Distribution of Sulfate-Reducing Communities from Estuarine to Marine Bay Waters Yannick Colin, M
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Heavy Metal and Sulfate Tolerance Bacteria Isolated from the Mine Drainage and Sediment of Igun, Osun State, Nigeria
IOSR Journal of Environmental Science, Toxicology and Food Technology (IOSR-JESTFT) e-ISSN: 2319-2402,p- ISSN: 2319-2399.Volume 15, Issue 3 Ser. I (March 2021), PP 36-55 www.iosrjournals.org Heavy Metal and Sulfate Tolerance Bacteria Isolated from the Mine Drainage and Sediment of Igun, Osun State, Nigeria Aransiola M. N.1 Olusola B. O.2 and Fagade O. E.1 1(Department of Microbiology, Faculty of Science, University of Ibadan, Ibadan, Nigeria) 2(Department of Health Sciences, College of Health Professions, Walden University, Minneapolis, USA) Abstract Background: Mine Drainages (MD) are polluted water associated with mining activities which may contain heavy metals and other chemicals which impact biotic and abiotic factors of such environment. Igun area is known for abandoned mine site with MD. Therefore, the objectives of this study are to determine the physicochemical and microbiological properties of an abandoned mine water and sediment at Igun, and evaluate the heavy metals and sulfate ion tolerance of the indigenous bacteria. Materials and Methods: The Igun MD was divided into grids (4x4 m2) and from each grid, water and sediment sample s were purposively collected in February and October of 2014 to 2016. The chemical analyses of the samples were carried out using APHA methods and compared with the NESREA’s recommendation. Microbial analyses of the samples were done using cultural, phenotypic and genomic characteristics to determine the Aerobic Bacteria (AB) and Sulfate Reducing Bacteria (SRB) within the Igun MD. The isolated bacteria were screened for heavy metal and sulfate tolerance using standard methods. Data were analysed using descriptive statistics. -
Supplementary Information for Microbial Electrochemical Systems Outperform Fixed-Bed Biofilters for Cleaning-Up Urban Wastewater
Electronic Supplementary Material (ESI) for Environmental Science: Water Research & Technology. This journal is © The Royal Society of Chemistry 2016 Supplementary information for Microbial Electrochemical Systems outperform fixed-bed biofilters for cleaning-up urban wastewater AUTHORS: Arantxa Aguirre-Sierraa, Tristano Bacchetti De Gregorisb, Antonio Berná, Juan José Salasc, Carlos Aragónc, Abraham Esteve-Núñezab* Fig.1S Total nitrogen (A), ammonia (B) and nitrate (C) influent and effluent average values of the coke and the gravel biofilters. Error bars represent 95% confidence interval. Fig. 2S Influent and effluent COD (A) and BOD5 (B) average values of the hybrid biofilter and the hybrid polarized biofilter. Error bars represent 95% confidence interval. Fig. 3S Redox potential measured in the coke and the gravel biofilters Fig. 4S Rarefaction curves calculated for each sample based on the OTU computations. Fig. 5S Correspondence analysis biplot of classes’ distribution from pyrosequencing analysis. Fig. 6S. Relative abundance of classes of the category ‘other’ at class level. Table 1S Influent pre-treated wastewater and effluents characteristics. Averages ± SD HRT (d) 4.0 3.4 1.7 0.8 0.5 Influent COD (mg L-1) 246 ± 114 330 ± 107 457 ± 92 318 ± 143 393 ± 101 -1 BOD5 (mg L ) 136 ± 86 235 ± 36 268 ± 81 176 ± 127 213 ± 112 TN (mg L-1) 45.0 ± 17.4 60.6 ± 7.5 57.7 ± 3.9 43.7 ± 16.5 54.8 ± 10.1 -1 NH4-N (mg L ) 32.7 ± 18.7 51.6 ± 6.5 49.0 ± 2.3 36.6 ± 15.9 47.0 ± 8.8 -1 NO3-N (mg L ) 2.3 ± 3.6 1.0 ± 1.6 0.8 ± 0.6 1.5 ± 2.0 0.9 ± 0.6 TP (mg -
University of Oklahoma Graduate College Microbial Ecology of Coastal Ecosystems: Investigations of the Genetic Potential For
UNIVERSITY OF OKLAHOMA GRADUATE COLLEGE MICROBIAL ECOLOGY OF COASTAL ECOSYSTEMS: INVESTIGATIONS OF THE GENETIC POTENTIAL FOR ANAEROBIC HYDROCARBON TRANSFORMATION AND THE RESPONSE TO HYDROCARBON EXPOSURE A DISSERTATION SUBMITTED TO THE GRADUATE FACULTY in partial fulfillment of the requirements of the Degree of DOCTOR OF PHILOSOPHY By JAMIE M. JOHNSON DUFFNER Norman, Oklahoma 2017 MICROBIAL ECOLOGY OF COASTAL ECOSYSTEMS: INVESTIGATIONS OF THE GENETIC POTENTIAL FOR ANAEROBIC HYDROCARBON TRANSFORMATION AND THE RESPONSE TO HYDROCARBON EXPOSURE A DISSERTATION APPROVED FOR THE DEPARTMENT OF MICROBIOLOGY AND PLANT BIOLOGY BY ______________________________ Dr. Amy V. Callaghan, Chair ______________________________ Dr. Lee R. Krumholz ______________________________ Dr. Michael J. McInerney ______________________________ Dr. Mark A. Nanny ______________________________ Dr. Boris Wawrik © Copyright by JAMIE M. JOHNSON DUFFNER 2017 All Rights Reserved. This dissertation is dedicated to my husband, Derick, for his unwavering love and support. Acknowledgements I would like to thank my advisor, Dr. Amy Callaghan, for her guidance and support during my time as a graduate student, as well as for her commitment to my success as a scientist. I would also like to thank the members of my doctoral committee for their guidance over the years, particularly that of Dr. Boris Wawrik. I would like to also thank Drs. Josh Cooper, Chris Lyles, and Chris Marks for their friendship and support during my time at OU, both in and outside the lab. iv Table of Contents -
Phylogenetic and Functional Characterization of Symbiotic Bacteria in Gutless Marine Worms (Annelida, Oligochaeta)
Phylogenetic and functional characterization of symbiotic bacteria in gutless marine worms (Annelida, Oligochaeta) Dissertation zur Erlangung des Grades eines Doktors der Naturwissenschaften -Dr. rer. nat.- dem Fachbereich Biologie/Chemie der Universität Bremen vorgelegt von Anna Blazejak Oktober 2005 Die vorliegende Arbeit wurde in der Zeit vom März 2002 bis Oktober 2005 am Max-Planck-Institut für Marine Mikrobiologie in Bremen angefertigt. 1. Gutachter: Prof. Dr. Rudolf Amann 2. Gutachter: Prof. Dr. Ulrich Fischer Tag des Promotionskolloquiums: 22. November 2005 Contents Summary ………………………………………………………………………………….… 1 Zusammenfassung ………………………………………………………………………… 2 Part I: Combined Presentation of Results A Introduction .…………………………………………………………………… 4 1 Definition and characteristics of symbiosis ...……………………………………. 4 2 Chemoautotrophic symbioses ..…………………………………………………… 6 2.1 Habitats of chemoautotrophic symbioses .………………………………… 8 2.2 Diversity of hosts harboring chemoautotrophic bacteria ………………… 10 2.2.1 Phylogenetic diversity of chemoautotrophic symbionts …………… 11 3 Symbiotic associations in gutless oligochaetes ………………………………… 13 3.1 Biogeography and phylogeny of the hosts …..……………………………. 13 3.2 The environment …..…………………………………………………………. 14 3.3 Structure of the symbiosis ………..…………………………………………. 16 3.4 Transmission of the symbionts ………..……………………………………. 18 3.5 Molecular characterization of the symbionts …..………………………….. 19 3.6 Function of the symbionts in gutless oligochaetes ..…..…………………. 20 4 Goals of this thesis …….………………………………………………………….. -
An Investigation Into the Suitability of Sulfate-Reducing Bacteria As Models for Martian Forward Contamination" (2018)
University of Arkansas, Fayetteville ScholarWorks@UARK Theses and Dissertations 5-2018 An Investigation into the Suitability of Sulfate- Reducing Bacteria as Models for Martian Forward Contamination Maxwell M. W. Silver University of Arkansas, Fayetteville Follow this and additional works at: http://scholarworks.uark.edu/etd Part of the Physical Processes Commons, Stars, Interstellar Medium and the Galaxy Commons, and the The unS and the Solar System Commons Recommended Citation Silver, Maxwell M. W., "An Investigation into the Suitability of Sulfate-Reducing Bacteria as Models for Martian Forward Contamination" (2018). Theses and Dissertations. 2828. http://scholarworks.uark.edu/etd/2828 This Thesis is brought to you for free and open access by ScholarWorks@UARK. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of ScholarWorks@UARK. For more information, please contact [email protected], [email protected]. An Investigation into the Suitability of Sulfate-Reducing Bacteria as Models for Martian Forward Contamination A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Space and Planetary Sciences by Maxwell M. W. Silver Pacific Lutheran University Bachelor of Science in Geosciences, 2015 May 2018 University of Arkansas This thesis is approved for recommendation to the Graduate Council. Vincent Chevrier, Ph.D. Dissertation Director D. Mack Ivey, Ph.D. Timothy Kral, Ph.D. Committee Member Committee Member Larry Roe, Ph.D. Committee Member Abstract The NASA Planetary Protection policy requires interplanetary space missions do not compromise the target body for a current or future scientific investigation and do not pose an unacceptable risk to Earth, including biologic materials. -
Advance View Proofs
Microbes Environ. Vol. 00, No. 0, 000-000, 2019 https://www.jstage.jst.go.jp/browse/jsme2 doi:10.1264/jsme2.ME18153 Stratification of Sulfur Species and Microbial Community in Launched Marine Sediment by an Improved Sulfur-Fractionation Method and 16S rRNA Gene Sequencing HIDEYUKI IHARA1,2, TOMOYUKI HORI2*, TOMO AOYAGI2, HIROKI HOSONO3†, MITSURU TAKASAKI4, and YOKO KATAYAMA3††* 1United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, 3–5–8 Saiwai-cho, Fuchu, Tokyo 183–8509, Japan; 2Environmental Management Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 16–1 Onogawa, Tsukuba, Ibaraki 305–8569, Japan; 3Institute of Agriculture, Tokyo University of Agriculture and Technology, 3–5–8 Saiwai-cho, Fuchu, Tokyo 183–8509, Japan; and 4Department of Food and Environmental Sciences, Faculty of Science and Engineering, Ishinomaki Senshu University, 1 Shinmito, Minamisakai, Ishinomaki, Miyagi 986–8580, Japan (Received November 10, 2018—Accepted March 6, 2019—Published online June 11, 2019) With a focus on marine sediment launched by the tsunami accompanying the Great East Japan Earthquake, we examined the vertical (i.e., depths of 0–2, 2–10, and 10–20 mm) profiles of reduced inorganic sulfur species and microbial community using a newly improved sulfur-fractionation method and 16S rRNA gene sequencing. S0 accumulated at the largest quantities at a depth of 2–10 mm, while the reduced forms of sulfur, such as iron(II) sulfide and pyrite, were abundant below 2 mm of the sediment. Operational taxonomic units (OTUs) related to chemolithotrophically sulfur-oxidizing Sulfurimonas denitrificans and Sulfurimonas autotrophica were only predominant at 2–10 mm, suggesting the involvement of these OTUs in the oxidation of sulfide to S0. -
Compile.Xlsx
Silva OTU GS1A % PS1B % Taxonomy_Silva_132 otu0001 0 0 2 0.05 Bacteria;Acidobacteria;Acidobacteria_un;Acidobacteria_un;Acidobacteria_un;Acidobacteria_un; otu0002 0 0 1 0.02 Bacteria;Acidobacteria;Acidobacteriia;Solibacterales;Solibacteraceae_(Subgroup_3);PAUC26f; otu0003 49 0.82 5 0.12 Bacteria;Acidobacteria;Aminicenantia;Aminicenantales;Aminicenantales_fa;Aminicenantales_ge; otu0004 1 0.02 7 0.17 Bacteria;Acidobacteria;AT-s3-28;AT-s3-28_or;AT-s3-28_fa;AT-s3-28_ge; otu0005 1 0.02 0 0 Bacteria;Acidobacteria;Blastocatellia_(Subgroup_4);Blastocatellales;Blastocatellaceae;Blastocatella; otu0006 0 0 2 0.05 Bacteria;Acidobacteria;Holophagae;Subgroup_7;Subgroup_7_fa;Subgroup_7_ge; otu0007 1 0.02 0 0 Bacteria;Acidobacteria;ODP1230B23.02;ODP1230B23.02_or;ODP1230B23.02_fa;ODP1230B23.02_ge; otu0008 1 0.02 15 0.36 Bacteria;Acidobacteria;Subgroup_17;Subgroup_17_or;Subgroup_17_fa;Subgroup_17_ge; otu0009 9 0.15 41 0.99 Bacteria;Acidobacteria;Subgroup_21;Subgroup_21_or;Subgroup_21_fa;Subgroup_21_ge; otu0010 5 0.08 50 1.21 Bacteria;Acidobacteria;Subgroup_22;Subgroup_22_or;Subgroup_22_fa;Subgroup_22_ge; otu0011 2 0.03 11 0.27 Bacteria;Acidobacteria;Subgroup_26;Subgroup_26_or;Subgroup_26_fa;Subgroup_26_ge; otu0012 0 0 1 0.02 Bacteria;Acidobacteria;Subgroup_5;Subgroup_5_or;Subgroup_5_fa;Subgroup_5_ge; otu0013 1 0.02 13 0.32 Bacteria;Acidobacteria;Subgroup_6;Subgroup_6_or;Subgroup_6_fa;Subgroup_6_ge; otu0014 0 0 1 0.02 Bacteria;Acidobacteria;Subgroup_6;Subgroup_6_un;Subgroup_6_un;Subgroup_6_un; otu0015 8 0.13 30 0.73 Bacteria;Acidobacteria;Subgroup_9;Subgroup_9_or;Subgroup_9_fa;Subgroup_9_ge; -
Archives Des Publications Du CNRC (Nparc)
NRC Publications Archive (NPArC) Archives des publications du CNRC (NPArC) Effect of 2,4-dinitrotoluene on the anaerobic bacterial community in marine sediment Yang, H.; Zhao, J.-S.; Hawari, J. Publisher’s version / la version de l'éditeur: Journal of Applied Microbiology, 107, 6, pp. 1799-1808, 2009-12 Web page / page Web http://dx.doi.org/10.1111/j.1365-2672.2009.04366.x http://nparc.cisti-icist.nrc-cnrc.gc.ca/npsi/ctrl?action=rtdoc&an=14130357&lang=en http://nparc.cisti-icist.nrc-cnrc.gc.ca/npsi/ctrl?action=rtdoc&an=14130357&lang=fr Access and use of this website and the material on it are subject to the Terms and Conditions set forth at http://nparc.cisti-icist.nrc-cnrc.gc.ca/npsi/jsp/nparc_cp.jsp?lang=en READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE. L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site http://nparc.cisti-icist.nrc-cnrc.gc.ca/npsi/jsp/nparc_cp.jsp?lang=fr LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB. Contact us / Contactez nous: [email protected]. Journal of Applied Microbiology ISSN 1364-5072 ORIGINAL ARTICLE Effect of 2,4-dinitrotoluene on the anaerobic bacterial community in marine sediment H. Yang1,2, J.-S. Zhao1 and J. Hawari1 1 Biotechnology Research Institute, National Research Council Canada, Montre´ al, Que´ bec, Canada H4P 2R2 2 College of Life Sciences, Central China Normal University, Wuhan, China Keywords Abstract 2,4-dinitrotoluene, anaerobic, bacterial community, denaturing gradient gel Aims: To study the impact of added 2,4-dinitrotoluene (DNT) on the anaero- electrophoresis, impact, marine sediment. -
Core Sulphate-Reducing Microorganisms in Metal-Removing Semi-Passive Biochemical Reactors and the Co-Occurrence of Methanogens
microorganisms Article Core Sulphate-Reducing Microorganisms in Metal-Removing Semi-Passive Biochemical Reactors and the Co-Occurrence of Methanogens Maryam Rezadehbashi and Susan A. Baldwin * Chemical and Biological Engineering, University of British Columbia, 2360 East Mall, Vancouver, BC V6T 1Z3, Canada; [email protected] * Correspondence: [email protected]; Tel.: +1-604-822-1973 Received: 2 January 2018; Accepted: 17 February 2018; Published: 23 February 2018 Abstract: Biochemical reactors (BCRs) based on the stimulation of sulphate-reducing microorganisms (SRM) are emerging semi-passive remediation technologies for treatment of mine-influenced water. Their successful removal of metals and sulphate has been proven at the pilot-scale, but little is known about the types of SRM that grow in these systems and whether they are diverse or restricted to particular phylogenetic or taxonomic groups. A phylogenetic study of four established pilot-scale BCRs on three different mine sites compared the diversity of SRM growing in them. The mine sites were geographically distant from each other, nevertheless the BCRs selected for similar SRM types. Clostridia SRM related to Desulfosporosinus spp. known to be tolerant to high concentrations of copper were members of the core microbial community. Members of the SRM family Desulfobacteraceae were dominant, particularly those related to Desulfatirhabdium butyrativorans. Methanogens were dominant archaea and possibly were present at higher relative abundances than SRM in some BCRs. Both hydrogenotrophic and acetoclastic types were present. There were no strong negative or positive co-occurrence correlations of methanogen and SRM taxa. Knowing which SRM inhabit successfully operating BCRs allows practitioners to target these phylogenetic groups when selecting inoculum for future operations. -
Full Text in Pdf Format
Vol. 648: 79–94, 2020 MARINE ECOLOGY PROGRESS SERIES Published August 27 https://doi.org/10.3354/meps13421 Mar Ecol Prog Ser OPEN ACCESS Microbiome analyses and presence of cable bacteria in the burrow sediment of Upogebia pugettensis Cheng Li1,*, Clare E. Reimers1, John W. Chapman2 1College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, Oregon 97331, USA 2Department of Fisheries and Wildlife, Oregon State University, Hatfield Marine Science Center, 2030 SE Marine Science Dr. Newport, Oregon 97365, USA ABSTRACT: We utilized methods of sediment cultivation, catalyzed reporter deposition− fluorescence in situ hybridization, scanning electron microscopy, and 16s rRNA gene sequencing to investigate the presence of novel filamentous cable bacteria (CB) in estuarine sediments bioturbated by the mud shrimp Upogebia pugettensis Dana and also to test for trophic connections between the shrimp, its commensal bivalve (Neaeromya rugifera), and the sediment. Agglutinated sediments from the linings of shrimp burrows exhibited higher abundances of CB compared to surrounding suboxic and anoxic sediments. Furthermore, CB abundance and activity increased in these sedi- ments when they were incubated under oxygenated seawater. Through core microbiome analy- sis, we found that the microbiomes of the shrimp and bivalve shared 181 taxa with the sediment bacterial community, and that these shared taxa represented 17.9% of all reads. Therefore, bac- terial biomass in the burrow sediment lining is likely a major food source for both the shrimp and the bivalve. The biogeochemical conditions created by shrimp burrows and other irrigators may help promote the growth of CB and select for other dominant members of the bacterial commu- nity, particularly a variety of members of the Proteobacteria. -
Microbial Corrosion of C1018 Mild Steel by a Halotolerant Consortium of Sulfate Reducing Bacteria Isolated from an Egyptian Oil Field
111 Egypt. J. Chem. Vol. 63, No. 4, pp.1461-1468 (2020) Egyptian Journal of Chemistry http://ejchem.journals.ekb.eg/ Microbial Corrosion of C1018 Mild Steel by A Halotolerant Consortium of Sulfate Reducing Bacteria Isolated from an Egyptian Oil Field Wafaa A. Koush*1, Ahmed Labena1, Tarek M Mohamed2, Hany Elsawy2 and Laila A. Farahat1 1Process Design & Development Department, Egyptian Petroleum Research Institute, Cairo, Egypt. 2Faculty of Science, Tanta University, Tanta, Egypt. N THIS study, a consortium of halotolerant sulfate reducing bacteria (SRB) was obtained from Ia water sample collected from an Egyptian oil-field. North Bahreyia Petroleum Company (NORPETCO) is one of the petroleum companies that suffer from severe corrosion. The present study aim to investigate the microbial structures of this consortium and their potential contributed to microbial corrosion. Dissimilatory sulfite reductase dsrAB gene sequences analysis indicated that the mixed bacterial consortium contained two main phylotypes: members of the Proteobacteria (Desulfomicrobium sp., Desulforhopalus sp., and Desulfobulbus sp.) and Firmicutes (Desulfotomaculum sp.). Mild steel C1018 coupons were incubated in the presence of SRB consortium for a period of 35 days, the evolution of corrosion was studied using weight loss and dissolved sulfide production of SRB consortium. Results indicated that, the corrosion rate in the presences of SRB was approximately 15 times of that for the control. Furthermore, sessile cells (biofilm) and subsequent corrosion products that developed were characterized by scanning electron microscope coupled with energy dispersive X-ray spectroscopy (EDX). Keywords: Microbial corrosion, Sulfate-reducing bacteria, Dissimilatory sulfite reductase; dsrAB, dissolved sulfide. Introduction reducing bacteria (SRB), the genes encoding Dsr are commonly organized in a dsrAB operon, Metal corrosion is considered as a major problem where dsrA and dsrB encode the α and β -subunits affecting oil and gas industry that leading for of Dsr, respectively [3]. -
Bacterial Involvements in Ulcerative Colitis: Molecular and Microbiological Studies
BACTERIAL INVOLVEMENTS IN ULCERATIVE COLITIS: MOLECULAR AND MICROBIOLOGICAL STUDIES Samia Alkhalil A thesis submitted in partial fulfilment of the requirements for the award of the degree of Doctor of Philosophy of the University of Portsmouth Institute of Biomedical and biomolecular Sciences School of Pharmacy and Biomedical Sciences October 2017 AUTHORS’ DECLARATION I declare that whilst registered as a candidate for the degree of Doctor of Philosophy at University of Portsmouth, I have not been registered as a candidate for any other research award. The results and conclusions embodied in this thesis are the work of the named candidate and have not been submitted for any other academic award. Samia Alkhalil I ABSTRACT Inflammatory bowel disease (IBD) is a series of disorders characterised by chronic intestinal inflammation, with the principal examples being Crohn’s Disease (CD) and ulcerative colitis (UC). A paradigm of these disorders is that the composition of the colon microbiota changes, with increases in bacterial numbers and a reduction in diversity, particularly within the Firmicutes. Sulfate reducing bacteria (SRB) are believed to be involved in the etiology of these disorders, because they produce hydrogen sulfide which may be a causative agent of epithelial inflammation, although little supportive evidence exists for this possibility. The purpose of this study was (1) to detect and compare the relative levels of gut bacterial populations among patients suffering from ulcerative colitis and healthy individuals using PCR-DGGE, sequence analysis and biochip technology; (2) develop a rapid detection method for SRBs and (3) determine the susceptibility of Desulfovibrio indonesiensis in biofilms to Manuka honey with and without antibiotic treatment.