Hazel (Corylus Avellana L.) As a New Source of Taxol and Taxanes
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Evidence of Low Chloroplast Genetic Diversity in Two Carpinus Species
Available online: www.notulaebotanicae.ro Print ISSN 0255-965X; Electronic 1842-4309 Not Bot Horti Agrobo, 2017, 45(1):316-322. DOI:10.15835/nbha45110799 Original Article Evidence of Low Chloroplast Genetic Diversity in Two Carpinus Species in the Northern Balkans Mihaela Cristina CĂRĂBUŞ 1, Alexandru Lucian CURTU 1, Dragoş POSTOLACHE 2, Elena CIOCÎRLAN 1, Neculae ŞOFLETEA 1* 1Transilvania University of Brasov, Department of Forest Sciences, 1 Şirul Beethoven, 500123, Braşov, Romania; [email protected] ; [email protected] ; [email protected] ; [email protected] (*corresponding author) 2National Research and Development Institute in Forestry “Marin Dracea”, 65 Horea Str., 400275 Cluj-Napoca, Romania; [email protected] Abstract Genetic diversity and differentiation in two Carpinus species ( C. betulus and C. orientalis ) occurring in Romania was investigated by using three chloroplast Simple Sequence Repeat markers (cpSSRs). A total of 96 and 32 individuals were sampled in eighteen C. betulus and six C. orientalis populations, respectively. A total of four chloroplast haplotypes were observed. Two haplotypes were specific for C. betulus and two for C. orientalis . Most of C. betulus populations were fixed for the predominant haplotype (H1), which was observed in 82% of the individuals. All C. orientalis populations were fixed for one haplotype or the other. Populations with haplotype (H3) are spread in southern Romania and the haplotype (H4) was observed at the northern limit of C. orientalis natural distribution range. Genetic differentiation among populations was moderate in C. betulus (GST = 0.422), compared to the high value observed in C. orientalis (GST = 1.000), which can be explained by the occurrence of a distinct haplotype in the peripheral population. -
Global Survey of Ex Situ Betulaceae Collections Global Survey of Ex Situ Betulaceae Collections
Global Survey of Ex situ Betulaceae Collections Global Survey of Ex situ Betulaceae Collections By Emily Beech, Kirsty Shaw and Meirion Jones June 2015 Recommended citation: Beech, E., Shaw, K., & Jones, M. 2015. Global Survey of Ex situ Betulaceae Collections. BGCI. Acknowledgements BGCI gratefully acknowledges the many botanic gardens around the world that have contributed data to this survey (a full list of contributing gardens is provided in Annex 2). BGCI would also like to acknowledge the assistance of the following organisations in the promotion of the survey and the collection of data, including the Royal Botanic Gardens Edinburgh, Yorkshire Arboretum, University of Liverpool Ness Botanic Gardens, and Stone Lane Gardens & Arboretum (U.K.), and the Morton Arboretum (U.S.A). We would also like to thank contributors to The Red List of Betulaceae, which was a precursor to this ex situ survey. BOTANIC GARDENS CONSERVATION INTERNATIONAL (BGCI) BGCI is a membership organization linking botanic gardens is over 100 countries in a shared commitment to biodiversity conservation, sustainable use and environmental education. BGCI aims to mobilize botanic gardens and work with partners to secure plant diversity for the well-being of people and the planet. BGCI provides the Secretariat for the IUCN/SSC Global Tree Specialist Group. www.bgci.org FAUNA & FLORA INTERNATIONAL (FFI) FFI, founded in 1903 and the world’s oldest international conservation organization, acts to conserve threatened species and ecosystems worldwide, choosing solutions that are sustainable, based on sound science and take account of human needs. www.fauna-flora.org GLOBAL TREES CAMPAIGN (GTC) GTC is undertaken through a partnership between BGCI and FFI, working with a wide range of other organisations around the world, to save the world’s most threated trees and the habitats which they grow through the provision of information, delivery of conservation action and support for sustainable use. -
Genetic Diversity and Population Structure of Chinese Corylus Heterophylla and Corylus Kweichowensis Using Simple Sequence Repeat Markers
J. AMER.SOC.HORT.SCI. 145(5):289–298. 2020. https://doi.org/10.21273/JASHS04887-19 Genetic Diversity and Population Structure of Chinese Corylus heterophylla and Corylus kweichowensis Using Simple Sequence Repeat Markers Tiantian Zhao, Wenxu Ma, Qinghua Ma, Zhen Yang, Lisong Liang, and Guixi Wang Key Laboratory of Tree Breeding and Cultivation of the State Forestry and Grassland Administration, Beijing 100091, China; and Research Institute of Forestry, Chinese Academy of Forestry, No.1 Dongxiaofu, Xiangshan Road, Haidian District, Beijing, 100091, China Lujun Wang Key Laboratory of Tree Breeding and Cultivation of the State Forestry and Grassland Administration, Beijing 100091, China; Research Institute of Forestry, Chinese Academy of Forestry, No.1 Dongxiaofu, Xiangshan Road, Haidian District, Beijing, 100091, China; and Anhui Academy of Forestry, 820 Changjiang West Road, Shushan District, Hefei, Anhui Province, 230031, China ADDITIONAL INDEX WORDS. hazelnut, genetic variability, genetic differentiation, molecular markers, protection strategy, SSR ABSTRACT. Corylus heterophylla and Corylus kweichowensis are economically and ecologically important nut- producing woody shrubs that are distributed across northern and southern regions of China. However, few studies have examined the genetic diversity and genetic relationships between C. heterophylla and C. kweichowensis, and their taxonomic relationships have been questioned. In this study, 796 individuals collected from 34 natural populations (21 C. heterophylla and 13 C. kweichowensis populations) were investigated to assess the genetic diversity and population structure using 11 microsatellite loci. Analysis of molecular variance revealed that genetic differentiation of C. heterophylla and C. kweichowensis within populations accounted for 93.57% and 88.91% of total variation, respectively. The C. heterophylla and C. -
Juglandaceae (Walnuts)
A start for archaeological Nutters: some edible nuts for archaeologists. By Dorian Q Fuller 24.10.2007 Institute of Archaeology, University College London A “nut” is an edible hard seed, which occurs as a single seed contained in a tough or fibrous pericarp or endocarp. But there are numerous kinds of “nuts” to do not behave according to this anatomical definition (see “nut-alikes” below). Only some major categories of nuts will be treated here, by taxonomic family, selected due to there ethnographic importance or archaeological visibility. Species lists below are not comprehensive but representative of the continental distribution of useful taxa. Nuts are seasonally abundant (autumn/post-monsoon) and readily storable. Some good starting points: E. A. Menninger (1977) Edible Nuts of the World. Horticultural Books, Stuart, Fl.; F. Reosengarten, Jr. (1984) The Book of Edible Nuts. Walker New York) Trapaceae (water chestnuts) Note on terminological confusion with “Chinese waterchestnuts” which are actually sedge rhizome tubers (Eleocharis dulcis) Trapa natans European water chestnut Trapa bispinosa East Asia, Neolithic China (Hemudu) Trapa bicornis Southeast Asia and South Asia Trapa japonica Japan, jomon sites Anacardiaceae Includes Piastchios, also mangos (South & Southeast Asia), cashews (South America), and numerous poisonous tropical nuts. Pistacia vera true pistachio of commerce Pistacia atlantica Euphorbiaceae This family includes castor oil plant (Ricinus communis), rubber (Hevea), cassava (Manihot esculenta), the emblic myrobalan fruit (of India & SE Asia), Phyllanthus emblica, and at least important nut groups: Aleurites spp. Candlenuts, food and candlenut oil (SE Asia, Pacific) Archaeological record: Late Pleistocene Timor, Early Holocene reports from New Guinea, New Ireland, Bismarcks; Spirit Cave, Thailand (Early Holocene) (Yen 1979; Latinis 2000) Rincinodendron rautanenii the mongongo nut, a Dobe !Kung staple (S. -
A Critical Taxonomic Checklist of Carpinus and Ostrya (Coryloideae, Betulaceae)
© European Journal of Taxonomy; download unter http://www.europeanjournaloftaxonomy.eu; www.zobodat.at European Journal of Taxonomy 375: 1–52 ISSN 2118-9773 https://doi.org/10.5852/ejt.2017.375 www.europeanjournaloftaxonomy.eu 2017 · Holstein N. & Weigend M. This work is licensed under a Creative Commons Attribution 3.0 License. Monograph No taxon left behind? – a critical taxonomic checklist of Carpinus and Ostrya (Coryloideae, Betulaceae) Norbert HOLSTEIN 1,* & Maximilian WEIGEND 2 1,2 Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Nordrhein-Westfalen, Germany. * Corresponding author: [email protected] 2 Email: [email protected] Abstract. Hornbeams (Carpinus) and hop-hornbeams (Ostrya) are trees or large shrubs from the northern hemisphere. Currently, 43 species of Carpinus (58 taxa including subdivisions) and 8 species of Ostrya (9 taxa including sudivisions) are recognized. These are based on 175 (plus 16 Latin basionyms of cultivars) and 21 legitimate basionyms, respectively. We present an updated checklist with publication details and type information for all accepted names and the vast majority of synonyms of Carpinus and Ostrya, including the designation of 54 lectotypes and two neotypes. Cultivars are listed if validly described under the rules of the ICN. Furthermore, we consider Carpinus hwai Hu & W.C.Cheng to be a synonym of Carpinus fargesiana var. ovalifolia (H.J.P.Winkl.) Holstein & Weigend comb. nov. During the course of our work, we found 30 legitimate basionyms of non-cultivars that have been consistently overlooked since their original descriptions, when compared with the latest checklists and fl oristic treatments. As regional fl oras are highly important for taxonomic practice, we investigated the number of overlooked names and found that 78 basionyms were omitted at least once in the eight regional treatments surveyed. -
(Carpinus Turczaninovii) Based on Nuclear Ribosomal ITS Sequence
African Journal of Biotechnology Vol. 10(76), pp. 17435-17442, 30 November, 2011 Available online at http://www.academicjournals.org/AJB DOI: 10.5897/AJB11.1337 ISSN 1684–5315 © 2011 Academic Journals Full Length Research Paper Phylogeny of Korean Hornbeam ( Carpinus turczaninovii ) based on nuclear ribosomal ITS sequence Sun, Y. L. 1, Wang, D. 1, Lee, H. B.2, Park, W. G. 2, Kwon, O. W. 3 and Hong, S. K.1,4 * 1Department of Bio-Health Technology, Kangwon National University, Chuncheon, Kangwon-Do, 200-701, Korea. 2Department of Forest Resources, Kangwon National University, Chuncheon, Kangwon-Do, 200-701, Korea. 3Korea Forest Seed and Variety Center, Suanbo, Chungju, Chungcheongbuk-Do, 380-941, Korea. 4Division of Biomedical Technology, College of Biomedical Science, Chuncheon, Kangwon-Do, 200-701, Korea. Accepted 25 July, 2011 The genus Carpinus belonging to Coryloideae, Betulaceae, has significant economic and ornamental importance. This study was undertaken with the aim to understand the genetic diversity among eighteen isolates of Carpinus turczaninovii collected from different geographical regions of Korea, using ribosomal RNA (rRNA) internal transcribed spacer (ITS) sequences, to compare the infraspecific- phylogenetic relationships among C. turczaninovii in Korea, and some known Carpinus plants. The size variation of sequenced rRNA ITS regions was not seen, with 215, 162, 222 bp of ITS1 region, 5.8S rRNA gene, ITS2 region, respectively. However, some certain nucleotide variations resulted in genetic diversity. In the genus Carpinus , C. turczaninovii closely genetic with Castanopsis kawakamii , Carpinus orientalis , Carpinus monbeigiana , and Calyptranthes polynenra formed one monophyletic clade, while Carpinus betulus and Carpinus laxiflora, respectively formed one monophyletic clade. -
A Critical Taxonomic Checklist of Carpinus and Ostrya (Coryloideae, Betulaceae)
European Journal of Taxonomy 375: 1–52 ISSN 2118-9773 https://doi.org/10.5852/ejt.2017.375 www.europeanjournaloftaxonomy.eu 2017 · Holstein N. & Weigend M. This work is licensed under a Creative Commons Attribution 3.0 License. Monograph No taxon left behind? – a critical taxonomic checklist of Carpinus and Ostrya (Coryloideae, Betulaceae) Norbert HOLSTEIN 1,* & Maximilian WEIGEND 2 1,2 Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Nordrhein-Westfalen, Germany. * Corresponding author: [email protected] 2 Email: [email protected] Abstract. Hornbeams (Carpinus) and hop-hornbeams (Ostrya) are trees or large shrubs from the northern hemisphere. Currently, 43 species of Carpinus (58 taxa including subdivisions) and 8 species of Ostrya (9 taxa including sudivisions) are recognized. These are based on 175 (plus 16 Latin basionyms of cultivars) and 21 legitimate basionyms, respectively. We present an updated checklist with publication details and type information for all accepted names and the vast majority of synonyms of Carpinus and Ostrya, including the designation of 54 lectotypes and two neotypes. Cultivars are listed if validly described under the rules of the ICN. Furthermore, we consider Carpinus hwai Hu & W.C.Cheng to be a synonym of Carpinus fargesiana var. ovalifolia (H.J.P.Winkl.) Holstein & Weigend comb. nov. During the course of our work, we found 30 legitimate basionyms of non-cultivars that have been consistently overlooked since their original descriptions, when compared with the latest checklists and fl oristic treatments. As regional fl oras are highly important for taxonomic practice, we investigated the number of overlooked names and found that 78 basionyms were omitted at least once in the eight regional treatments surveyed. -
Institute of Forestry • Belgrade Institut Za Šumarstvo • Beograd Sustainable Forestry Održivo Šumarstvo Corylus L
INSTITUTE OF FORESTRY • BELGRADE INSTITUT ZA ŠUMARSTVO • BEOGRAD SUSTAINABLE FORESTRY ODRŽIVO ŠUMARSTVO COLLECTION 81-82, 2020 ZBORNIK RADOVA 81-82, 2020 UDK 581.4:582.632.1=111 UDK 630*811:582.632.1=111 Original scientific paper CORYLUS L., ITS DIVERSITY, GEOGRAPHICAL DISTRIBUTION AND MORPHO-ANATOMICAL CHARACTERISTICS WITH SPECIAL REFERENCE TO THE SYSTEMATIC CLASSIFICATION AND PHYLOGENICS OF TURKISH HAZEL (CORYLUS COLURNA L.) Vlado ČOKEŠA1, Branka PAVLOVIĆ1, Snežana STAJIĆ1, Zoran PODUŠKA1, Đorđe JOVIĆ1 Abstract: Botanists have not yet reached an agreement regarding the number of species and lower taxa within the Corylus L. genus (hazel). According to different literature sources worldwide, 14, 16,18, or 20 species have been described within the genus. There are many synonyms in the scientific literature for the same species, which creates additional confusion in determining the total number of species within the genus. According to the WCSP (World Checklist of Selected Plant Families), (http://apps.kew.org/wcsp/synonomy.do?name_id=47827), 16 species have been recognized worldwide. According to this valid classification based on morpho-anatomical characteristics, all hazels are divided into two sections, and each section into two subsections. The paper presents the main differences between these groups and subgroups, as well as their distribution in the world. Special attention is given to the range of distribution, morpho-anatomical characteristics, systematic classification, and relatedness of Corylus colurna L. to other species. Keywords: Genus Corylus L. – classification and distribution of species, Corylus colurna L. – morpho-anatomical characteristics and phylogeny. 1Mr Vlado Čokeša, MSc Branka Pavlović, dr Snežana Stajić, dr Zoran Poduška, dr Đorđe Jović, Institute of Forestry, Belgrade, 3 Kneza Višeslava, Serbia 1 ROD CORYLUS L., DIVERZITET, GEOGRAFSKA SPECIJACIJA I MORFO-ANATOMSKE KARAKTERISTIKE SA POSEBNIM OSVRTOM NA SISTEMATSKO MESTO I FILOGENIJU MEČJE LESKE (CORYLUS COLURNA L.) Izvod: U pogledu broja vrsta i nižih taksona, u okviru roda Corylus L. -
Integrating Molecular Tools and Conventional Approaches in the OSU Hazelnut Breeding Program
Integrating Molecular Tools and Conventional Approaches in the OSU Hazelnut Breeding Program Shawn A. Mehlenbacher Dept. of Horticulture Oregon State University Workshop on the Genetics of Host-Parasite Interactions in Forestry Eugene, OR 31 July – 5 August 2011 Integrating Molecular Tools and Conventional Approaches in the OSU Hazelnut Breeding Program • Hazelnut, a model for the Betulaceae • Breeding program - the driving force • Eastern filbert blight resistance • DNA markers, marker-assisted selection, mapping • Microsatellite markers and uses • Map-based cloning (‘Gasaway’ EFB resistance gene) • Sequencing the hazelnut genome (and transcriptome) • HRM for marker-assisted selection • Quantitative EFB resistance Taxonomy of Hazelnut (Corylus) Angiosperms, Eudicots, Core Eudicots, Rosids Rosids: Order Fagales: from tolweb.org Family Betulaceae Betuloideae Betula = birch (35-50 species) Alnus = alder (35 species) Coryloideae Corylus = hazelnut, filbert (11-15 species) Ostrya = hophornbeam (10 species) Ostryopsis = hornbeam (2 species) There are 11 commonly recognized Corylus species, all native to the northern hemisphere. All species produce edible kernels, but only the European hazelnut is commercially important. Corylus species Leafy-husked shrubs C. avellana = European hazel Grown commercially C. americana = American hazel C. heterophylla = Siberian hazel Bristle-husked shrubs native to C. cornuta = beaked hazel North America C. californica = California hazel C. sieboldiana = Manchurian hazel Tree hazels C. colurna = Turkish tree -
100 Years of Change in the Flora of the Carolinas
ASTERACEAE 224 Zinnia Linnaeus 1759 (Zinnia) A genus of about 17 species, herbs, of sw. North America south to South America. References: Smith in FNA (2006c); Cronquist (1980)=SE. 1 Achenes wingless; receptacular bracts (chaff) toothed or erose on the lip..............................................................Z. peruviana 1 Achenes winged; receptacular bracts (chaff) with a differentiated fimbriate lip........................................................Z. violacea * Zinnia peruviana (Linnaeus) Linnaeus, Zinnia. Cp (GA, NC, SC): disturbed areas; rare (commonly cultivated), introduced from the New World tropics. May-November. [= FNA, K, SE; ? Z. pauciflora Linnaeus – S] * Zinnia violacea Cavanilles, Garden Zinnia. Cp (GA, NC, SC): disturbed areas; rare (commonly cultivated), introduced from the New World tropics. May-November. [= FNA, K; ? Z. elegans Jacquin – S, SE] BALSAMINACEAE A. Richard 1822 (Touch-me-not Family) A family of 2 genera and 850-1000 species, primarily of the Old World tropics. References: Fischer in Kubitzki (2004). Impatiens Linnaeus (Jewelweed, Touch-me-not, Snapweed, Balsam) A genus of 850-1000 species, herbs and subshrubs, primarily tropical and north temperate Old World. References: Fischer in Kubitzki (2004). 1 Corolla purple, pink, or white; plants 3-6 (-8) dm tall; stems puberulent or glabrous; [cultivated alien, rarely escaped]. 2 Sepal spur strongly recurved; stems puberulent..............................................................................................I. balsamina 2 Sepal spur slightly -
Patterns in the Assembly of Temperate Forests Around the Northern Hemisphere
Published online 7 October 2004 Patterns in the assembly of temperate forests around the Northern Hemisphere Michael J. Donoghueà and Stephen A. Smith Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06520, USA Recent studies of Northern Hemisphere biogeography have highlighted potentially significant differences between disjunction patterns in plants versus animals. To assess such differences, we compiled a larger sam- ple of relevant plant phylogenies from which disjunction patterns, ancestral areas and directions of move- ment could be inferred. We considered 66 plant clades with species variously endemic today to eastern Asia (EA), Europe (including southwestern Asia), eastern North America (ENA), and/or western North America (WNA). Within these clades we focused on 100 disjunctions among these major areas, for 33 of which absol- ute divergence times have also been inferred. Our analyses uphold the view that disjunctions between EA and ENA are exceptionally common in plants, apparently more so than in animals. Compared with animals, we find few disjunctions between EA and WNA, consistent with increased extinction in WNA or failure of some groups to colonize that region. Taken at face value, our data also support the view that many temperate forest plant groups originated and diversified within EA, followed by movement out of Asia at different times, but mostly during the last 30 Myr. This favours Beringia over a North Atlantic land bridge as the primary path between the Old World and the New World. Additional studies are needed, especially to evalu- ate the impacts of differential extinction on these patterns, to more confidently establish divergence times, and to assess the statistical significance of these findings. -
Supplementary Material
Xiang et al., Page S1 Supporting Information Fig. S1. Examples of the diversity of diaspore shapes in Fagales. Fig. S2. Cladogram of Fagales obtained from the 5-marker data set. Fig. S3. Chronogram of Fagales obtained from analysis of the 5-marker data set in BEAST. Fig. S4. Time scale of major fagalean divergence events during the past 105 Ma. Fig. S5. Confidence intervals of expected clade diversity (log scale) according to age of stem group. Fig. S6. Evolution of diaspores types in Fagales with BiSSE model. Fig. S7. Evolution of diaspores types in Fagales with Mk1 model. Fig. S8. Evolution of dispersal modes in Fagales with MuSSE model. Fig. S9. Evolution of dispersal modes in Fagales with Mk1 model. Fig. S10. Reconstruction of pollination syndromes in Fagales with BiSSE model. Fig. S11. Reconstruction of pollination syndromes in Fagales with Mk1 model. Fig. S12. Reconstruction of habitat shifts in Fagales with MuSSE model. Fig. S13. Reconstruction of habitat shifts in Fagales with Mk1 model. Fig. S14. Stratigraphy of fossil fagalean genera. Table S1 Genera of Fagales indicating the number of recognized and sampled species, nut sizes, habits, pollination modes, and geographic distributions. Table S2 List of taxa included in this study, sources of plant material, and GenBank accession numbers. Table S3 Primers used for amplification and sequencing in this study. Table S4 Fossil age constraints utilized in this study of Fagales diversification. Table S5 Fossil fruits reviewed in this study. Xiang et al., Page S2 Table S6 Statistics from the analyses of the various data sets. Table S7 Estimated ages for all families and genera of Fagales using BEAST.