Die Entwicklung Der Mathematik an Der Universität Leipzig∗
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Poincaré and Lie Groups
BULLETIN (New Series) OF THE AMERICAN MATHEMATICAL SOCIETY Volume 6, Number 2, March 1982 POINCARÉ AND LIE GROUPS BY WILFRIED SCHMID1 When I was invited to address this colloquium, the organizers suggested that I talk on the Lie-theoretic aspects of Poincaré's work. I knew of the Poincaré-Birkhoff-Witt theorem, of course, but otherwise was unaware of any contributions that Poincaré might have made to the general theory of Lie groups, as opposed to the theory of discrete subgroups. It thus came as a surprise to me to find that he had written three long papers on the subject, in addition to several short notes. He evidently regarded it as one of the major mathematical developments of his time—the introductions to his papers contain some flowery praise for Lie—but one probably would not do Poincaré an injustice by saying that in this one area, at least, he was not one of the main innovators. Still, his papers are intriguing for the glimpse they give of the early stages of Lie theory. Perhaps this makes a conference on the work of Poincaré an appropriate occasion for some reflections on the origins of the theory of Lie groups. Sophus Lie (1842-1899) developed his theory of finite continuous transfor mation groups, as he called them, in the years 1874-1893, in a series of papers and three monographs. To Lie, a transformation group is a family of mappings (la) y = ƒ(*, a\ where x, the independent variable, ranges over a region in a real or complex Euclidean space; for each fixed a, the identity (la) describes an invertible map; the collection of parameters a also varies over a region in some R" or C; and ƒ, as function of both x and a, is real or complex analytic. -
University of Groningen Theory and History
University of Groningen Theory and history of geometric models Polo-Blanco, Irene IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below. Document Version Publisher's PDF, also known as Version of record Publication date: 2007 Link to publication in University of Groningen/UMCG research database Citation for published version (APA): Polo-Blanco, I. (2007). Theory and history of geometric models. [s.n.]. Copyright Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons). The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license. More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne- amendment. Take-down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum. Download date: 07-10-2021 RIJKSUNIVERSITEIT GRONINGEN Theory and History of Geometric Models Proefschrift ter verkrijging van het doctoraat in de Wiskunde en Natuurwetenschappen aan de Rijksuniversiteit Groningen op gezag van de Rector Magnificus, dr. -
Gray J. Plato`S Ghost..The Modernist Transformation of Mathematics
PLATO’S GHOST This page intentionally left blank PLATO’S GHOST THE MODERNIST TRANSFORMATION OF MATHEMATICS JEREMY GRAY PRINCETON UNIVERSITY PRESS PRINCETON AND OXFORD Copyright ª 2008 by Princeton University Press Published by Princeton University Press, 41 William Street, Princeton, New Jersey 08540 In the United Kingdom: Princeton University Press, 6 Oxford Street, Woodstock, Oxfordshire OX20 1TW All Rights Reserved Library of Congress Cataloging-in-Publication Data Gray, Jeremy, 1947– Plato’s ghost : the modernist transformation of mathematics = Jeremy Gray. p. cm. Includes bibliographical references and index. ISBN 978-0-691-13610-3 (alk. paper) 1. Mathematics–History–19th century. 2. Mathematics–Philosophy. 3. Aesthetics, Modern–19th century. I. Title. QA26.G73 2008 510.9'034–dc22 2007061027 This book has been composed in Printed on acid-free paper.? press.princeton.edu Printed in the United States of America 13579108642 WHAT THEN? His chosen comrades thought at school He must grow a famous man; He thought the same and lived by rule, All his twenties crammed with toil; ‘‘What then?’’ sang Plato’s ghost. ‘‘What then?’’ Everything he wrote was read, After certain years he won Sufficient money for his need; Friends that have been friends indeed; ‘‘What then?’’ sang Plato’s ghost. ‘‘What then?’’ All his happier dreams came true— A small old house, wife, daughter, son, Grounds where plum and cabbage grew, Poets and Wits about him drew; ‘‘What then?’’ sang Plato’s ghost. ‘‘What then?’’ ‘‘The work is done,’’ grown old he thought, ‘‘According -
Sophus Lie: a Real Giant in Mathematics by Lizhen Ji*
Sophus Lie: A Real Giant in Mathematics by Lizhen Ji* Abstract. This article presents a brief introduction other. If we treat discrete or finite groups as spe- to the life and work of Sophus Lie, in particular cial (or degenerate, zero-dimensional) Lie groups, his early fruitful interaction and later conflict with then almost every subject in mathematics uses Lie Felix Klein in connection with the Erlangen program, groups. As H. Poincaré told Lie [25] in October 1882, his productive writing collaboration with Friedrich “all of mathematics is a matter of groups.” It is Engel, and the publication and editing of his collected clear that the importance of groups comes from works. their actions. For a list of topics of group actions, see [17]. Lie theory was the creation of Sophus Lie, and Lie Contents is most famous for it. But Lie’s work is broader than this. What else did Lie achieve besides his work in the 1 Introduction ..................... 66 Lie theory? This might not be so well known. The dif- 2 Some General Comments on Lie and His Impact 67 ferential geometer S. S. Chern wrote in 1992 that “Lie 3 A Glimpse of Lie’s Early Academic Life .... 68 was a great mathematician even without Lie groups” 4 A Mature Lie and His Collaboration with Engel 69 [7]. What did and can Chern mean? We will attempt 5 Lie’s Breakdown and a Final Major Result . 71 to give a summary of some major contributions of 6 An Overview of Lie’s Major Works ....... 72 Lie in §6. -
University of Groningen Theory and History of Geometric Models
University of Groningen Theory and history of geometric models Polo-Blanco, Irene IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below. Document Version Publisher's PDF, also known as Version of record Publication date: 2007 Link to publication in University of Groningen/UMCG research database Citation for published version (APA): Polo-Blanco, I. (2007). Theory and history of geometric models. s.n. Copyright Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons). Take-down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum. Download date: 12-11-2019 RIJKSUNIVERSITEIT GRONINGEN Theory and History of Geometric Models Proefschrift ter verkrijging van het doctoraat in de Wiskunde en Natuurwetenschappen aan de Rijksuniversiteit Groningen op gezag van de Rector Magnificus, dr. F. Zwarts, in het openbaar te verdedigen op vrijdag 4 mei 2007 om 14:45 uur door Irene Polo-Blanco geboren op 5 april 1977 te Vitoria, Spanje Promotores: Prof. dr. M. van der Put Prof. -
Declaralion of Fhe Professors of the Universities Andtechnical Colleges of the German Empire
Declaralion of fhe professors of the Universities andTechnical Colleges of the German Empire. * <23erltn, ben 23. Öftober 1914. (grfftfcung ber i)0d)fd)uttel)rer Declaration of the professors of the Universities and Technical Colleges of the German Empire. ^Btr £e£rer an ®eutfd)tanbg Slniöerjttäten unb iöod)= We, the undersigned, teachers at the Universities fcfyulen bienen ber <2Biffenfd^aff unb treiben ein <2Qett and Technical Colleges of Qermany, are scien be§ •Jrtebeng. 'tHber e3 erfüllt ung mit ©ttrüftung, tific men whose profession is a peaceful one. But bafj bie <5eittbe ©eutfcbjanbg, (Snglanb an ber Spttje, we feel indignant that the enemies of Germany, angeblich ju unfern ©unften einen ©egenfatj machen especially England, pretend that this scientific spirit wollen ättnfdjen bem ©elfte ber beutfd)en <2Biffenfct)aff is opposed to what they call Prussian Militarism unb bem, toag fte benpreufjif^enSOftlitariSmuS nennen. and even mean to favour us by this distinction. 3n bem beutfcfyen ioeere ift fein anberer ©eift als in The same spirit that rules the German army per- bem beutfd>en 93oKe, benn beibe ftnb eins, unb t»ir vades the whole German nation, for both are one gehören aucb, bagu. Slnfer £>eer pflegt aud) bie and we form part of it. Scientific research is culti- •JBiffenfcfyaft unb banft t^>r nicfyt gutn »enigften feine vated in our army, and to it the army owes £eiftungen. ©er ©tenft im &eere tnacfyt unfere Sugenb a large part of its successes. Military service tüct>tig aud) für alte "SBerfe be3 "JriebenS, aud) für trains the growing generation for all peaceful bie *3Biffenfd)aft. -
Les Fondements De La Géométrie Selon Friedrich Schur
Revue d’Histoire des Mathématiques Les fondements de la geÂomeÂtrie selon Friedrich Schur Jean-Daniel Voelke Tome 16 Fascicule 2 2 0 1 0 SOCIÉTÉ MATHÉMATIQUE DE FRANCE Publiée avec le concours du Ministère de la culture et de la communication (DGLFLF) et du Centre national de la recherche scienti�que REVUE D’HISTOIRE DES MATHÉMATIQUES COMITÉ DE LECTURE RÉDACTION Philippe Abgrall Rédacteur en chef : June Barrow-Greene Norbert Schappacher Liliane Beaulieu Umberto Bottazzini Rédacteur en chef adjoint : Jean Pierre Bourguignon Philippe Nabonnand Aldo Brigaglia Membres du Comité de rédaction : Bernard Bru Tom Archibald Jean-Luc Chabert Alain Bernard François Charette Frédéric Brechenmacher Karine Chemla Marie-José Durand-Richard Pierre Crépel Étienne Ghys François De Gandt Hélène Gispert Moritz Epple Jens Høyrup Natalia Ermolaëva Agathe Keller Christian Gilain Laurent Mazliak Catherine Goldstein Karen Parshall Jeremy Gray Jeanne Peiffer Tinne Hoff Kjeldsen Sophie Roux Jesper Lützen Joël Sakarovitch Antoni Malet Dominique Tournès Irène Passeron Christine Proust David Rowe Ken Saito S. R. Sarma Erhard Scholz Directeur de la publication : Reinhard Siegmund-Schultze Bernard Helffer Stephen Stigler Bernard Vitrac Secrétariat : Nathalie Christiaën Société Mathématique de France Institut Henri Poincaré 11, rue Pierre et Marie Curie, 75231 Paris Cedex 05 Tél. : (33) 01 44 27 67 99 / Fax : (33) 01 40 46 90 96 Mél : [email protected] / URL : http//smf.emath.fr/ Périodicité : La Revue publie deux fascicules par an, de 150 pages chacun environ. Tarifs 2010 : prix public Europe : 66 e; prix public hors Europe : 75 e; prix au numéro : 38 e. Des conditions spéciales sont accordées aux membres de la SMF. -
To “Applied” Mathematics: Tracing an Important Dimension of Mathematics and Its History
Mathematisches Forschungsinstitut Oberwolfach Report No. 12/2013 DOI: 10.4171/OWR/2013/12 From “Mixed” to “Applied” Mathematics: Tracing an important dimension of mathematics and its history Organised by Moritz Epple, Frankfurt Tinne Hoff Kjeldsen, Roskilde Reinhard Siegmund-Schultze, Kristiansand 3 March – 9 March 2013 Abstract. The workshop investigated historical variations of the ways in which historically boundaries were drawn between ‘pure’ mathematics on the one hand and ‘mixed’ or ‘applied’ mathematics on the other from about 1500 until today. It brought together historians and philosophers of mathematics as well as several mathematicians working on applications. Emphasis was laid upon the clarification of the relation between the historical use and the historiographical usefulness and philosophical soundness of the various cate- gories. Mathematics Subject Classification (2010): 01A40 to 01A99. Introduction by the Organisers For a long time, research in the history of mathematics has mostly focused on developments in pure mathematics. In recent years, however, some significant research has changed this situation. The conference brought together historians of mathematics actively involved in this reorientation, in order to take stock of what has been achieved, and to identify historical problems yet to be solved. In having done so, the organizers hope to have advanced the general understanding of the relations of mathematics with neighbouring scientific fields, and with technological, economic and social practices involving mathematical methods, in the period since ca. 1500. A fundamental historical insight provided a starting point for planning this meeting: There is no, and there has never been, a once and for all fixed notion of ‘applied’ mathematics. -
Sophus Lie and Felix Klein: the Erlangen Program and Its Impact in Mathematics and Physics
Sophus Lie and Felix Klein: The Erlangen Program and Its Impact in Mathematics and Physics Lizhen Ji Athanase Papadopoulos Editors Editors: Lizhen Ji Athanase Papadopoulos Department of Mathematics Institut de Recherche Mathématique Avancée University of Michigan CNRS et Université de Strasbourg 530 Church Street 7 Rue René Descartes Ann Arbor, MI 48109-1043 67084 Strasbourg Cedex USA France 2010 Mathematics Subject Classification: 01-00, 01-02, 01A05, 01A55, 01A70, 22-00, 22-02, 22-03, 51N15, 51P05, 53A20, 53A35, 53B50, 54H15, 58E40 Key words: Sophus Lie, Felix Klein, the Erlangen program, group action, Lie group action, symmetry, projective geometry, non-Euclidean geometry, spherical geometry, hyperbolic geometry, transitional geometry, discrete geometry, transformation group, rigidity, Galois theory, symmetries of partial differential equations, mathematical physics ISBN 978-3-03719-148-4 The Swiss National Library lists this publication in The Swiss Book, the Swiss national bibliography, and the detailed bibliographic data are available on the Internet at http://www.helveticat.ch. This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting, reproduction on microfilms or in other ways, and storage in data banks. For any kind of use permission of the copyright owner must be obtained. © 2015 European Mathematical Society Contact address: European Mathematical Society Publishing House Seminar for Applied Mathematics ETH-Zentrum SEW A27 CH-8092 Zürich Switzerland Phone: +41 (0)44 632 34 36 Email: [email protected] Homepage: www.ems-ph.org Typeset using the authors’ TEX files: le-tex publishing services GmbH, Leipzig, Germany Printing and binding: Beltz Bad Langensalza GmbH, Bad Langensalza, Germany ∞ Printed on acid free paper 9 8 7 6 5 4 3 2 1 Preface The Erlangen program provides a fundamental point of view on the place of trans- formation groups in mathematics and physics. -
ALGORISMUS 58 2 Ohne
Vorwort Das vorliegende Buch enthält ca. 1550 Kurzbiographien von Personen, die von WS 1907/08 bis WS 1944/45 an deutschen Universitäten und Technischen Hochschulen promovierten 1. Von den in Mathematik Promovierten kamen ca. 9% aus dem Ausland und ca. 8% waren Frauen 2. Die meisten sind in Deutsch- land geborene Personen, aber es kamen Personen aus 22 Ländern, um hier ihren Doktortitel zu erwerben. Die Personen promovierten an 24 Universitäten und elf Technischen Hochschulen. Die meisten Biographien werden hier erstmals publiziert. Das Buch doku- mentiert die Karrieren wie auch Brüche im Lebens- und Berufsweg in- und ausländischer Mathematikerinnen und Mathematiker, dies in der Wissenschaft, im Schuldienst, in der Luftfahrtforschung, im Versicherungswesen, in der Poli- tik und in anderen Bereichen. Zu den Personen gehören neben bedeutenden Pro- fessorinnen und Professoren z.B. auch die erste deutsche Ministerin, eine Ro- manschriftstellerin, ein langjähriger Generaldirektor der Staatsbibliothek Preu- ßischer Kulturbesitz, der erste Botschafter Pakistans in der BRD. Der Band beruht auf mehrjährigen Forschungen, die durch das Land Rhein- land-Pfalz sowie die Volkswagenstiftung gefördert wurden. Die Berufswege von Mathematikerinnen und Mathematikern wurden für das Erfassen grundle- gender Trends analysiert und bildeten die Basis für das Buch [Abele/Neunzert/ Tobies 2004]. Die Veröffentlichung des biographischen Datenbestandes, die durch Prof. Dr. Menso Folkerts angeregt wurde, erforderte allerdings, die An- gaben zu den einzelnen Personen weiter zu vervollständigen. Diese Vollstän- digkeit zumindest annäherungsweise zu erreichen, war viel aufwendiger als ur- sprünglich angenommen. Die Autorin dankt Herrn Folkerts für die Anregung zu dieser Arbeit und in besonderem Maße für die Aufnahme des Buches in die von ihm edierte Reihe und dem Verlagsleiter Herrn Dr. -
Felix Klein Professor Der Mathematik
Niedersächsische Staats- und Universitätsbibliothek Göttingen Nachlass Felix Klein Professor der Mathematik 1849 – 1925 Provenienzen: Cod. Ms. F. Klein 1 . 22: Geschenk der Erben (Acc. 1926.6500; Acc. 1928.5381; Acc. 1930.3154) Cod. Ms. F. Klein 30 – 58: Geschenk von Walther Lietzmann (Acc. Mss. 1943.2) Cod. Ms. F. Klein 22 B / Beil.: Albert Einstein Estate (Acc. Mss. 1966.17) Cod. Ms. F. Klein 18 A / Beil.: Mathematisches Institut Göttingen (Acc. Mss. 1978.23) Cod. Ms. F. Klein 22 M: antiquarische Erwerbung (Acc. Mss. 1990.7) Cod. Ms. F. Klein 101 – 117: Mathematisches Institut Göttingen (Acc. Mss. 2000.24) Umfang: 33 Kästen, 1 Truhe Göttingen 2013 Inhaltsverzeichnis Seite Cod. Ms. F. Klein 1 – 7 3 Akten und Briefe (in der von F. Klein angelegten Ordnung; Verzeichnung nach Cod. Ms. F. Klein 23) Cod. Ms. F. Klein 8 – 12 11 Allgemeine Korrespondenz (1973 verzeichnet von Gerhart Unger; überarbeitet 2012) Cod. Ms. F. Klein 13 – 21 77 Entwürfe für Vorlesungen, Übungen, Vorträge (Verzeichnung nach Cod. Ms. F. Klein 23) Cod. Ms. F. Klein 22 87 Verschiedenes (Verzeichnung nach Cod. Ms. F. Klein 23) Cod. Ms. F. Klein 23-24 Ältere Nachlassverzeichnisse (Dieses Verzeichnis folgt im wesentlichen diesen beiden älteren Verzeichnissen.) Cod. Ms. F. Klein 25 – 29: nicht besetzt Cod. Ms. F. Klein 30 -58 89 Pädagogische Korrespondenz (erstmals – unter Nennung nur der wichtigsten Korrespondenzpartner - verzeichnet 1986) Cod. Ms. F. Klein 101 – 117 94 Urkunden, Medaillen, Varia Der Nachlass Felix Klein ist auch beschrieben in: Spezialinventar zur Geschichte der Mathematik und Naturwissenschaften an der Universität Göttingen von 1880 - 1933 : ein Führer zu den archivalischen Quellen / bearb. -
A Richer Picture of Mathematics the Göttingen Tradition and Beyond a Richer Picture of Mathematics David E
David E. Rowe A Richer Picture of Mathematics The Göttingen Tradition and Beyond A Richer Picture of Mathematics David E. Rowe A Richer Picture of Mathematics The Göttingen Tradition and Beyond 123 David E. Rowe Institut für Mathematik Johannes Gutenberg-Universität Mainz Rheinland-Pfalz, Germany ISBN 978-3-319-67818-4 ISBN 978-3-319-67819-1 (eBook) https://doi.org/10.1007/978-3-319-67819-1 Library of Congress Control Number: 2017958443 © Springer International Publishing AG 2018 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.