From FLT to Finite Groups
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Mathematisches Forschungsinstitut Oberwolfach the Arithmetic of Fields
Mathematisches Forschungsinstitut Oberwolfach Report No. 05/2009 The Arithmetic of Fields Organised by Moshe Jarden (Tel Aviv) Florian Pop (Philadelphia) Leila Schneps (Paris) February 1st – February 7th, 2009 Abstract. The workshop “The Arithmetic of Fields” focused on a series of problems concerning the interplay between number theory, arithmetic and al- gebraic geometry, Galois theory, and model theory, such as: the Galois theory of function fields / covers of varieties, rational points on varieties, Galois co- homology, local-global principles, lifting/specializing covers of curves, model theory of finitely generated fields, etc. Mathematics Subject Classification (2000): 12E30. Introduction by the Organisers The sixth conference on “The Arithmetic of Fields” was organized by Moshe Jar- den (Tel Aviv), Florian Pop (Philadelphia), and Leila Schneps (Paris), and was held in the week February 1–7, 2009. The participants came from 14 countries: Germany (14), USA (11), France (7), Israel (7), Canada (2), England (2), Austria (1), Brazil (1), Hungary (1), Italy (1), Japan (1), South Africa (1), Switzerland (1), and The Netherlands (1). All together, 51 people attended the conference; among the participants there were thirteen young researchers, and eight women. Most of the talks concentrated on the main theme of Field Arithmetic, namely Galois theory and its interplay with the arithmetic of the fields. Several talks had an arithmetical geometry flavour. All together, the organizers find the blend of young and experienced researchers and the variety of subjects covered very satisfactory. The Arithmetic of Fields 3 Workshop: The Arithmetic of Fields Table of Contents Moshe Jarden New Fields With Free Absolute Galois Groups ...................... -
Mathematicians Fleeing from Nazi Germany
Mathematicians Fleeing from Nazi Germany Mathematicians Fleeing from Nazi Germany Individual Fates and Global Impact Reinhard Siegmund-Schultze princeton university press princeton and oxford Copyright 2009 © by Princeton University Press Published by Princeton University Press, 41 William Street, Princeton, New Jersey 08540 In the United Kingdom: Princeton University Press, 6 Oxford Street, Woodstock, Oxfordshire OX20 1TW All Rights Reserved Library of Congress Cataloging-in-Publication Data Siegmund-Schultze, R. (Reinhard) Mathematicians fleeing from Nazi Germany: individual fates and global impact / Reinhard Siegmund-Schultze. p. cm. Includes bibliographical references and index. ISBN 978-0-691-12593-0 (cloth) — ISBN 978-0-691-14041-4 (pbk.) 1. Mathematicians—Germany—History—20th century. 2. Mathematicians— United States—History—20th century. 3. Mathematicians—Germany—Biography. 4. Mathematicians—United States—Biography. 5. World War, 1939–1945— Refuges—Germany. 6. Germany—Emigration and immigration—History—1933–1945. 7. Germans—United States—History—20th century. 8. Immigrants—United States—History—20th century. 9. Mathematics—Germany—History—20th century. 10. Mathematics—United States—History—20th century. I. Title. QA27.G4S53 2008 510.09'04—dc22 2008048855 British Library Cataloging-in-Publication Data is available This book has been composed in Sabon Printed on acid-free paper. ∞ press.princeton.edu Printed in the United States of America 10 987654321 Contents List of Figures and Tables xiii Preface xvii Chapter 1 The Terms “German-Speaking Mathematician,” “Forced,” and“Voluntary Emigration” 1 Chapter 2 The Notion of “Mathematician” Plus Quantitative Figures on Persecution 13 Chapter 3 Early Emigration 30 3.1. The Push-Factor 32 3.2. The Pull-Factor 36 3.D. -
Abraham Robinson, 1918 - 1974
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY Volume 83, Number 4, July 1977 ABRAHAM ROBINSON, 1918 - 1974 BY ANGUS J. MACINTYRE 1. Abraham Robinson died in New Haven on April 11, 1974, some six months after the diagnosis of an incurable cancer of the pancreas. In the fall of 1973 he was vigorously and enthusiastically involved at Yale in joint work with Peter Roquette on a new model-theoretic approach to diophantine problems. He finished a draft of this in November, shortly before he underwent surgery. He spoke of his satisfaction in having finished this work, and he bore with unforgettable dignity the loss of his strength and the fading of his bright plans. He was supported until the end by Reneé Robinson, who had shared with him since 1944 a life given to science and art. There is common consent that Robinson was one of the greatest of mathematical logicians, and Gödel has stressed that Robinson more than any other brought logic closer to mathematics as traditionally understood. His early work on metamathematics of algebra undoubtedly guided Ax and Kochen to the solution of the Artin Conjecture. One can reasonably hope that his memory will be further honored by future applications of his penetrating ideas. Robinson was a gentleman, unfailingly courteous, with inexhaustible enthu siasm. He took modest pleasure in his many honors. He was much respected for his willingness to listen, and for the sincerity of his advice. As far as I know, nothing in mathematics was alien to him. Certainly his work in logic reveals an amazing store of general mathematical knowledge. -
Doing Mathematics in Emmy Noether's Time
Doing mathematics in Emmy Noether’s time: A survey on the study and work situation of women mathematicians in Germany between the two World Wars Prof.Dr.habil. Ilka Agricola Philipps-Universit¨at Marburg Madrid, April 2019 — a tribute to the 100th anniversary of Noether’s habilitation — 1 What this talk is about. • History of science, because science is done by scientists, so their working and living conditions influence scientific progress • To be seen in historical context: Industrialisation and wars lead to deep changes in society, the formation of a working class, the need for engineers and other professionals, and sometimes a shortage of male employees • Partially based on a case study carried out in Marburg (2017/18) about the first generation of female math students in Marburg (see refs.) • Applies mainly to Germany and, to some extent, neighbouring countries; very different from situation in South Europe and elsewhere 1 Marburg: An old traditional university • Founded in 1527 by Philip I, Landgrave of Hesse • oldest protestant university in the world • Of relevance for us: As a consequence of the Austro-Prussian War (1866), Marburg and G¨ottingen became part of Prussia (the Electorate of Hesse and and the Kingdom of Hannover disappeared) • Hence, Marburg is typical for the development of universities in Germany’s largest state – to be honest, they developed much better after 1866. 1 Das ‘Mathematische Seminar’ • Mathematics was taught in Marburg since the foundation of the university 1527 (Papin, Wolff. ) • 1817: Foundation of the ‘Mathematisch- physikalisches Institut’ by Christian Gerling (student of C.F. Gauß) • 1885: Foudation of the Faculty by H. -
Witt's Cancellation Theorem Seen As a Cancellation 1
WITT'S CANCELLATION THEOREM SEEN AS A CANCELLATION SUNIL K. CHEBOLU, DAN MCQUILLAN, AND JAN´ MINA´ Cˇ Dedicated to the late Professor Amit Roy Abstract. Happy birthday to the Witt ring! The year 2017 marks the 80th anniversary of Witt's famous paper containing some key results, including the Witt cancellation theorem, which form the foundation for the algebraic theory of quadratic forms. We pay homage to this paper by presenting a transparent, algebraic proof of the Witt cancellation theorem, which itself is based on a cancellation. We also present an overview of some recent spectacular work which is still building on Witt's original creation of the algebraic theory of quadratic forms. 1. Introduction The algebraic theory of quadratic forms will soon celebrate its 80th birthday. Indeed, it was 1937 when Witt's pioneering paper [24] { a mere 14 pages { first introduced many beautiful results that we love so much today. These results form the foundation for the algebraic theory of quadratic forms. In particular they describe the construction of the Witt ring itself. Thus the cute little baby, \The algebraic theory of quadratic forms" was healthy and screaming with joy, making his father Ernst Witt very proud. Grandma Emmy Noether, Figure 1. Shortly after the birth of the Algebraic Theory of Quadratic Forms. had she still been alive, would have been so delighted to see this little tyke! 1 Almost right 1Emmy Noether's male Ph.D students, including Ernst Witt, were often referred to as \Noether's boys." The reader is encouraged to consult [6] to read more about her profound influence on the development of mathematics. -
Quadratic Forms and Their Applications
Quadratic Forms and Their Applications Proceedings of the Conference on Quadratic Forms and Their Applications July 5{9, 1999 University College Dublin Eva Bayer-Fluckiger David Lewis Andrew Ranicki Editors Published as Contemporary Mathematics 272, A.M.S. (2000) vii Contents Preface ix Conference lectures x Conference participants xii Conference photo xiv Galois cohomology of the classical groups Eva Bayer-Fluckiger 1 Symplectic lattices Anne-Marie Berge¶ 9 Universal quadratic forms and the ¯fteen theorem J.H. Conway 23 On the Conway-Schneeberger ¯fteen theorem Manjul Bhargava 27 On trace forms and the Burnside ring Martin Epkenhans 39 Equivariant Brauer groups A. FrohlichÄ and C.T.C. Wall 57 Isotropy of quadratic forms and ¯eld invariants Detlev W. Hoffmann 73 Quadratic forms with absolutely maximal splitting Oleg Izhboldin and Alexander Vishik 103 2-regularity and reversibility of quadratic mappings Alexey F. Izmailov 127 Quadratic forms in knot theory C. Kearton 135 Biography of Ernst Witt (1911{1991) Ina Kersten 155 viii Generic splitting towers and generic splitting preparation of quadratic forms Manfred Knebusch and Ulf Rehmann 173 Local densities of hermitian forms Maurice Mischler 201 Notes towards a constructive proof of Hilbert's theorem on ternary quartics Victoria Powers and Bruce Reznick 209 On the history of the algebraic theory of quadratic forms Winfried Scharlau 229 Local fundamental classes derived from higher K-groups: III Victor P. Snaith 261 Hilbert's theorem on positive ternary quartics Richard G. Swan 287 Quadratic forms and normal surface singularities C.T.C. Wall 293 ix Preface These are the proceedings of the conference on \Quadratic Forms And Their Applications" which was held at University College Dublin from 5th to 9th July, 1999. -
Abraham Robinson 1918–1974
NATIONAL ACADEMY OF SCIENCES ABRAHAM ROBINSON 1918–1974 A Biographical Memoir by JOSEPH W. DAUBEN Any opinions expressed in this memoir are those of the author and do not necessarily reflect the views of the National Academy of Sciences. Biographical Memoirs, VOLUME 82 PUBLISHED 2003 BY THE NATIONAL ACADEMY PRESS WASHINGTON, D.C. Courtesy of Yale University News Bureau ABRAHAM ROBINSON October 6, 1918–April 11, 1974 BY JOSEPH W. DAUBEN Playfulness is an important element in the makeup of a good mathematician. —Abraham Robinson BRAHAM ROBINSON WAS BORN on October 6, 1918, in the A Prussian mining town of Waldenburg (now Walbrzych), Poland.1 His father, Abraham Robinsohn (1878-1918), af- ter a traditional Jewish Talmudic education as a boy went on to study philosophy and literature in Switzerland, where he earned his Ph.D. from the University of Bern in 1909. Following an early career as a journalist and with growing Zionist sympathies, Robinsohn accepted a position in 1912 as secretary to David Wolfson, former president and a lead- ing figure of the World Zionist Organization. When Wolfson died in 1915, Robinsohn became responsible for both the Herzl and Wolfson archives. He also had become increas- ingly involved with the affairs of the Jewish National Fund. In 1916 he married Hedwig Charlotte (Lotte) Bähr (1888- 1949), daughter of a Jewish teacher and herself a teacher. 1Born Abraham Robinsohn, he later changed the spelling of his name to Robinson shortly after his arrival in London at the beginning of World War II. This spelling of his name is used throughout to distinguish Abby Robinson the mathematician from his father of the same name, the senior Robinsohn. -
Contributions to the History of Number Theory in the 20Th Century Author
Peter Roquette, Oberwolfach, March 2006 Peter Roquette Contributions to the History of Number Theory in the 20th Century Author: Peter Roquette Ruprecht-Karls-Universität Heidelberg Mathematisches Institut Im Neuenheimer Feld 288 69120 Heidelberg Germany E-mail: [email protected] 2010 Mathematics Subject Classification (primary; secondary): 01-02, 03-03, 11-03, 12-03 , 16-03, 20-03; 01A60, 01A70, 01A75, 11E04, 11E88, 11R18 11R37, 11U10 ISBN 978-3-03719-113-2 The Swiss National Library lists this publication in The Swiss Book, the Swiss national bibliography, and the detailed bibliographic data are available on the Internet at http://www.helveticat.ch. This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broad- casting, reproduction on microfilms or in other ways, and storage in data banks. For any kind of use permission of the copyright owner must be obtained. © 2013 European Mathematical Society Contact address: European Mathematical Society Publishing House Seminar for Applied Mathematics ETH-Zentrum SEW A27 CH-8092 Zürich Switzerland Phone: +41 (0)44 632 34 36 Email: [email protected] Homepage: www.ems-ph.org Typeset using the author’s TEX files: I. Zimmermann, Freiburg Printing and binding: Beltz Bad Langensalza GmbH, Bad Langensalza, Germany ∞ Printed on acid free paper 9 8 7 6 5 4 3 2 1 To my friend Günther Frei who introduced me to and kindled my interest in the history of number theory Preface This volume contains my articles on the history of number theory except those which are already included in my “Collected Papers”. -
Schriftenverzeichnis Peter Roquette 1
Schriftenverzeichnis Peter Roquette 1. Arithmetische Untersuchung des Charakterringes einer endlichen Gruppe. Mit An- wendungen auf die Bestimmung des minimalen Darstellungsk¨orpers einer Gruppe und in der Theorie der Artinschen L-Funktionen. Journal f¨urdie reine und angewandte Mathematik 190 (1952), 148{168. 2. Arithmetische Untersuchung des Abelschen Funktionenk¨orpers, der einem alge- braischen Funktionenk¨orper h¨oherenGeschlechts zugeordnet ist. Mit einem An- hang ¨uber eine neue Begr¨undungder Korrespondenzentheorie algebraischer Funk- tionenk¨orper. Abhandlungen aus dem Mathematischen Seminar der Universit¨atHamburg 18 (1952), 144{178. 3. Uber¨ die Automorphismengruppe eines algebraischen Funktionenk¨orpers. Archiv der Mathematik 3 (1952), 343{350. 4. Riemannsche Vermutung in Funktionenk¨orpern. Archiv der Mathematik 4 (1953), 6{16. 5. Arithmetischer Beweis der Riemannschen Vermutung in Kongruenzfunktionenk¨orpern beliebigen Geschlechts. Journal f¨urdie reine und angewandte Mathematik 191 (1953), 199{252. 6. L'arithm´etiquedes fonctions ab´eliennes. Centre Belge Rech. Math., Coll. fonctions des plusieurs variables (1953), 69{80. 7. Zur Theorie der Konstantenerweiterungen algebraischer Funktionenk¨orper: Kon- struktion der Koordinatenk¨orper von Divisoren und Divisorklassen. Abhandlungen aus dem Mathematischen Seminar der Universit¨atHamburg 19 (1955), 269{276. 8. Uber¨ das Hassesche Klassenk¨orperzerlegungsgesetz und seine Verallgemeinerung f¨ur beliebige abelsche Funktionenk¨orper. Journal f¨urdie reine und angewandte Mathematik 197 (1957), 49{67. 9. Einheiten und Divisorklassen in endlich erzeugbaren K¨orpern. Jahresbericht der Deutschen Mathematiker Vereinigung 60 (1957), 1{21. 10. On the prolongation of valuations. Transactions of the American Mathematical Society 88 (1958), 42{56. 11. Zur Theorie der Konstantenreduktion algebraischer Mannigfaltigkeiten: Invarianz des arithmetischen Geschlechts einer Mannigfaltigkeit und der virtuellen Dimension ihrer Divisoren. -
The Nazi Era: the Berlin Way of Politicizing Mathematics
The Nazi era: the Berlin way of politicizing mathematics Norbert Schappacher The first impact of the Nazi regime on mathematical life, occurring essentially be- tween 1933 and 1937. took the form of a wave of dismissals of Jewish or politically suspect civil servants. It affected, overall, about 30 per cent of all mathematicians holding positions at German universities. These dismissals had nothing to do with a systematic policy for science, rather they proceeded according to various laws and decrees which concerned all civil servants alike. The effect on individual institutes depended crucially on local circumstances see [6] , section 3.1, for details. Among the Berlin mathematicians, S0-year-old Richard von Mises was the first to emigrate. He went to Istanbul at the end of 1933. where he was joined by his assistant and future second wife Hilda Pollaczek-Geiringer who had been dismissed from her position in the summer of 1933. Formally, von N{ises resigned of his own free will he was exempt from the racial clause of the first Nazi law about civil servants because he had already been a civil servant before August 1914. Having seen what the "New Germany" of the Nazis was like, he preferred to anticipate later, stricter laws, which would indeed have cost him his job and citizenship in the autumn of 1935. The Jewish algebraist Issai Schur who, like von Mises. had been a civil servant already before World War I was temporarily put on Ieave in the summer of 1933, and even though this was revoked in October 1933 he would no longer teach the large classes which for years had been a must even for students who were not primarily into pure mathematics. -
The Riemann Hypothesis in Characteristic P in Historical Perspective
The Riemann Hypothesis in Characteristic p in Historical Perspective Peter Roquette Version of 3.7.2018 2 Preface This book is the result of many years' work. I am telling the story of the Riemann hypothesis for function fields, or curves, of characteristic p starting with Artin's thesis in the year 1921, covering Hasse's work in the 1930s on elliptic fields and more, until Weil's final proof in 1948. The main sources are letters which were exchanged among the protagonists during that time which I found in various archives, mostly in the University Library in G¨ottingen but also at other places in the world. I am trying to show how the ideas formed, and how the proper notions and proofs were found. This is a good illustration, fortunately well documented, of how mathematics develops in general. Some of the chapters have already been pre-published in the \Mitteilungen der Mathematischen Gesellschaft in Hamburg". But before including them into this book they have been thoroughly reworked, extended and polished. I have written this book for mathematicians but essentially it does not require any special knowledge of particular mathematical fields. I have tried to explain whatever is needed in the particular situation, even if this may seem to be superfluous to the specialist. Every chapter is written such that it can be read independently of the other chapters. Sometimes this entails a repetition of information which has al- ready been given in another chapter. The chapters are accompanied by \summaries". Perhaps it may be expedient first to look at these summaries in order to get an overview of what is going on. -
Introduction of Langlands
Peter Roquette 4. Nov. 2004 Mathematisches Institut, Universit¨at Heidelberg Introduction of Langlands at the Arf lecture, 11 November 2004.1 Ladies and Gentlemen ! It is my pleasure and a great honor to me to introduce Robert Langlands as the speaker of the Arf Lecture of this year 2004, here at the Middle East Technical University. Professor Langlands is a permanent member of the Institute for Advanced Study in Princeton, which is one of the most pres- tigious places for mathematical research studies. He has received a number of highly valued awards, among them the Cole Prize in Number Theory from the American Mathematical Society in 1982, the National Academy of Sciences reward in Mathema- tics in 1988, and the Wolf prize from the Wolf foundation in Israel 1996. He is elected fellow of the Royal Society of Canada and the Royal Society of London, and he has received honorary doctorates from at least 7 universities (to my knowledge). In the laudation for the Wolf prize it was said that he received the prize for his “ path-blazing work and extraordinary insights in the fields of number theory, automorphic forms and group representations”. 1Each year there is scheduled a special colloquium lecture at the Middle East Technical University in Ankara, commemorating Cahit Arf who had served as a professor for many years at METU. In the year 2004 the invited speaker was Robert Langlands, and I had been asked to chair his lecture. The following text was read to introduce the speaker. P.Rq. Introduction of Langlands 4.11.04 Seite 2 Ladies and gentlemen, while I was preparing the text for this introduction it soon became clear to me that in this short time I would not be able to describe, not even approximately, Lang- lands’ rich work, its underlying ideas, its enormous impact on the present mathematical research world wide, and its consequence for the future picture of Mathematics.