1 Subsurface Hydrocarbon Degradation Strategies in Low- And

Total Page:16

File Type:pdf, Size:1020Kb

1 Subsurface Hydrocarbon Degradation Strategies in Low- And bioRxiv preprint doi: https://doi.org/10.1101/2021.08.26.457739; this version posted August 26, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. 1 Subsurface Hydrocarbon Degradation Strategies in Low- and High-Sulfate Coal Seam 2 Communities Identified with Activity-Based Metagenomics 3 4 Authors: Hannah Schweitzer1,2,†§**, Heidi Smith1,2,§, Elliott P. Barnhart1,3, Luke McKay1,4, 5 Robin Gerlach1,5,6, Alfred B. Cunningham1,5,7, Rex R. Malmstrom8, Danielle Goudeau8, and 6 Matthew W. Fields1,2,5** 7 8 Affiliations: 9 1Center for Biofilm Engineering, Montana State University, Bozeman, MT 59717, USA 10 2Department of Microbiology & Cell Biology, Montana State University, Bozeman, MT 11 59717, USA 12 3US Geological Survey, Wyoming-Montana Water Science Center, Helena, MT 59601,USA 13 4Department of Land Resources and Environmental Sciences, Montana State University, 14 Bozeman, MT 59717, USA 15 5Energy Research Institute, Montana State University, Bozeman, MT 59717, USA 16 6Department of Biological and Chemical Engineering, Montana State University, Bozeman, 17 MT 59717, USA 18 7Department of Civil Engineering, Montana State University, Bozeman, MT 59717, USA 19 8DOE Joint Genome Institute, Berkeley, CA 94720, USA 20 21 §Indicates both authors contributed equally to this work 22 †Now at UiT - The Arctic University of Norway, 9019 Tromsø, Norway 23 24 **Corresponding authors 25 H.D. Schweitzer, Post Doctoral Researcher 26 UiT - The Arctic University of Norway 27 The Norweigian College of Fishery Science 28 Muninbakken 21 29 9019 Tromsø, Norway 30 [email protected] 31 32 M.W. Fields, Professor 33 Montana State University 34 Center for Biofilm Engineering 35 366 EPS Building 36 Bozeman, MT 59717, USA 37 [email protected] 1 bioRxiv preprint doi: https://doi.org/10.1101/2021.08.26.457739; this version posted August 26, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. 38 One Sentence Summary: 39 Identifying hydrocarbon degradation strategies across redox gradients via metagenomic 40 analysis of environmental and translationally active (BONCAT-FACS) samples from 41 subsurface coal beds. 42 43 44 45 46 Abstract 47 Environmentally relevant metagenomes and BONCAT-FACS derived translationally active 48 metagenomes from Powder River Basin coal seams were investigated to elucidate potential 49 genes and functional groups involved in hydrocarbon degradation to methane in coal seams 50 with high- and low-sulfate levels. An advanced subsurface environmental sampler allowed the 51 establishment of coal-associated microbial communities under in situ conditions for 52 metagenomic analyses from environmental and translationally active populations. 53 Metagenomic sequencing demonstrated that biosurfactants, aerobic dioxygenases, and 54 anaerobic phenol degradation pathways were present in active populations across the sampled 55 redox gradient. In particular, results suggested the importance of anaerobic degradation 56 pathways under high-sulfate conditions with an emphasis on fumarate addition. Under low- 57 sulfate conditions, a mixture of both aerobic and anaerobic pathways were observed but with 58 a predominance of aerobic dioxygenases. The putative low-molecular weight biosurfactant, 59 lichysein, appeared to play a more important role compared to rhamnolipids. The novel 60 methods used in this study—subsurface environmental samplers in combination with 61 metagenomic sequencing of both translationally active metagenomes and environmental 62 genomes—offer a deeper and environmentally relevant perspective on community genetic 63 potential from coal seams poised at different redox potentials broadening the understanding of 64 degradation strategies for subsurface carbon. 65 2 bioRxiv preprint doi: https://doi.org/10.1101/2021.08.26.457739; this version posted August 26, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. 66 Introduction 67 The terrestrial subsurface contains the majority of Earth’s organic carbon 68 (~90%)1, and much of the carbon can be converted to methane under anaerobic 69 conditions through biogasification (i.e., biological decomposition of organic matter 70 into methane and secondary gases). Biogasification can take place in coal, black shale, 71 and petroleum reservoirs and is estimated to account for over 20% of the world’s 72 natural gas resources2. Factors influencing biogasification include coal rank, redox 73 conditions (e.g., presence or absence of oxygen and oxyanions), and the genetic 74 potential and activity of the microbial community. Coal is a heterogeneous and highly 75 complex hydrocarbon consisting of polycyclic aromatic hydrocarbons, alkylated 76 benzenes, and long and short chain n-alkanes3, and despite the recalcitrant nature of 77 coal, degradation by microbial consortia has been shown in a variety of coal 78 formations4. It is generally accepted that shallower coal beds that contain sulfate do 79 not produce methane because sulfate-reducing bacteria (SRB) outcompete 5,6 80 methanogens for substrates (e.g., acetate, CO2 and hydrogen) . In methanogenic coal 81 beds6,7, hydrogenotrophic and acetoclastic methanogens are commonly identified, 82 including different types of acetoclastic methanogens (e.g., Methanothrix, 83 Methanosarcina), which have distinct pathways for acetate utilization. It remains 84 unknown what type of methanogenesis predominates in situ for different coal seams 85 under different physicochemical conditions8,9. 86 New coal degradation pathways are still being discovered and the involvement 87 of different pathways in the turnover of refractory carbon under various redox 88 conditions remains largely unresolved10–12. The majority of coal degradation research 89 has focused on fumarate addition, while less is known about alternate coal degradation 90 strategies such as phenol degradation by carboxylation and hydroxylation of alkanes, 3 bioRxiv preprint doi: https://doi.org/10.1101/2021.08.26.457739; this version posted August 26, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. 91 benzene and ethylbenzene13,14. The fumarate addition pathway involves the activation 92 of n-alkanes by the addition of fumarate via the double bonds at the terminal or sub 93 terminal carbon13,15–19. Several fumarate addition genes (e.g., ass-alkylsuccinate 94 synthase for alkanes, bss-benzylsuccinate synthase for alkylbenzenes, and nms- 95 naphylmethylsuccinate synthase) are often used as catabolic biomarkers for anaerobic 96 hydrocarbon degradation15–17. These genes have been characterized from many 97 subsurface hydrocarbon-containing environments,13,16,20–25 but the importance under 98 different redox conditions is still unclear. Carboxylation and hydroxylation strategies 99 are less well documented mechanisms of anaerobic degradation, although, in recent 100 years work has begun to suggest importance in anaerobic hydrocarbon 101 degradation14,18,26,27, yet how these strategies vary across redox transition zones in situ 102 and detecting organisms responsible for degradation warrants further investigation. 103 While biosurfactants have not been identified in situ in coal seams and are not 104 considered a necessary hydrocarbon degradation gene, previous laboratory-based 105 research demonstrates a potentially important role of these compounds in decreasing 106 the hydrophobicity of the solid coal surface, allowing for cellular and/or protein 107 interactions at the coal surface28. Biosurfactant-producing microorganisms likely play 108 direct and indirect roles in hydrocarbon degradation28–31. The accumulation of the 109 esterase hydrolase enzyme has been correlated to biosurfactant production and is often 110 used as a biomarker for biosurfactant production32. Biosurfactants are routinely 111 observed in environments that consist of complex hydrocarbons and are therefore 112 hypothesized to be an interdependent, complex, and coordinated means of increasing 113 coal bioavailability. However, studies that have demonstrated active biosurfactant- 114 producing microorganisms in coal environments are lacking. 4 bioRxiv preprint doi: https://doi.org/10.1101/2021.08.26.457739; this version posted August 26, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. 115 Aerobic hydrocarbon degradation is the most documented form of hydrocarbon 116 degradation via the aerobic activation of alkanes with dioxygenase enzymes that use 117 oxygen as an electron acceptor and as a reactant in hydroxylation33. Aerobic 118 hydrocarbon degradation in coal environments is often disputed due to the uncertainty 119 of the presence of oxygen and more research
Recommended publications
  • Novel Bacterial Diversity in an Anchialine Blue Hole On
    NOVEL BACTERIAL DIVERSITY IN AN ANCHIALINE BLUE HOLE ON ABACO ISLAND, BAHAMAS A Thesis by BRETT CHRISTOPHER GONZALEZ Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE December 2010 Major Subject: Wildlife and Fisheries Sciences NOVEL BACTERIAL DIVERSITY IN AN ANCHIALINE BLUE HOLE ON ABACO ISLAND, BAHAMAS A Thesis by BRETT CHRISTOPHER GONZALEZ Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Approved by: Chair of Committee, Thomas Iliffe Committee Members, Robin Brinkmeyer Daniel Thornton Head of Department, Thomas Lacher, Jr. December 2010 Major Subject: Wildlife and Fisheries Sciences iii ABSTRACT Novel Bacterial Diversity in an Anchialine Blue Hole on Abaco Island, Bahamas. (December 2010) Brett Christopher Gonzalez, B.S., Texas A&M University at Galveston Chair of Advisory Committee: Dr. Thomas Iliffe Anchialine blue holes found in the interior of the Bahama Islands have distinct fresh and salt water layers, with vertical mixing, and dysoxic to anoxic conditions below the halocline. Scientific cave diving exploration and microbiological investigations of Cherokee Road Extension Blue Hole on Abaco Island have provided detailed information about the water chemistry of the vertically stratified water column. Hydrologic parameters measured suggest that circulation of seawater is occurring deep within the platform. Dense microbial assemblages which occurred as mats on the cave walls below the halocline were investigated through construction of 16S rRNA clone libraries, finding representatives across several bacterial lineages including Chlorobium and OP8.
    [Show full text]
  • The University of Oklahoma Graduate College
    THE UNIVERSITY OF OKLAHOMA GRADUATE COLLEGE ISOTOPIC FRACTIONATION AND ANAEROBIC PHYSIOLOGY OF n-ALKANE DEGRADATION BY BACTERIAL ISOLATES AND MIXED COMMUNITIES A DISSERTATION SUBMITTED TO THE GRADUATE FACULTY in partial fulfillment of the requirements for the Degree of DOCTOR OF PHILOSOPHY By BRANDON E. L. MORRIS Norman, OK 2011 ISOTOPIC FRACTIONATION AND ANAEROBIC PHYSIOLOGY OF n-ALKANE DEGRADATION BY BACTERIAL ISOLATES AND MIXED COMMUNITIES A DISSERTATION APPROVED FOR THE DEPARTMENT OF BOTANY AND MICROBIOLOGY BY ____________________________ Dr. Joseph M. Suflita, Chair ____________________________ Dr. Michael J. McInerney ____________________________ Dr. Paul A. Lawson ____________________________ Dr. Tyrrell Conway ____________________________ Dr. Paul F. Cook © Copyright by BRANDON E. L. MORRIS, 2011 All Rights Reserved. Acknowledgements First and foremost, I would like to gratefully acknowledge the guidance of my advisor Dr. Joseph Suflita and his role in my development as a scientific researcher. I hereby recognize my committee members, Dr. Michael McInerney, Dr. Paul Cook, Dr. Tyrrell Conway, and Dr. Paul Lawson for their support and thoughtful discussions throughout my graduate career at the University of Oklahoma. All of these admirable researchers were principle in helping me develop scientific judgment and the ability to carry out meaningful research. My colleagues in the Suflita lab past and present, including Dr. Lisa Gieg, Dr. Victoria Parisi, Dr. Irene Davidova, Dr. Deniz Aktas, Carolina Berdugo, Margarita Mendivelso, and Chris Lyles deserve recognition for their support and contribution to my skill set, including the ability to investigate anaerobic hydrocarbon degradation, cultivate anaerobic organisms, and develop analytical methods. Roughly two years of my graduate career was spent in collaboration with Dr.
    [Show full text]
  • Distribution of Sulfate-Reducing Communities from Estuarine to Marine Bay Waters Yannick Colin, M
    Distribution of Sulfate-Reducing Communities from Estuarine to Marine Bay Waters Yannick Colin, M. Goñi-Urriza, C. Gassie, E. Carlier, M. Monperrus, R. Guyoneaud To cite this version: Yannick Colin, M. Goñi-Urriza, C. Gassie, E. Carlier, M. Monperrus, et al.. Distribution of Sulfate- Reducing Communities from Estuarine to Marine Bay Waters. Microbial Ecology, Springer Verlag, 2017, 73 (1), pp.39-49. 10.1007/s00248-016-0842-5. hal-01499135 HAL Id: hal-01499135 https://hal.archives-ouvertes.fr/hal-01499135 Submitted on 26 Sep 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution - ShareAlike| 4.0 International License Microb Ecol (2017) 73:39–49 DOI 10.1007/s00248-016-0842-5 MICROBIOLOGY OF AQUATIC SYSTEMS Distribution of Sulfate-Reducing Communities from Estuarine to Marine Bay Waters Yannick Colin 1,2 & Marisol Goñi-Urriza1 & Claire Gassie1 & Elisabeth Carlier 1 & Mathilde Monperrus3 & Rémy Guyoneaud1 Received: 23 May 2016 /Accepted: 17 August 2016 /Published online: 31 August 2016 # Springer Science+Business Media New York 2016 Abstract Estuaries are highly dynamic ecosystems in which gradient. The concentration of cultured sulfidogenic microor- freshwater and seawater mix together.
    [Show full text]
  • Impacts of Desulfobacterales and Chromatiales on Sulfate Reduction in The
    bioRxiv preprint doi: https://doi.org/10.1101/2020.08.16.252635; this version posted November 6, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Impacts of Desulfobacterales and Chromatiales on sulfate reduction in the 2 subtropical mangrove ecosystem as revealed by SMDB analysis 3 Shuming Mo 1, †, Jinhui Li 1, †, Bin Li 2, Ran Yu 1, Shiqing Nie 1, Zufan Zhang 1, Jianping 4 Liao 3, Qiong Jiang 1, Bing Yan 2, *, and Chengjian Jiang 1, 2 * 5 1 State Key Laboratory for Conservation and Utilization of Subtropical Agro- 6 bioresources, Guangxi Research Center for Microbial and Enzyme Engineering 7 Technology, College of Life Science and Technology, Guangxi University, Nanning 8 530004, China. 9 2 Guangxi Key Lab of Mangrove Conservation and Utilization, Guangxi Mangrove 10 Research Center, Guangxi Academy of Sciences, Beihai 536000, China. 11 3 School of Computer and Information Engineering, Nanning Normal University, 12 Nanning 530299, China. 13 † These authors contributed equally to this work. 14 *: Corresponding Author: 15 Tel: +86-771-3270736; Fax: +86-771-3237873 16 Email: [email protected] (CJ); [email protected] (BY) 17 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.08.16.252635; this version posted November 6, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.
    [Show full text]
  • High Diversity of Anaerobic Alkane-Degrading Microbial Communities in Marine Seep Sediments Based on (1-Methylalkyl)Succinate Synthase Genes
    ORIGINAL RESEARCH published: 07 January 2016 doi: 10.3389/fmicb.2015.01511 High Diversity of Anaerobic Alkane-Degrading Microbial Communities in Marine Seep Sediments Based on (1-methylalkyl)succinate Synthase Genes Marion H. Stagars1,S.EmilRuff1,2† , Rudolf Amann1 and Katrin Knittel1* 1 Department of Molecular Ecology, Max Planck Institute for Marine Microbiology, Bremen, Germany, 2 HGF MPG Joint Research Group for Deep-Sea Ecology and Technology, Max Planck Institute for Marine Microbiology, Bremen, Germany Edited by: Alkanes comprise a substantial fraction of crude oil and are prevalent at marine seeps. Hans H. Richnow, These environments are typically anoxic and host diverse microbial communities that Helmholtz Centre for Environmental Research, Germany grow on alkanes. The most widely distributed mechanism of anaerobic alkane activation Reviewed by: is the addition of alkanes to fumarate by (1-methylalkyl)succinate synthase (Mas). Here Beth Orcutt, we studied the diversity of MasD, the catalytic subunit of the enzyme, in 12 marine Bigelow Laboratory for Ocean sediments sampled at seven seeps. We aimed to identify cosmopolitan species as well Sciences, USA Zhidan Liu, as to identify factors structuring the alkane-degrading community. Using next generation China Agricultural University, China sequencing we obtained a total of 420 MasD species-level operational taxonomic units *Correspondence: (OTU0.96) at 96% amino acid identity. Diversity analysis shows a high richness and Katrin Knittel [email protected] evenness of alkane-degrading bacteria. Sites with similar hydrocarbon composition harbored similar alkane-degrading communities based on MasD genes; the MasD †Present address: community structure is clearly driven by the hydrocarbon source available at the various S.
    [Show full text]
  • Microbial Processes in Oil Fields: Culprits, Problems, and Opportunities
    Provided for non-commercial research and educational use only. Not for reproduction, distribution or commercial use. This chapter was originally published in the book Advances in Applied Microbiology, Vol 66, published by Elsevier, and the attached copy is provided by Elsevier for the author's benefit and for the benefit of the author's institution, for non-commercial research and educational use including without limitation use in instruction at your institution, sending it to specific colleagues who know you, and providing a copy to your institution’s administrator. All other uses, reproduction and distribution, including without limitation commercial reprints, selling or licensing copies or access, or posting on open internet sites, your personal or institution’s website or repository, are prohibited. For exceptions, permission may be sought for such use through Elsevier's permissions site at: http://www.elsevier.com/locate/permissionusematerial From: Noha Youssef, Mostafa S. Elshahed, and Michael J. McInerney, Microbial Processes in Oil Fields: Culprits, Problems, and Opportunities. In Allen I. Laskin, Sima Sariaslani, and Geoffrey M. Gadd, editors: Advances in Applied Microbiology, Vol 66, Burlington: Academic Press, 2009, pp. 141-251. ISBN: 978-0-12-374788-4 © Copyright 2009 Elsevier Inc. Academic Press. Author's personal copy CHAPTER 6 Microbial Processes in Oil Fields: Culprits, Problems, and Opportunities Noha Youssef, Mostafa S. Elshahed, and Michael J. McInerney1 Contents I. Introduction 142 II. Factors Governing Oil Recovery 144 III. Microbial Ecology of Oil Reservoirs 147 A. Origins of microorganisms recovered from oil reservoirs 147 B. Microorganisms isolated from oil reservoirs 148 C. Culture-independent analysis of microbial communities in oil reservoirs 155 IV.
    [Show full text]
  • Compile.Xlsx
    Silva OTU GS1A % PS1B % Taxonomy_Silva_132 otu0001 0 0 2 0.05 Bacteria;Acidobacteria;Acidobacteria_un;Acidobacteria_un;Acidobacteria_un;Acidobacteria_un; otu0002 0 0 1 0.02 Bacteria;Acidobacteria;Acidobacteriia;Solibacterales;Solibacteraceae_(Subgroup_3);PAUC26f; otu0003 49 0.82 5 0.12 Bacteria;Acidobacteria;Aminicenantia;Aminicenantales;Aminicenantales_fa;Aminicenantales_ge; otu0004 1 0.02 7 0.17 Bacteria;Acidobacteria;AT-s3-28;AT-s3-28_or;AT-s3-28_fa;AT-s3-28_ge; otu0005 1 0.02 0 0 Bacteria;Acidobacteria;Blastocatellia_(Subgroup_4);Blastocatellales;Blastocatellaceae;Blastocatella; otu0006 0 0 2 0.05 Bacteria;Acidobacteria;Holophagae;Subgroup_7;Subgroup_7_fa;Subgroup_7_ge; otu0007 1 0.02 0 0 Bacteria;Acidobacteria;ODP1230B23.02;ODP1230B23.02_or;ODP1230B23.02_fa;ODP1230B23.02_ge; otu0008 1 0.02 15 0.36 Bacteria;Acidobacteria;Subgroup_17;Subgroup_17_or;Subgroup_17_fa;Subgroup_17_ge; otu0009 9 0.15 41 0.99 Bacteria;Acidobacteria;Subgroup_21;Subgroup_21_or;Subgroup_21_fa;Subgroup_21_ge; otu0010 5 0.08 50 1.21 Bacteria;Acidobacteria;Subgroup_22;Subgroup_22_or;Subgroup_22_fa;Subgroup_22_ge; otu0011 2 0.03 11 0.27 Bacteria;Acidobacteria;Subgroup_26;Subgroup_26_or;Subgroup_26_fa;Subgroup_26_ge; otu0012 0 0 1 0.02 Bacteria;Acidobacteria;Subgroup_5;Subgroup_5_or;Subgroup_5_fa;Subgroup_5_ge; otu0013 1 0.02 13 0.32 Bacteria;Acidobacteria;Subgroup_6;Subgroup_6_or;Subgroup_6_fa;Subgroup_6_ge; otu0014 0 0 1 0.02 Bacteria;Acidobacteria;Subgroup_6;Subgroup_6_un;Subgroup_6_un;Subgroup_6_un; otu0015 8 0.13 30 0.73 Bacteria;Acidobacteria;Subgroup_9;Subgroup_9_or;Subgroup_9_fa;Subgroup_9_ge;
    [Show full text]
  • Copyright © 2018 by Boryoung Shin
    HYDROCARBON DEGRADATION UNDER CONTRASTING REDOX CONDITIONS IN SHALLOW COASTAL SEDIMENTS OF THE NORTHERN GULF OF MEXICO A Dissertation Presented to The Academic Faculty by Boryoung Shin In Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Georgia Institute of Technology Georgia Institute of Technology May 2018 COPYRIGHT © 2018 BY BORYOUNG SHIN HYDROCARBON DEGRADATION UNDER CONTRASTING REDOX CONDITIONS IN SHALLOW COASTAL SEDIMENTS OF THE NORTHERN GULF OF MEXICO Approved by: Dr. Joel E. Kostka, Advisor Dr. Kuk-Jeong Chin School of Biologial Sciences Department of Biology Georgia Institute of Technology Georgia State University Dr. Martial Taillefert Dr. Karsten Zengler School of Earth and Atmospheric Sciences Department of Pediatrics Georgia Institute of Technology University of California, San Diego Dr. Thomas DiChristina School of Biological Sciences Georgia Institute of Technology Date Approved: 03/15/2018 ACKNOWLEDGEMENTS I would like to express my sincere gratitude to my advisor Prof. Joel E Kostka for the continuous support of my Ph.D studies and related research, for his patience, and immense knowledge. His guidance greatly helped me during the research and writing of this thesis. Besides my advisor, I would like to thank the rest of my thesis committee: Prof. Martial Taillefert, Prof. Thomas DiChristina, Prof. Kuk-Jeong Chin, and Prof. Karsten Zengler for their insightful comments and encouragement, but also for the hard questions which provided me with incentive to widen my research perspectives. I thank my fellow labmates for the stimulating discussions and for all of the fun we had in the last six years. Last but not the least, I would like to greatly thank my family: my parents and to my brother for supporting me spiritually throughout my whole Ph.D period and my life in general.
    [Show full text]
  • Core Sulphate-Reducing Microorganisms in Metal-Removing Semi-Passive Biochemical Reactors and the Co-Occurrence of Methanogens
    microorganisms Article Core Sulphate-Reducing Microorganisms in Metal-Removing Semi-Passive Biochemical Reactors and the Co-Occurrence of Methanogens Maryam Rezadehbashi and Susan A. Baldwin * Chemical and Biological Engineering, University of British Columbia, 2360 East Mall, Vancouver, BC V6T 1Z3, Canada; [email protected] * Correspondence: [email protected]; Tel.: +1-604-822-1973 Received: 2 January 2018; Accepted: 17 February 2018; Published: 23 February 2018 Abstract: Biochemical reactors (BCRs) based on the stimulation of sulphate-reducing microorganisms (SRM) are emerging semi-passive remediation technologies for treatment of mine-influenced water. Their successful removal of metals and sulphate has been proven at the pilot-scale, but little is known about the types of SRM that grow in these systems and whether they are diverse or restricted to particular phylogenetic or taxonomic groups. A phylogenetic study of four established pilot-scale BCRs on three different mine sites compared the diversity of SRM growing in them. The mine sites were geographically distant from each other, nevertheless the BCRs selected for similar SRM types. Clostridia SRM related to Desulfosporosinus spp. known to be tolerant to high concentrations of copper were members of the core microbial community. Members of the SRM family Desulfobacteraceae were dominant, particularly those related to Desulfatirhabdium butyrativorans. Methanogens were dominant archaea and possibly were present at higher relative abundances than SRM in some BCRs. Both hydrogenotrophic and acetoclastic types were present. There were no strong negative or positive co-occurrence correlations of methanogen and SRM taxa. Knowing which SRM inhabit successfully operating BCRs allows practitioners to target these phylogenetic groups when selecting inoculum for future operations.
    [Show full text]
  • Syntrophics Bridging the Gap of Methanogenesis in the Jharia Coal
    g in Geno nin m i ic M s ta & a P Jha et al., J Data Mining Genomics Proteomics 2015, 6:3 D r f o Journal of o t e l DOI: 10.4172/2153-0602.1000177 o a m n r i c u s o J ISSN: 2153-0602 Data Mining in Genomics & Proteomics Short Communication Open Access Syntrophics Bridging the Gap of Methanogenesis in the Jharia Coal Bed Basin Priyanka Jha1,5*, Sujit Ghosh1,2 $, Kunal Mukhopadhyay1, Ashish Sachan1 and Ambarish S Vidyarthi 3,4 1Department of Bio-Engineering, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India– 835215 2Department of Botany, J.K. College, Purulia, West Bengal, India– 723101 3Department of Biotechnology, Birla Institute of Technology, Mesra, Patna Extension, Bihar, India– 800014 4Institute of Engineering and Technology, Sitapur Road, Lucknow, India– 226021 5Discipline of Microbiology, School of Life Sciences, University of KwaZulu Natal, Pietermaritzburg Campus, Pietermaritzburg– 3201, South Africa $ - Authors contributed equally Abstract The bituminous and sub-bituminous rank of coals is being produced from the Jharia basin of Jharkhand which is the largest producer of CBM in India. Although there have been many reports on methanogenesis from Jharia, the present study deals with the special emphasis on the syntrophic microbes which can act as catalyst for the hydrogenotrophic methanogenesis. Using the metagenomic approach followed by 454 pyro sequencing, the presence of syntrophic community has been deciphered for the first time from the formation water samples of Jharia coal bed basin. The taxonomic assignment of unassembled clean metagenomic sequences was performed using BLASTX against the GenBank database through MG-RAST server.
    [Show full text]
  • Thermophiles and Thermozymes
    Thermophiles and Thermozymes Edited by María-Isabel González-Siso Printed Edition of the Special Issue Published in Microorganisms www.mdpi.com/journal/microorganisms Thermophiles and Thermozymes Thermophiles and Thermozymes Special Issue Editor Mar´ıa-Isabel Gonz´alez-Siso MDPI • Basel • Beijing • Wuhan • Barcelona • Belgrade Special Issue Editor Mar´ıa-Isabel Gonzalez-Siso´ Universidade da Coruna˜ Spain Editorial Office MDPI St. Alban-Anlage 66 4052 Basel, Switzerland This is a reprint of articles from the Special Issue published online in the open access journal Microorganisms (ISSN 2076-2607) from 2018 to 2019 (available at: https://www.mdpi.com/journal/ microorganisms/special issues/thermophiles) For citation purposes, cite each article independently as indicated on the article page online and as indicated below: LastName, A.A.; LastName, B.B.; LastName, C.C. Article Title. Journal Name Year, Article Number, Page Range. ISBN 978-3-03897-816-9 (Pbk) ISBN 978-3-03897-817-6 (PDF) c 2019 by the authors. Articles in this book are Open Access and distributed under the Creative Commons Attribution (CC BY) license, which allows users to download, copy and build upon published articles, as long as the author and publisher are properly credited, which ensures maximum dissemination and a wider impact of our publications. The book as a whole is distributed by MDPI under the terms and conditions of the Creative Commons license CC BY-NC-ND. Contents About the Special Issue Editor ...................................... vii Mar´ıa-Isabel Gonz´alez-Siso Editorial for the Special Issue: Thermophiles and Thermozymes Reprinted from: Microorganisms 2019, 7, 62, doi:10.3390/microorganisms7030062 ........
    [Show full text]
  • Bacterial Involvements in Ulcerative Colitis: Molecular and Microbiological Studies
    BACTERIAL INVOLVEMENTS IN ULCERATIVE COLITIS: MOLECULAR AND MICROBIOLOGICAL STUDIES Samia Alkhalil A thesis submitted in partial fulfilment of the requirements for the award of the degree of Doctor of Philosophy of the University of Portsmouth Institute of Biomedical and biomolecular Sciences School of Pharmacy and Biomedical Sciences October 2017 AUTHORS’ DECLARATION I declare that whilst registered as a candidate for the degree of Doctor of Philosophy at University of Portsmouth, I have not been registered as a candidate for any other research award. The results and conclusions embodied in this thesis are the work of the named candidate and have not been submitted for any other academic award. Samia Alkhalil I ABSTRACT Inflammatory bowel disease (IBD) is a series of disorders characterised by chronic intestinal inflammation, with the principal examples being Crohn’s Disease (CD) and ulcerative colitis (UC). A paradigm of these disorders is that the composition of the colon microbiota changes, with increases in bacterial numbers and a reduction in diversity, particularly within the Firmicutes. Sulfate reducing bacteria (SRB) are believed to be involved in the etiology of these disorders, because they produce hydrogen sulfide which may be a causative agent of epithelial inflammation, although little supportive evidence exists for this possibility. The purpose of this study was (1) to detect and compare the relative levels of gut bacterial populations among patients suffering from ulcerative colitis and healthy individuals using PCR-DGGE, sequence analysis and biochip technology; (2) develop a rapid detection method for SRBs and (3) determine the susceptibility of Desulfovibrio indonesiensis in biofilms to Manuka honey with and without antibiotic treatment.
    [Show full text]