Quadratic Forms and Their Applications

Total Page:16

File Type:pdf, Size:1020Kb

Quadratic Forms and Their Applications Quadratic Forms and Their Applications Proceedings of the Conference on Quadratic Forms and Their Applications July 5{9, 1999 University College Dublin Eva Bayer-Fluckiger David Lewis Andrew Ranicki Editors Published as Contemporary Mathematics 272, A.M.S. (2000) vii Contents Preface ix Conference lectures x Conference participants xii Conference photo xiv Galois cohomology of the classical groups Eva Bayer-Fluckiger 1 Symplectic lattices Anne-Marie Berge¶ 9 Universal quadratic forms and the ¯fteen theorem J.H. Conway 23 On the Conway-Schneeberger ¯fteen theorem Manjul Bhargava 27 On trace forms and the Burnside ring Martin Epkenhans 39 Equivariant Brauer groups A. FrohlichÄ and C.T.C. Wall 57 Isotropy of quadratic forms and ¯eld invariants Detlev W. Hoffmann 73 Quadratic forms with absolutely maximal splitting Oleg Izhboldin and Alexander Vishik 103 2-regularity and reversibility of quadratic mappings Alexey F. Izmailov 127 Quadratic forms in knot theory C. Kearton 135 Biography of Ernst Witt (1911{1991) Ina Kersten 155 viii Generic splitting towers and generic splitting preparation of quadratic forms Manfred Knebusch and Ulf Rehmann 173 Local densities of hermitian forms Maurice Mischler 201 Notes towards a constructive proof of Hilbert's theorem on ternary quartics Victoria Powers and Bruce Reznick 209 On the history of the algebraic theory of quadratic forms Winfried Scharlau 229 Local fundamental classes derived from higher K-groups: III Victor P. Snaith 261 Hilbert's theorem on positive ternary quartics Richard G. Swan 287 Quadratic forms and normal surface singularities C.T.C. Wall 293 ix Preface These are the proceedings of the conference on \Quadratic Forms And Their Applications" which was held at University College Dublin from 5th to 9th July, 1999. The meeting was attended by 82 participants from Europe and elsewhere. There were 13 one-hour lectures surveying various appli- cations of quadratic forms in algebra, number theory, algebraic geometry, topology and information theory. In addition, there were 22 half-hour lec- tures on more specialized topics. The papers collected together in these proceedings are of various types. Some are expanded versions of the one-hour survey lectures delivered at the conference. Others are devoted to current research, and are based on the half-hour lectures. Yet others are concerned with the history of quadratic forms. All papers were refereed, and we are grateful to the referees for their work. This volume includes one of the last papers of Oleg Izhboldin who died unexpectedly on 17th April 2000 at the age of 37. His untimely death is a great loss to mathematics and in particular to quadratic form theory. We shall miss his brilliant and original ideas, his clarity of exposition, and his friendly and good-humoured presence. The conference was supported by the European Community under the auspices of the TMR network FMRX CT-97-0107 \Algebraic K-Theory, Linear Algebraic Groups and Related Structures". We are grateful to the Mathematics Department of University College Dublin for hosting the con- ference, and in particular to Thomas Unger for all his work on the TEX and web-related aspects of the conference. Eva Bayer-Fluckiger, Besan»con David Lewis, Dublin Andrew Ranicki, Edinburgh October, 2000 x Conference lectures 60 minutes. A.-M. Berge,¶ Symplectic lattices. J.J. Boutros, Quadratic forms in information theory. J.H. Conway, The Fifteen Theorem. D. Hoffmann, Zeros of quadratic forms. C. Kearton, Quadratic forms in knot theory. M. Kreck, Manifolds and quadratic forms. R. Parimala, Algebras with involution. A. Pfister, The history of the Milnor conjectures. M. Rost, On characteristic numbers and norm varieties. W. Scharlau, The history of the algebraic theory of quadratic forms. J.-P. Serre, Abelian varieties and hermitian modules. M. Taylor, Galois modules and hermitian Euler characteristics. C.T.C. Wall, Quadratic forms in singularity theory. 30 minutes. A. Arutyunov, Quadratic forms and abnormal extremal problems: some results and unsolved problems. P. Balmer, The Witt groups of triangulated categories, with some applica- tions. G. Berhuy, Hermitian scaled trace forms of ¯eld extensions. P. Calame, Integral forms without symmetry. P. Chuard-Koulmann, Elements of given minimal polynomial in a central simple algebra. M. Epkenhans, On trace forms and the Burnside ring. L. Fainsilber, Quadratic forms and gas dynamics: sums of squares in a discrete velocity model for the Boltzmann equation. C. Frings, Second trace form and T2-standard normal bases. J. Hurrelbrink, Quadratic forms of height 2 and di®erences of two P¯ster forms. M. Iftime, On spacetime distributions. A. Izmailov, 2-regularity and reversibility of quadratic mappings. S. Joukhovitski, K-theory of the Weil transfer functor. xi V. Mauduit, Towards a Drinfeldian analogue of quadratic forms for poly- nomials. M. Mischler, Local densities and Jordan decomposition. V. Powers, Computational approaches to Hilbert's theorem on ternary quartics. S. PumplunÄ , The Witt ring of a Brauer-Severi variety. A. Queguiner¶ , Discriminant and Cli®ord algebras of an algebra with in- volution. U. Rehmann, A surprising fact about the generic splitting tower of a qua- dratic form. C. Riehm, Orthogonal representations of ¯nite groups. D. Sheiham, Signatures of Seifert forms and cobordism of boundary links. V. Snaith, Local fundamental classes constructed from higher dimensional K-groups. K. Zainoulline, On Grothendieck's conjecture about principal homoge- neous spaces. xii Conference participants A.V. Arutyunov, Moscow [email protected] P. Balmer, Lausanne [email protected] E. Bayer-Fluckiger, Besan»con [email protected] K.J. Becher, Besan»con [email protected] A.-M. Berg¶e,Talence [email protected] G. Berhuy, Besan»con [email protected] J.J. Boutros, Paris [email protected] L. Broecker, Muenster [email protected] Ph. Calame, Lausanne [email protected] P. Chuard-Koulmann, Louvain-la-Neuve [email protected] J.H. Conway, Princeton [email protected] J.-Y. Degos, Talence [email protected] S. Dineen, Dublin [email protected] Ph. Du Bois, Angers [email protected] G. Elencwajg, Nice [email protected] M. Elhamdadi, Trieste [email protected] M. Elomary, Louvain-la-Neuve [email protected] M. Epkenhans, Paderborn [email protected] L. Fainsilber, Goteborg [email protected] D.A. Flannery, Cork dfl[email protected] C. Frings, Besan»con [email protected] R.S. Garibaldi, Zurich [email protected] S. Gille, Muenster [email protected] M. Gindraux, Neuchatel [email protected] R. Gow, Dublin [email protected] F. Gradl, Duisburg [email protected] Y. Hellegouarch, Caen [email protected] D. Ho®mann, Besan»con [email protected] J. Hurrelbrink, Baton Rouge [email protected] K. Hutchinson, Dublin [email protected] M. Iftime, Suceava [email protected] A.F. Izmailov, Moscow [email protected] S. Joukhovitski, Bonn [email protected] M. Karoubi, Paris [email protected] C. Kearton, Durham [email protected] M. Kreck, Heidelberg [email protected] T.J. La®ey, Dublin thomas.la®[email protected] C. Lamy, Paris [email protected] A. Leibak, Tallinn [email protected] D. Lewis, Dublin [email protected] J.-L. Loday, Strasbourg [email protected] M. Mackey, Dublin [email protected] xiii M. Marjoram, Dublin [email protected] V. Mauduit, Dublin [email protected] A. Mazzoleni, Lausanne [email protected] S. McGarraghy, Dublin [email protected] G. McGuire, Maynooth [email protected] M. Mischler, Lausanne [email protected] M. Monsurro, Besan»con [email protected] J. Morales, Baton Rouge [email protected] C. Mulcahy, Atlanta [email protected] H. Munkholm, Odense [email protected] R. Parimala, Besan»con [email protected] O. Patashnick, Chicago [email protected] S. Perret, Neuchatel [email protected] A. P¯ster, Mainz p¯[email protected] V. Powers, Atlanta [email protected] S. PumplÄun,Regensburg [email protected] A. Qu¶eguiner,Paris [email protected] A. Ranicki, Edinburgh [email protected] U. Rehmann, Bielefeld [email protected] H. Reich, Muenster [email protected] C. Riehm, Hamilton, Ontario [email protected] M. Rost, Regensburg [email protected] D. Ryan, Dublin [email protected] W. Scharlau, Muenster [email protected] C. Scheiderer, Duisburg [email protected] J.-P. Serre, Paris [email protected] D. Sheiham, Edinburgh [email protected] F. Sigrist, Neuchatel [email protected] V. Snaith, Southampton [email protected] M. Taylor, Manchester [email protected] J.-P. Tignol, Louvain-la-Neuve [email protected] U. Tipp, Ghent [email protected] D.A. Tipple, Dublin [email protected] M. Tuite, Galway [email protected] T. Unger, Dublin [email protected] C.T.C. Wall, Liverpool [email protected] S. Yagunov, London Ontario [email protected] K. Zahidi, Ghent [email protected] K. Zainoulline, St. Petersburg [email protected] xiv Conference photo 17 16 42 27 15 54 41 26 53 40 68 25 67 52 13 51 39 38 66 12 14 50 24 11 37 65 49 36 10 64 23 63 35 48 9 34 47 22 62 61 33 8 21 60 46 32 59 31 20 58 7 45 6 57 30 56 44 5 55 29 19 43 4 28 18 3 2 (1) A. Ranicki,1 (2) J.H. Conway, (3) G. Elencwajg, (4) K.
Recommended publications
  • MASTER COURSE: Quaternion Algebras and Quadratic Forms Towards Shimura Curves
    MASTER COURSE: Quaternion algebras and Quadratic forms towards Shimura curves Prof. Montserrat Alsina Universitat Polit`ecnicade Catalunya - BarcelonaTech EPSEM Manresa September 2013 ii Contents 1 Introduction to quaternion algebras 1 1.1 Basics on quaternion algebras . 1 1.2 Main known results . 4 1.3 Reduced trace and norm . 6 1.4 Small ramified algebras... 10 1.5 Quaternion orders . 13 1.6 Special basis for orders in quaternion algebras . 16 1.7 More on Eichler orders . 18 1.8 Eichler orders in non-ramified and small ramified Q-algebras . 21 2 Introduction to Fuchsian groups 23 2.1 Linear fractional transformations . 23 2.2 Classification of homographies . 24 2.3 The non ramified case . 28 2.4 Groups of quaternion transformations . 29 3 Introduction to Shimura curves 31 3.1 Quaternion fuchsian groups . 31 3.2 The Shimura curves X(D; N) ......................... 33 4 Hyperbolic fundamental domains . 37 4.1 Groups of quaternion transformations and the Shimura curves X(D; N) . 37 4.2 Transformations, embeddings and forms . 40 4.2.1 Elliptic points of X(D; N)....................... 43 4.3 Local conditions at infinity . 48 iii iv CONTENTS 4.3.1 Principal homotheties of Γ(D; N) for D > 1 . 48 4.3.2 Construction of a fundamental domain at infinity . 49 4.4 Principal symmetries of Γ(D; N)........................ 52 4.5 Construction of fundamental domains (D > 1) . 54 4.5.1 General comments . 54 4.5.2 Fundamental domain for X(6; 1) . 55 4.5.3 Fundamental domain for X(10; 1) . 57 4.5.4 Fundamental domain for X(15; 1) .
    [Show full text]
  • On the Linear Transformations of a Quadratic Form Into Itself*
    ON THE LINEAR TRANSFORMATIONS OF A QUADRATIC FORM INTO ITSELF* BY PERCEY F. SMITH The problem of the determination f of all linear transformations possessing an invariant quadratic form, is well known to be classic. It enjoyed the atten- tion of Euler, Cayley and Hermite, and reached a certain stage of com- pleteness in the memoirs of Frobenius,| Voss,§ Lindemann|| and LoEWY.^f The investigations of Cayley and Hermite were confined to the general trans- formation, Erobenius then determined all proper transformations, and finally the problem was completely solved by Lindemann and Loewy, and simplified by Voss. The present paper attacks the problem from an altogether different point, the fundamental idea being that of building up any such transformation from simple elements. The primary transformation is taken to be central reflection in the quadratic locus defined by setting the given form equal to zero. This transformation is otherwise called in three dimensions, point-plane reflection,— point and plane being pole and polar plane with respect to the fundamental quadric. In this way, every linear transformation of the desired form is found to be a product of central reflections. The maximum number necessary for the most general case is the number of variables. Voss, in the first memoir cited, proved this theorem for the general transformation, assuming the latter given by the equations of Cayley. In the present paper, however, the theorem is derived synthetically, and from this the analytic form of the equations of trans- formation is deduced. * Presented to the Society December 29, 1903. Received for publication, July 2, 1P04.
    [Show full text]
  • Differential Forms, Linked Fields and the $ U $-Invariant
    Differential Forms, Linked Fields and the u-Invariant Adam Chapman Department of Computer Science, Tel-Hai Academic College, Upper Galilee, 12208 Israel Andrew Dolphin Department of Mathematics, Ghent University, Ghent, Belgium Abstract We associate an Albert form to any pair of cyclic algebras of prime degree p over a field F with char(F) = p which coincides with the classical Albert form when p = 2. We prove that if every Albert form is isotropic then H4(F) = 0. As a result, we obtain that if F is a linked field with char(F) = 2 then its u-invariant is either 0, 2, 4or 8. Keywords: Differential Forms, Quadratic Forms, Linked Fields, u-Invariant, Fields of Finite Characteristic. 2010 MSC: 11E81 (primary); 11E04, 16K20 (secondary) 1. Introduction Given a field F, a quaternion algebra over F is a central simple F-algebra of degree 2. The maximal subfields of quaternion division algebras over F are quadratic field extensions of F. When char(F) , 2, all quadratic field extensions are separable. When char(F) = 2, there are two types of quadratic field extensions: the separable type which is of the form F[x : x2 + x = α] for some α F λ2 + λ : λ F , and the ∈ \ { 2 ∈ } inseparable type which is of the form F[ √α] for some α F× (F×) . In this case, any quaternion division algebra contains both types of field ext∈ ensions,\ which can be seen by its symbol presentation 2 2 1 [α, β)2,F = F x, y : x + x = α, y = β, yxy− = x + 1 . arXiv:1701.01367v2 [math.RA] 22 May 2017 h i If char(F) = p for some prime p > 0, we let ℘(F) denote the additive subgroup λp λ : λ F .
    [Show full text]
  • Garibaldi S. Cohomological Invariants.. Exceptional Groups And
    Cohomological Invariants: Exceptional Groups and Spin Groups This page intentionally left blank EMOIRS M of the American Mathematical Society Number 937 Cohomological Invariants: Exceptional Groups and Spin Groups Skip Garibaldi ­ÜÌ Ê>Ê««i`ÝÊLÞÊ iÌiÛÊ7°Êvv>® ÕÞÊÓääÊÊUÊÊ6ÕiÊÓääÊÊUÊÊ ÕLiÀÊÎÇÊ­ÃiV`ÊvÊÈÊÕLiÀîÊÊUÊÊ-- ÊääÈxÓÈÈ American Mathematical Society Providence, Rhode Island 2000 Mathematics Subject Classification. Primary 11E72; Secondary 12G05, 20G15, 17B25. Library of Congress Cataloging-in-Publication Data Garibaldi, Skip, 1972– Cohomological invariants : exceptional groups and spin groups / Skip Garibaldi ; with an appendix by Detlev W. Hoffmann. p. cm. — (Memoirs of the American Mathematical Society, ISSN 0065-9266 ; no. 937) “Volume 200, number 937 (second of 6 numbers).” Includes bibliographical references and index. ISBN 978-0-8218-4404-5 (alk. paper) 1. Galois cohomology. 2. Linear algebraic groups. 3. Invariants. I. Title. QA169.G367 2009 515.23—dc22 2009008059 Memoirs of the American Mathematical Society This journal is devoted entirely to research in pure and applied mathematics. Subscription information. The 2009 subscription begins with volume 197 and consists of six mailings, each containing one or more numbers. Subscription prices for 2009 are US$709 list, US$567 institutional member. A late charge of 10% of the subscription price will be imposed on orders received from nonmembers after January 1 of the subscription year. Subscribers outside the United States and India must pay a postage surcharge of US$65; subscribers in India must pay a postage surcharge of US$95. Expedited delivery to destinations in North America US$57; elsewhere US$160. Each number may be ordered separately; please specify number when ordering an individual number.
    [Show full text]
  • Quadratic Forms and Automorphic Forms
    Quadratic Forms and Automorphic Forms Jonathan Hanke May 16, 2011 2 Contents 1 Background on Quadratic Forms 11 1.1 Notation and Conventions . 11 1.2 Definitions of Quadratic Forms . 11 1.3 Equivalence of Quadratic Forms . 13 1.4 Direct Sums and Scaling . 13 1.5 The Geometry of Quadratic Spaces . 14 1.6 Quadratic Forms over Local Fields . 16 1.7 The Geometry of Quadratic Lattices – Dual Lattices . 18 1.8 Quadratic Forms over Local (p-adic) Rings of Integers . 19 1.9 Local-Global Results for Quadratic forms . 20 1.10 The Neighbor Method . 22 1.10.1 Constructing p-neighbors . 22 2 Theta functions 25 2.1 Definitions and convergence . 25 2.2 Symmetries of the theta function . 26 2.3 Modular Forms . 28 2.4 Asymptotic Statements about rQ(m) ...................... 31 2.5 The circle method and Siegel’s Formula . 32 2.6 Mass Formulas . 34 2.7 An Example: The sum of 4 squares . 35 2.7.1 Canonical measures for local densities . 36 2.7.2 Computing β1(m) ............................ 36 2.7.3 Understanding βp(m) by counting . 37 2.7.4 Computing βp(m) for all primes p ................... 38 2.7.5 Computing rQ(m) for certain m ..................... 39 3 Quaternions and Clifford Algebras 41 3.1 Definitions . 41 3.2 The Clifford Algebra . 45 3 4 CONTENTS 3.3 Connecting algebra and geometry in the orthogonal group . 47 3.4 The Spin Group . 49 3.5 Spinor Equivalence . 52 4 The Theta Lifting 55 4.1 Classical to Adelic modular forms for GL2 ..................
    [Show full text]
  • Quadratic Forms, Lattices, and Ideal Classes
    Quadratic forms, lattices, and ideal classes Katherine E. Stange March 1, 2021 1 Introduction These notes are meant to be a self-contained, modern, simple and concise treat- ment of the very classical correspondence between quadratic forms and ideal classes. In my personal mental landscape, this correspondence is most naturally mediated by the study of complex lattices. I think taking this perspective breaks the equivalence between forms and ideal classes into discrete steps each of which is satisfyingly inevitable. These notes follow no particular treatment from the literature. But it may perhaps be more accurate to say that they follow all of them, because I am repeating a story so well-worn as to be pervasive in modern number theory, and nowdays absorbed osmotically. These notes require a familiarity with the basic number theory of quadratic fields, including the ring of integers, ideal class group, and discriminant. I leave out some details that can easily be verified by the reader. A much fuller treatment can be found in Cox's book Primes of the form x2 + ny2. 2 Moduli of lattices We introduce the upper half plane and show that, under the quotient by a natural SL(2; Z) action, it can be interpreted as the moduli space of complex lattices. The upper half plane is defined as the `upper' half of the complex plane, namely h = fx + iy : y > 0g ⊆ C: If τ 2 h, we interpret it as a complex lattice Λτ := Z+τZ ⊆ C. Two complex lattices Λ and Λ0 are said to be homothetic if one is obtained from the other by scaling by a complex number (geometrically, rotation and dilation).
    [Show full text]
  • QUADRATIC FORMS and DEFINITE MATRICES 1.1. Definition of A
    QUADRATIC FORMS AND DEFINITE MATRICES 1. DEFINITION AND CLASSIFICATION OF QUADRATIC FORMS 1.1. Definition of a quadratic form. Let A denote an n x n symmetric matrix with real entries and let x denote an n x 1 column vector. Then Q = x’Ax is said to be a quadratic form. Note that a11 ··· a1n . x1 Q = x´Ax =(x1...xn) . xn an1 ··· ann P a1ixi . =(x1,x2, ··· ,xn) . P anixi 2 (1) = a11x1 + a12x1x2 + ... + a1nx1xn 2 + a21x2x1 + a22x2 + ... + a2nx2xn + ... + ... + ... 2 + an1xnx1 + an2xnx2 + ... + annxn = Pi ≤ j aij xi xj For example, consider the matrix 12 A = 21 and the vector x. Q is given by 0 12x1 Q = x Ax =[x1 x2] 21 x2 x1 =[x1 +2x2 2 x1 + x2 ] x2 2 2 = x1 +2x1 x2 +2x1 x2 + x2 2 2 = x1 +4x1 x2 + x2 1.2. Classification of the quadratic form Q = x0Ax: A quadratic form is said to be: a: negative definite: Q<0 when x =06 b: negative semidefinite: Q ≤ 0 for all x and Q =0for some x =06 c: positive definite: Q>0 when x =06 d: positive semidefinite: Q ≥ 0 for all x and Q = 0 for some x =06 e: indefinite: Q>0 for some x and Q<0 for some other x Date: September 14, 2004. 1 2 QUADRATIC FORMS AND DEFINITE MATRICES Consider as an example the 3x3 diagonal matrix D below and a general 3 element vector x. 100 D = 020 004 The general quadratic form is given by 100 x1 0 Q = x Ax =[x1 x2 x3] 020 x2 004 x3 x1 =[x 2 x 4 x ] x2 1 2 3 x3 2 2 2 = x1 +2x2 +4x3 Note that for any real vector x =06 , that Q will be positive, because the square of any number is positive, the coefficients of the squared terms are positive and the sum of positive numbers is always positive.
    [Show full text]
  • Fast Singular Value Thresholding Without Singular Value Decomposition∗
    METHODS AND APPLICATIONS OF ANALYSIS. c 2013 International Press Vol. 20, No. 4, pp. 335–352, December 2013 002 FAST SINGULAR VALUE THRESHOLDING WITHOUT SINGULAR VALUE DECOMPOSITION∗ JIAN-FENG CAI† AND STANLEY OSHER‡ Abstract. Singular value thresholding (SVT) is a basic subroutine in many popular numerical schemes for solving nuclear norm minimization that arises from low-rank matrix recovery prob- lems such as matrix completion. The conventional approach for SVT is first to find the singular value decomposition (SVD) and then to shrink the singular values. However, such an approach is time-consuming under some circumstances, especially when the rank of the resulting matrix is not significantly low compared to its dimension. In this paper, we propose a fast algorithm for directly computing SVT for general dense matrices without using SVDs. Our algorithm is based on matrix Newton iteration for matrix functions, and the convergence is theoretically guaranteed. Numerical experiments show that our proposed algorithm is more efficient than the SVD-based approaches for general dense matrices. Key words. Low rank matrix, nuclear norm minimization, matrix Newton iteration. AMS subject classifications. 65F30, 65K99. 1. Introduction. Singular value thresholding (SVT) introduced in [7] is a key subroutine in many popular numerical schemes (e.g. [7, 12, 13, 52, 54, 66]) for solving nuclear norm minimization that arises from low-rank matrix recovery problems such as matrix completion [13–15,60]. Let Y Rm×n be a given matrix, and Y = UΣV T be its singular value decomposition (SVD),∈ where U and V are orthonormal matrices and Σ = diag(σ1, σ2,...,σs) is the diagonal matrix with diagonals being the singular values of Y .
    [Show full text]
  • Generic Splitting Fields of Central Simple Algebras: Galois Cohomology and Non-Excellence
    GENERIC SPLITTING FIELDS OF CENTRAL SIMPLE ALGEBRAS: GALOIS COHOMOLOGY AND NON-EXCELLENCE OLEG T. IZHBOLDIN AND NIKITA A. KARPENKO Abstract. A field extension L=F is called excellent, if for any quadratic form ϕ over F the anisotropic part (ϕL)an of ϕ over L is defined over F ; L=F is called universally excellent, if L · E=E is excellent for any field ex- tension E=F . We study the excellence property for a generic splitting field of a central simple F -algebra. In particular, we show that it is universally excellent if and only if the Schur index of the algebra is not divisible by 4. We begin by studying the torsion in the second Chow group of products of Severi-Brauer varieties and its relationship with the relative Galois co- homology group H3(L=F ) for a generic (common) splitting field L of the corresponding central simple F -algebras. Let F be a field and let A1;:::;An be central simple F -algebras. A splitting field of this collection of algebras is a field extension L of F such that all the def algebras (Ai)L = Ai ⊗F L (i = 1; : : : ; n) are split. A splitting field L=F of 0 A1;:::;An is called generic (cf. [41, Def. C9]), if for any splitting field L =F 0 of A1;:::;An, there exists an F -place of L to L . Clearly, generic splitting field of A1;:::;An is not unique, however it is uniquely defined up to equivalence over F in the sense of [24, x3]. Therefore, working on problems (Q1) and (Q2) discussed below, we may choose any par- ticular generic splitting field L of the algebras A1;:::;An (cf.
    [Show full text]
  • Mathematicians Fleeing from Nazi Germany
    Mathematicians Fleeing from Nazi Germany Mathematicians Fleeing from Nazi Germany Individual Fates and Global Impact Reinhard Siegmund-Schultze princeton university press princeton and oxford Copyright 2009 © by Princeton University Press Published by Princeton University Press, 41 William Street, Princeton, New Jersey 08540 In the United Kingdom: Princeton University Press, 6 Oxford Street, Woodstock, Oxfordshire OX20 1TW All Rights Reserved Library of Congress Cataloging-in-Publication Data Siegmund-Schultze, R. (Reinhard) Mathematicians fleeing from Nazi Germany: individual fates and global impact / Reinhard Siegmund-Schultze. p. cm. Includes bibliographical references and index. ISBN 978-0-691-12593-0 (cloth) — ISBN 978-0-691-14041-4 (pbk.) 1. Mathematicians—Germany—History—20th century. 2. Mathematicians— United States—History—20th century. 3. Mathematicians—Germany—Biography. 4. Mathematicians—United States—Biography. 5. World War, 1939–1945— Refuges—Germany. 6. Germany—Emigration and immigration—History—1933–1945. 7. Germans—United States—History—20th century. 8. Immigrants—United States—History—20th century. 9. Mathematics—Germany—History—20th century. 10. Mathematics—United States—History—20th century. I. Title. QA27.G4S53 2008 510.09'04—dc22 2008048855 British Library Cataloging-in-Publication Data is available This book has been composed in Sabon Printed on acid-free paper. ∞ press.princeton.edu Printed in the United States of America 10 987654321 Contents List of Figures and Tables xiii Preface xvii Chapter 1 The Terms “German-Speaking Mathematician,” “Forced,” and“Voluntary Emigration” 1 Chapter 2 The Notion of “Mathematician” Plus Quantitative Figures on Persecution 13 Chapter 3 Early Emigration 30 3.1. The Push-Factor 32 3.2. The Pull-Factor 36 3.D.
    [Show full text]
  • Quadratic Form - Wikipedia, the Free Encyclopedia
    Quadratic form - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/Quadratic_form Quadratic form From Wikipedia, the free encyclopedia In mathematics, a quadratic form is a homogeneous polynomial of degree two in a number of variables. For example, is a quadratic form in the variables x and y. Quadratic forms occupy a central place in various branches of mathematics, including number theory, linear algebra, group theory (orthogonal group), differential geometry (Riemannian metric), differential topology (intersection forms of four-manifolds), and Lie theory (the Killing form). Contents 1 Introduction 2 History 3 Real quadratic forms 4 Definitions 4.1 Quadratic spaces 4.2 Further definitions 5 Equivalence of forms 6 Geometric meaning 7 Integral quadratic forms 7.1 Historical use 7.2 Universal quadratic forms 8 See also 9 Notes 10 References 11 External links Introduction Quadratic forms are homogeneous quadratic polynomials in n variables. In the cases of one, two, and three variables they are called unary, binary, and ternary and have the following explicit form: where a,…,f are the coefficients.[1] Note that quadratic functions, such as ax2 + bx + c in the one variable case, are not quadratic forms, as they are typically not homogeneous (unless b and c are both 0). The theory of quadratic forms and methods used in their study depend in a large measure on the nature of the 1 of 8 27/03/2013 12:41 Quadratic form - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/Quadratic_form coefficients, which may be real or complex numbers, rational numbers, or integers. In linear algebra, analytic geometry, and in the majority of applications of quadratic forms, the coefficients are real or complex numbers.
    [Show full text]
  • A Simplex-Type Voronoi Algorithm Based on Short Vector Computations of Copositive Quadratic Forms
    Simons workshop Lattices Geometry, Algorithms and Hardness Berkeley, February 21st 2020 A simplex-type Voronoi algorithm based on short vector computations of copositive quadratic forms Achill Schürmann (Universität Rostock) based on work with Mathieu Dutour Sikirić and Frank Vallentin ( for Q n positive definite ) Perfect Forms 2 S>0 DEF: min(Q)= min Q[x] is the arithmetical minimum • x n 0 2Z \{ } Q is uniquely determined by min(Q) and Q perfect • , n MinQ = x Z : Q[x]=min(Q) { 2 } V(Q)=cone xxt : x MinQ is Voronoi cone of Q • { 2 } (Voronoi cones are full dimensional if and only if Q is perfect!) THM: Voronoi cones give a polyhedral tessellation of n S>0 and there are only finitely many up to GL n ( Z ) -equivalence. Voronoi’s Reduction Theory n t GLn(Z) acts on >0 by Q U QU S 7! Georgy Voronoi (1868 – 1908) Task of a reduction theory is to provide a fundamental domain Voronoi’s algorithm gives a recipe for the construction of a complete list of such polyhedral cones up to GL n ( Z ) -equivalence Ryshkov Polyhedron The set of all positive definite quadratic forms / matrices with arithmeticalRyshkov minimum Polyhedra at least 1 is called Ryshkov polyhedron = Q n : Q[x] 1 for all x Zn 0 R 2 S>0 ≥ 2 \{ } is a locally finite polyhedron • R is a locally finite polyhedron • R Vertices of are perfect forms Vertices of are• perfect R • R 1 n n ↵ (det(Q + ↵Q0)) is strictly concave on • 7! S>0 Voronoi’s algorithm Voronoi’s Algorithm Start with a perfect form Q 1.
    [Show full text]