought logic closer to mathematics as traditionally understood. His early work on metamathematics of algebra undoubtedly guided Ax and Kochen to the solution of the Artin Conjecture. One can reasonably hope that his memory will be further honored by future applications of his penetrating ideas. Robinson was a gentleman, unfailingly courteous, with inexhaustible enthu­ siasm. He took modest pleasure in his many honors. He was much respected for his willingness to listen, and for the sincerity of his advice. As far as I know, nothing in mathematics was alien to him. Certainly his work in logic reveals an amazing store of general mathematical knowledge.
    [Show full text]
  • A Topologist's View of Symmetric and Quadratic
    1 A TOPOLOGIST'S VIEW OF SYMMETRIC AND QUADRATIC FORMS Andrew Ranicki (Edinburgh) http://www.maths.ed.ac.uk/eaar Patterson 60++, G¨ottingen,27 July 2009 2 The mathematical ancestors of S.J.Patterson Augustus Edward Hough Love Eidgenössische Technische Hochschule Zürich G. H. (Godfrey Harold) Hardy University of Cambridge Mary Lucy Cartwright University of Oxford (1930) Walter Kurt Hayman Alan Frank Beardon Samuel James Patterson University of Cambridge (1975) 3 The 35 students and 11 grandstudents of S.J.Patterson Schubert, Volcker (Vlotho) Do Stünkel, Matthias (Göttingen) Di Möhring, Leonhard (Hannover) Di,Do Bruns, Hans-Jürgen (Oldenburg?) Di Bauer, Friedrich Wolfgang (Frankfurt) Di,Do Hopf, Christof () Di Cromm, Oliver ( ) Di Klose, Joachim (Bonn) Do Talom, Fossi (Montreal) Do Kellner, Berndt (Göttingen) Di Martial Hille (St. Andrews) Do Matthews, Charles (Cambridge) Do (JWS Casels) Stratmann, Bernd O. (St. Andrews) Di,Do Falk, Kurt (Maynooth ) Di Kern, Thomas () M.Sc. (USA) Mirgel, Christa (Frankfurt?) Di Thirase, Jan (Göttingen) Di,Do Autenrieth, Michael (Hannover) Di, Do Karaschewski, Horst (Hamburg) Do Wellhausen, Gunther (Hannover) Di,Do Giovannopolous, Fotios (Göttingen) Do (ongoing) S.J.Patterson Mandouvalos, Nikolaos (Thessaloniki) Do Thiel, Björn (Göttingen(?)) Di,Do Louvel, Benoit (Lausanne) Di (Rennes), Do Wright, David (Oklahoma State) Do (B. Mazur) Widera, Manuela (Hannover) Di Krämer, Stefan (Göttingen) Di (Burmann) Hill, Richard (UC London) Do Monnerjahn, Thomas ( ) St.Ex. (Kriete) Propach, Ralf ( ) Di Beyerstedt, Bernd
    [Show full text]
  • Doing Mathematics in Emmy Noether's Time
    Doing mathematics in Emmy Noether’s time: A survey on the study and work situation of women mathematicians in Germany between the two World Wars Prof.Dr.habil. Ilka Agricola Philipps-Universit¨at Marburg Madrid, April 2019 — a tribute to the 100th anniversary of Noether’s habilitation — 1 What this talk is about. • History of science, because science is done by scientists, so their working and living conditions influence scientific progress • To be seen in historical context: Industrialisation and wars lead to deep changes in society, the formation of a working class, the need for engineers and other professionals, and sometimes a shortage of male employees • Partially based on a case study carried out in Marburg (2017/18) about the first generation of female math students in Marburg (see refs.) • Applies mainly to Germany and, to some extent, neighbouring countries; very different from situation in South Europe and elsewhere 1 Marburg: An old traditional university • Founded in 1527 by Philip I, Landgrave of Hesse • oldest protestant university in the world • Of relevance for us: As a consequence of the Austro-Prussian War (1866), Marburg and G¨ottingen became part of Prussia (the Electorate of Hesse and and the Kingdom of Hannover disappeared) • Hence, Marburg is typical for the development of universities in Germany’s largest state – to be honest, they developed much better after 1866. 1 Das ‘Mathematische Seminar’ • Mathematics was taught in Marburg since the foundation of the university 1527 (Papin, Wolff. ) • 1817: Foundation of the ‘Mathematisch- physikalisches Institut’ by Christian Gerling (student of C.F. Gauß) • 1885: Foudation of the Faculty by H.
    [Show full text]
  • Witt's Cancellation Theorem Seen As a Cancellation 1
    WITT'S CANCELLATION THEOREM SEEN AS A CANCELLATION SUNIL K. CHEBOLU, DAN MCQUILLAN, AND JAN´ MINA´ Cˇ Dedicated to the late Professor Amit Roy Abstract. Happy birthday to the Witt ring! The year 2017 marks the 80th anniversary of Witt's famous paper containing some key results, including the Witt cancellation theorem, which form the foundation for the algebraic theory of quadratic forms. We pay homage to this paper by presenting a transparent, algebraic proof of the Witt cancellation theorem, which itself is based on a cancellation. We also present an overview of some recent spectacular work which is still building on Witt's original creation of the algebraic theory of quadratic forms. 1. Introduction The algebraic theory of quadratic forms will soon celebrate its 80th birthday. Indeed, it was 1937 when Witt's pioneering paper [24] { a mere 14 pages { first introduced many beautiful results that we love so much today. These results form the foundation for the algebraic theory of quadratic forms. In particular they describe the construction of the Witt ring itself. Thus the cute little baby, \The algebraic theory of quadratic forms" was healthy and screaming with joy, making his father Ernst Witt very proud. Grandma Emmy Noether, Figure 1. Shortly after the birth of the Algebraic Theory of Quadratic Forms. had she still been alive, would have been so delighted to see this little tyke! 1 Almost right 1Emmy Noether's male Ph.D students, including Ernst Witt, were often referred to as \Noether's boys." The reader is encouraged to consult [6] to read more about her profound influence on the development of mathematics.
    [Show full text]
  • Quadratic Forms and Their Applications
    Quadratic Forms and Their Applications Proceedings of the Conference on Quadratic Forms and Their Applications July 5{9, 1999 University College Dublin Eva Bayer-Fluckiger David Lewis Andrew Ranicki Editors Published as Contemporary Mathematics 272, A.M.S. (2000) vii Contents Preface ix Conference lectures x Conference participants xii Conference photo xiv Galois cohomology of the classical groups Eva Bayer-Fluckiger 1 Symplectic lattices Anne-Marie Berge¶ 9 Universal quadratic forms and the ¯fteen theorem J.H. Conway 23 On the Conway-Schneeberger ¯fteen theorem Manjul Bhargava 27 On trace forms and the Burnside ring Martin Epkenhans 39 Equivariant Brauer groups A. FrohlichÄ and C.T.C. Wall 57 Isotropy of quadratic forms and ¯eld invariants Detlev W. Hoffmann 73 Quadratic forms with absolutely maximal splitting Oleg Izhboldin and Alexander Vishik 103 2-regularity and reversibility of quadratic mappings Alexey F. Izmailov 127 Quadratic forms in knot theory C. Kearton 135 Biography of Ernst Witt (1911{1991) Ina Kersten 155 viii Generic splitting towers and generic splitting preparation of quadratic forms Manfred Knebusch and Ulf Rehmann 173 Local densities of hermitian forms Maurice Mischler 201 Notes towards a constructive proof of Hilbert's theorem on ternary quartics Victoria Powers and Bruce Reznick 209 On the history of the algebraic theory of quadratic forms Winfried Scharlau 229 Local fundamental classes derived from higher K-groups: III Victor P. Snaith 261 Hilbert's theorem on positive ternary quartics Richard G. Swan 287 Quadratic forms and normal surface singularities C.T.C. Wall 293 ix Preface These are the proceedings of the conference on \Quadratic Forms And Their Applications" which was held at University College Dublin from 5th to 9th July, 1999.
    [Show full text]
  • Abraham Robinson 1918–1974
    NATIONAL ACADEMY OF SCIENCES ABRAHAM ROBINSON 1918–1974 A Biographical Memoir by JOSEPH W. DAUBEN Any opinions expressed in this memoir are those of the author and do not necessarily reflect the views of the National Academy of Sciences. Biographical Memoirs, VOLUME 82 PUBLISHED 2003 BY THE NATIONAL ACADEMY PRESS WASHINGTON, D.C. Courtesy of Yale University News Bureau ABRAHAM ROBINSON October 6, 1918–April 11, 1974 BY JOSEPH W. DAUBEN Playfulness is an important element in the makeup of a good mathematician. —Abraham Robinson BRAHAM ROBINSON WAS BORN on October 6, 1918, in the A Prussian mining town of Waldenburg (now Walbrzych), Poland.1 His father, Abraham Robinsohn (1878-1918), af- ter a traditional Jewish Talmudic education as a boy went on to study philosophy and literature in Switzerland, where he earned his Ph.D. from the University of Bern in 1909. Following an early career as a journalist and with growing Zionist sympathies, Robinsohn accepted a position in 1912 as secretary to David Wolfson, former president and a lead- ing figure of the World Zionist Organization. When Wolfson died in 1915, Robinsohn became responsible for both the Herzl and Wolfson archives. He also had become increas- ingly involved with the affairs of the Jewish National Fund. In 1916 he married Hedwig Charlotte (Lotte) Bähr (1888- 1949), daughter of a Jewish teacher and herself a teacher. 1Born Abraham Robinsohn, he later changed the spelling of his name to Robinson shortly after his arrival in London at the beginning of World War II. This spelling of his name is used throughout to distinguish Abby Robinson the mathematician from his father of the same name, the senior Robinsohn.
    [Show full text]
  • Émilie Du Châtelets Institutions Physiques Über Die Grundlagen Der Physik
    Émilie du Châtelets Institutions physiques Über die Grundlagen der Physik Dissertation zur Erlangung des akademischen Grades eines Doktors der Philosophie (Dr. phil.) im Fach Philosophie an der Fakultät für Kulturwissenschaften der Universität Paderborn vorgelegt von: Andrea Reichenberger Erstgutachter: Prof. Dr. Volker Peckhaus Zweitgutachter: Prof. Dr. Ruth Hagengruber Disputation: 14. Juli 2014 Note: summa cum laude 2 Inhaltsverzeichnis Vorwort 4 1 Einleitung 5 1.1 Thema und Forschungsstand . .5 1.2 Problemstellung und Ziel . 12 1.2.1 Zwischen Newton und Leibniz . 12 1.2.2 Zur Newton-Rezeption im 18. Jahrhundert . 16 1.2.3 Zur Leibniz-Rezeption im 18. Jahrhundert . 17 1.2.4 Leibniz contra Newton? . 21 1.2.5 Du Châtelets Rezeption . 25 2 Du Châtelet: Vita und Œuvre 31 2.1 Biographischer Abriss . 31 2.2 Werke und Editionsgeschichte . 33 2.2.1 Principes mathématiques . 33 2.2.2 Éléments de la philosophie de Newton . 37 2.2.3 Dissertation sur la nature et la propagation du feu . 38 2.2.4 Institutions physiques . 39 2.2.5 Essai sur l’optique . 40 2.2.6 Grammaire raisonnée . 40 2.2.7 De la liberté . 41 2.2.8 Discours sur les miracles & Examens de la Bible . 41 2.2.9 Discours sur le bonheur . 42 2.2.10 La Fable des abeilles de Mandeville . 44 2.2.11 Lettres . 45 3 Du Châtelets Institutions physiques im historischen Kontext 47 3.1 Die Editionsgeschichte . 47 3.2 Der Disput mit Jean-Jaques Dortous de Mairan . 48 3.3 Newton in Frankreich . 50 3.4 Der Vorwurf Johann Samuel Königs .
    [Show full text]