Isotropy of Quadratic Spaces in Finite and Infinite Dimension
Documenta Math. 473 Isotropy of Quadratic Spaces in Finite and Infinite Dimension Karim Johannes Becher, Detlev W. Hoffmann Received: October 6, 2006 Revised: September 13, 2007 Communicated by Alexander Merkurjev Abstract. In the late 1970s, Herbert Gross asked whether there exist fields admitting anisotropic quadratic spaces of arbitrarily large finite dimensions but none of infinite dimension. We construct exam- ples of such fields and also discuss related problems in the theory of central simple algebras and in Milnor K-theory. 2000 Mathematics Subject Classification: 11E04, 11E81, 12D15, 12E15, 12F20, 12G05, 12G10, 16K20, 19D45 Keywords and Phrases: quadratic form, isotropy, infinite-dimensional quadratic space, u-invariant, function field of a quadric, totally indef- inite form, real field, division algebra, quaternion algebra, symbol al- gebra, Galois cohomology, cohomological dimension, Milnor K-theory 1 Introduction A quadratic space over a field F is a pair (V, q) of a vector space V over F together with a map q : V F such that −→ q(λx) = λ2q(x) for all λ F , x V , and • ∈ ∈ the map bq : V V F defined by bq(x,y) = q(x + y) q(x) q(y) • (x,y V ) is F -bilinear.× −→ − − ∈ If dim V = n < , one may identify (after fixing a basis of V ) the quadratic space (V, q) with∞ a form (a homogeneous polynomial) of degree 2 in n variables. Via this identification, a finite-dimensional quadratic space over F will also be referred to as quadratic form over F . Recall that a quadratic space (V, q) is Documenta Mathematica 12 (2007) 473–504 474 Karim Johannes Becher, Detlev W.
[Show full text]