A First Acetate-Oxidizing, Extremely Salt-Tolerant

Total Page:16

File Type:pdf, Size:1020Kb

A First Acetate-Oxidizing, Extremely Salt-Tolerant Extremophiles (2015) 19:899–907 DOI 10.1007/s00792-015-0765-y ORIGINAL PAPER Desulfonatronobacter acetoxydans sp. nov.,: a first acetate‑oxidizing, extremely salt‑tolerant alkaliphilic SRB from a hypersaline soda lake D. Y. Sorokin1,2 · N. A. Chernyh1 · M. N. Poroshina3 Received: 6 May 2015 / Accepted: 26 May 2015 / Published online: 18 June 2015 © The Author(s) 2015. This article is published with open access at Springerlink.com Abstract Recent intensive microbiological investigation alkaliphile, growing with butyrate at salinity up to 4 M total of sulfidogenesis in soda lakes did not result in isolation of Na+ with a pH optimum at 9.5. It can grow with sulfate as any pure cultures of sulfate-reducing bacteria (SRB) able to e-acceptor with C3–C9 VFA and also with some alcohols. The directly oxidize acetate. The sulfate-dependent acetate oxida- most interesting property of strain APT3 is its ability to grow tion at haloalkaline conditions has, so far, been only shown in with acetate as e-donor, although not with sulfate, but with two syntrophic associations of novel Syntrophobacteraceae sulfite or thiosulfate as e-acceptors. The new isolate is pro- members and haloalkaliphilic hydrogenotrophic SRB. In the posed as a new species Desulfonatronobacter acetoxydans. course of investigation of one of them, obtained from a hyper- saline soda lake in South-Western Siberia, a minor component Keywords Soda lakes · Haloalkaliphilic · Acetate was observed showing a close relation to Desulfonatrono- oxidation · Sulfate-reducing bacteria (SRB) · bacter acidivorans—a “complete oxidizing” SRB from soda Desulfobacteracea lakes. This organism became dominant in a secondary enrich- ment with propionate as e-donor and sulfate as e-acceptor. A Introduction pure culture, strain APT3, was identified as a novel member of the family Desulfobacteraceae. It is an extremely salt-tolerant During the last two decades, intensive microbiological and, recently, also molecular ecology investigation of naturally Communicated by A. Oren. occurring saline, alkaline (soda) lakes resulted in a wealth of information on functional structure of natronophilic microbial Nucleotide sequence accession number: The GenBank/EMBL communities (last reviewed by Sorokin et al. 2014a). In par- accession numbers of the 16S rRNA and dsrAB gene sequences ticular, the microbial sulfur cycle received much attention as determined in this study are KP223254 and KP784416- KP784417, respectively. the most active in soda lakes (Sorokin et al. 2011). Relatively, high rates of sulfidogenesis have been detected in anaero- Electronic supplementary material The online version of this bic sediments even in hypersaline soda lakes and the actual article (doi:10.1007/s00792-015-0765-y) contains supplementary presence of SRB was confirmed by the analysis of both the material, which is available to authorized users. key functional genes of the dissimilatory sulfite reductase * D. Y. Sorokin (dsrAB) and, in some cases, also by the 16S rRNA gene anal- [email protected]; [email protected] ysis (Scholten et al. 2005; Foti et al. 2007, 2008; Mesbah and Wiegel 2012). Most of the SRB isolates and clones in soda 1 Winogradsky Institute of Microbiology, Russian Academy lakes belong to lithotrophic members of the order Desulfo- of Sciences, Prospect 60‑let Octyabrya 7/2, 117811 Moscow, Russia vibrionales (reviewed by Sorokin et al. 2011). Despite that molecular analysis demonstrated a presence of several clus- 2 Department of Biotechnology, Delft University of Technology, Delft, The Netherlands ters apparently belonging to the “complete oxidizing” SRB in the family Desulfobacteraceae, so far, only a single haloalka- 3 Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Puschino, liphilic SRB, described as Desulfonatronobacter acidivorans, Russia has been found in soda lakes (Sorokin et al. 2012a). Although 1 3 900 Extremophiles (2015) 19:899–907 Fig. 1 Cell morphology (phase contrast microphotographs) of strains APT3 grown at 2 M Na+, pH 9.5 with thiosulfate as e-acceptor and propi- onate (a), butyrate (b), acetate (c) or caprylate (d) as e-donor it oxidized several volatile fatty acids (VFA) completely detected both in 16S-rRNA gene and dsrAB-targeted DGGE to CO2, no growth was observed with externally provided analyses (KF588528 and KF835258, respectively). Both acetate. Until now, the acetate oxidation at sulfate-reducing sequences clustered with Desulfonatronobacter acidivorans, conditions in soda lakes has only been demonstrated in two thus hinting at the presence of a “complete oxidizing” SRB syntrophic associations of reverse acetogenic members within in the acetate-oxidizing syntrophic culture. The present paper the clostridial family Syntrophomonadaceae and lithotrophic describes isolation and properties of this organism. SRB. At low salt concentrations, the association included ‘Candidatus Contubernalis alkalaceticum’ and Desulfona- tronum cooperativum (Zhilina et al. 2005), while ‘Candidatus Methods Syntrophonatronum acetioxidans’/Desulfonatronospira sp. ASO3-2 were able to oxidize acetate in nearly saturated soda Isolation source brines (Sorokin et al. 2014b). During the investigation of the latter at different stages of purification, a presence of a minor The source for the isolation was a syntrophic enrichment SRB component in the enrichment at 3 M total Na+ had been culture oxidizing acetate with sulfate as the e-acceptor at 1 3 Extremophiles (2015) 19:899–907 901 Fig. 2 Phylogenetic position (a) of strain APT3 based on 16S APT3 (KP223254) ●▲ rRNA gene (a), dsrA (b) and (KF588528) dsrB (c) sequence analysis. 81 clone, soda lake Bitter-1 (Kulunda Steppe) The bootstrap values above clone, soda lake Bitter-1 (Kulunda Steppe)(EF622456) 50 % from 1000 replicates are clone, hypersaline soil (India) (JX240718) shown next to the branches. The 51 er evolutionary distances were clone, alkaline Lonar Lake (India) (JQ739024) st 74 computed using the neighbour clone, haloalkaline lakes Wadi Natrun (Egypt) (DQ432412) joining and maximum likeli- clone, soda lake Tanatar-3(Kulunda Steppe) (EF622458) es clu hood methods and are in the units of the number of base clone, soda lake Tanatar-1 (Kulunda Steppe) (EF622452) 52 substitutions per site. Symbols 81 clone, soda lake Tanatar-1 (Kulunda Steppe) (EF622454) in (a): open circle, incomplete soda lak oxidizers; closed circle, com- clone, soda lake Tanatar-5 (Kulunda Steppe) (GU479049) plete oxidizers; closed triangle, Desulfonatronobacter acidivorans (GU289732) ● acetate oxidizers. Clones and 87 soda Mono Lake (California), clone ML28 (AY245462) pure cultures obtained from alkaline saline lakes are in bold Desulfosalsimonas propionicica (DQ067422) ● clone, hypersaline mat, (EU245702) Desulfatiglans anilini (EU020016) ●▲ Desulfonema limicola (U45990) ●▲ 52 Desulfococcus multivorans (AF418173) ●▲ Desulfatitalea tepidiphila (AB614135) ●▲ 71 Desulfosarcina variabilis (M34407) ●▲ Desulfatibacillum aliphaticivorans (AY184360) ●▲ Desulfoluna butyratoxydans (AB110540)○ 99 Desulfofrigus fragile (AF099065) ● 99 Desulfofrigus oceanense (AF099064) ●▲ Desulfofaba gelida (AF099063) ○ 61 Desulforegula conservatrix (AF243334) ○ Desulfatirhabdium butyrativorans (DQ146482) ● 99 Desulfobotulus sapovorans (FJ789839) ○ Desulfobotulus alkaliphilus (FJ788523)○ Desulfocella halophila (AF022936) ○ Desulfatiferula olefinivorans (DQ826724)○ 81 Desulfobacula toluolica (AJ441316) ● 97 Desulfobacula phenolica (AJ237606) ● 50 Desulfoconvexum algidum (EF442984)● 66 Desulfobacter postgatei (AF418180) ●▲ 94 Desulfospira joergensenii (X99637) ● 73 Desulfotignum phosphitoxidans (AF420288) ● 99 Desulfotignum balticum (AF418176) ●▲ 75 Desulfotignum toluenicum (NR 115992) ●▲ 0.02 pH 10 and 3 M Na+ inoculated with anaerobic sediments syntrophic acetate-oxidizing mixed culture obtained from from the hypersaline soda lake Bitter-1 in Kulunda Steppe, sulfidic sediments of hypersaline soda lake Bitter-1 in Altai, Russia (Sorokin et al. 2014b). Kulunda Steppe, Altai, Russia (Sorokin et al. 2014b) and maintained at 2–3 M total Na+, pH 10 and 30 °C. The basal Enrichment, isolation and cultivation conditions sodium carbonate-based mineral medium containing 3 M total Na+ was made by 1:1 mixing of the media contain- Anaerobic sub-enrichment with propionate as e-donor ing 2 and 4 M total Na+, pH 10, as described previously (10 mM) and sulfate (20 mM) was performed from the (Sorokin et al. 2011b). Routine cultivation was performed 1 3 902 Extremophiles (2015) 19:899–907 Fig. 2 continued (b) 98 Desulfosarcina cetonica (AAN31398) Desulfosarcina variabilis (AAK58134) Desulfonema limicola (AAC24099) BAM15573 Desulfatitalea tepidiphila EPR41197 Desulfococcus multivorans WP 028323468 Desulfatirhabdium butyrativorans APT3 (KP784416) Desulfosalsimonas propionicica (ABD46860) Desulfonatronobacter acidivorans (KF835253) Desulfatiglans anilini (WP 028320139) Desulforegula conservatrix (WP 027357910) 63 Desulfocella halophila (AAL57473) 52 Desulfobotulus sapovorans (AAC24109) Desulfatiferula olefinivorans (ABH03459) Desulfofaba gelida (AAK83201) Desulfobacter postgatei (WP 004072374) 98 Desulfobacula phenolica (AAQ05965) 100 Desulfobacula toluolica (CCK78725) 80 Desulfospira joergensenii (WP 022667229) 95 Desulfoconvexum algidum (AFJ95152) 79 Desulfotignum balticum (AAN31406) 0.02 94 Desulfotignum phosphitoxidans (AAN31400) (c) 72 clone, soda lake Tanatar-2, Kulunda Steppe (ABO28290) 74 clone, soda lake Tanatar-1, Kulunda Steppe (ABO28292) 77 clone, soda lake Elongated, Kulunda
Recommended publications
  • Multiple Lateral Transfers of Dissimilatory Sulfite Reductase
    JOURNAL OF BACTERIOLOGY, Oct. 2001, p. 6028–6035 Vol. 183, No. 20 0021-9193/01/$04.00ϩ0 DOI: 10.1128/JB.183.20.6028–6035.2001 Copyright © 2001, American Society for Microbiology. All Rights Reserved. Multiple Lateral Transfers of Dissimilatory Sulfite Reductase Genes between Major Lineages of Sulfate-Reducing Prokaryotes MICHAEL KLEIN,1 MICHAEL FRIEDRICH,2 ANDREW J. ROGER,3 PHILIP HUGENHOLTZ,4 SUSAN FISHBAIN,5 1 4 6 1 HEIKE ABICHT, LINDA L. BLACKALL, DAVID A. STAHL, AND MICHAEL WAGNER * 1 Lehrstuhl fu¨r Mikrobiologie, Technische Universita¨t Mu¨nchen, D-85350 Freising, and Department of Biogeochemistry, Max Planck Downloaded from Institute for Terrestrial Microbiology, D-35043-Marburg,2 Germany; Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia B3H 4H7, Canada3; Advanced Wastewater Management Centre, Department of Microbiology and Parasitology, The University of Queensland, Brisbane 4072, Queensland, Australia4; Department of Civil Engineering, Northwestern University, Evanston, Illinois 60208-31095; and Department of Civil and Environmental Engineering, University of Washington, Seattle, Washington 98195-27006 Received 26 February 2001/Accepted 3 July 2001 http://jb.asm.org/ A large fragment of the dissimilatory sulfite reductase genes (dsrAB) was PCR amplified and fully sequenced from 30 reference strains representing all recognized lineages of sulfate-reducing bacteria. In addition, the sequence of the dsrAB gene homologs of the sulfite reducer Desulfitobacterium dehalogenans was determined. In contrast to previous reports, comparative analysis of all available DsrAB sequences produced a tree topology partially inconsistent with the corresponding 16S rRNA phylogeny. For example, the DsrAB sequences of -several Desulfotomaculum species (low G؉C gram-positive division) and two members of the genus Thermode sulfobacterium (a separate bacterial division) were monophyletic with ␦-proteobacterial DsrAB sequences.
    [Show full text]
  • Prokaryotic Community Structure and Activity of Sulfate Reducers in Production Water from High-Temperature Oil Reservoirs with and Without Nitrate Treatment
    Prokaryotic community structure and activity of sulfate reducers in production water from high-temperature oil reservoirs with and without nitrate treatment Dr. Antje Gittel Dept. of Biological Sciences, Aarhus University ISMOS 2 Aarhus 2009 Introduction Hypothesis Results Conclusions Offshore oil production systems Separation Oil Gas Water Production Injection ~80 degC 50-60 degC Reservoir ISMOS 2, June 2009 Antje Gittel Introduction Hypothesis Results Conclusions Characteristics of the study sites Norway Halfdan • Injection of sulfate-rich seawater Denmark • High loads of organic carbon compounds in the reservoir Dan Enrichment of sulfate -reducing prokaryotes Danish Underground Consortium, Maersk Oil (SRP ) that produce H 2S Souring, plugging, biocorrosion, toxicity, ..... • Strategy to control SRP activity at Halfdan: Addition of nitrate to the injection water ISMOS 2, June 2009 Antje Gittel Introduction Hypothesis Results Conclusions Principles of SRP inhibition by nitrate addition (i) Stimulation of heterothrophic nitrate- reducing bacteria (hNRB ) that hNRB outcompete SRP for electron donors (ii) Activity of nitrate -reducing, sulfide - oxidizing bacteria (NR-SOB ) resulting in SRP NR-SOB a decreasing net production of H2S (iii) Increase in redox potential by the production of nitrite and nitrous oxides and thereby and inhibition of SRP ISMOS 2, June 2009 Antje Gittel Introduction Hypothesis Results Conclusions Compared to an untreated oil field (Dan), nitrate addition to the injection water at Halfdan stimulates the growth of hNRB and/or NR-SOB , resulting in: 1) A general change in the prokaryotic community composition, i.e. • Presence of competitive hNRB and NR-SOB and/or • Presence of SRP that are able to reduce nitrate instead of sulfate 2) A decrease in SRP abundance and activity and 3) A reduced net sulfide production.
    [Show full text]
  • Supplementary Information for Microbial Electrochemical Systems Outperform Fixed-Bed Biofilters for Cleaning-Up Urban Wastewater
    Electronic Supplementary Material (ESI) for Environmental Science: Water Research & Technology. This journal is © The Royal Society of Chemistry 2016 Supplementary information for Microbial Electrochemical Systems outperform fixed-bed biofilters for cleaning-up urban wastewater AUTHORS: Arantxa Aguirre-Sierraa, Tristano Bacchetti De Gregorisb, Antonio Berná, Juan José Salasc, Carlos Aragónc, Abraham Esteve-Núñezab* Fig.1S Total nitrogen (A), ammonia (B) and nitrate (C) influent and effluent average values of the coke and the gravel biofilters. Error bars represent 95% confidence interval. Fig. 2S Influent and effluent COD (A) and BOD5 (B) average values of the hybrid biofilter and the hybrid polarized biofilter. Error bars represent 95% confidence interval. Fig. 3S Redox potential measured in the coke and the gravel biofilters Fig. 4S Rarefaction curves calculated for each sample based on the OTU computations. Fig. 5S Correspondence analysis biplot of classes’ distribution from pyrosequencing analysis. Fig. 6S. Relative abundance of classes of the category ‘other’ at class level. Table 1S Influent pre-treated wastewater and effluents characteristics. Averages ± SD HRT (d) 4.0 3.4 1.7 0.8 0.5 Influent COD (mg L-1) 246 ± 114 330 ± 107 457 ± 92 318 ± 143 393 ± 101 -1 BOD5 (mg L ) 136 ± 86 235 ± 36 268 ± 81 176 ± 127 213 ± 112 TN (mg L-1) 45.0 ± 17.4 60.6 ± 7.5 57.7 ± 3.9 43.7 ± 16.5 54.8 ± 10.1 -1 NH4-N (mg L ) 32.7 ± 18.7 51.6 ± 6.5 49.0 ± 2.3 36.6 ± 15.9 47.0 ± 8.8 -1 NO3-N (mg L ) 2.3 ± 3.6 1.0 ± 1.6 0.8 ± 0.6 1.5 ± 2.0 0.9 ± 0.6 TP (mg
    [Show full text]
  • Microbial Diversity Under Extreme Euxinia: Mahoney Lake, Canada V
    Geobiology (2012), 10, 223–235 DOI: 10.1111/j.1472-4669.2012.00317.x Microbial diversity under extreme euxinia: Mahoney Lake, Canada V. KLEPAC-CERAJ,1,2 C. A. HAYES,3 W. P. GILHOOLY,4 T. W. LYONS,5 R. KOLTER2 AND A. PEARSON3 1Department of Molecular Genetics, Forsyth Institute, Cambridge, MA, USA 2Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, MA, USA 3Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA, USA 4Department of Earth and Planetary Sciences, Washington University, Saint Louis, MO, USA 5Department of Earth Sciences, University of California, Riverside, CA, USA ABSTRACT Mahoney Lake, British Columbia, Canada, is a stratified, 15-m deep saline lake with a euxinic (anoxic, sulfidic) hypolimnion. A dense plate of phototrophic purple sulfur bacteria is found at the chemocline, but to date the rest of the Mahoney Lake microbial ecosystem has been underexamined. In particular, the microbial community that resides in the aphotic hypolimnion and ⁄ or in the lake sediments is unknown, and it is unclear whether the sulfate reducers that supply sulfide for phototrophy live only within, or also below, the plate. Here we profiled distribu- tions of 16S rRNA genes using gene clone libraries and PhyloChip microarrays. Both approaches suggest that microbial diversity is greatest in the hypolimnion (8 m) and sediments. Diversity is lowest in the photosynthetic plate (7 m). Shallower depths (5 m, 7 m) are rich in Actinobacteria, Alphaproteobacteria, and Gammaproteo- bacteria, while deeper depths (8 m, sediments) are rich in Crenarchaeota, Natronoanaerobium, and Verrucomi- crobia. The heterogeneous distribution of Deltaproteobacteria and Epsilonproteobacteria between 7 and 8 m is consistent with metabolisms involving sulfur intermediates in the chemocline, but complete sulfate reduction in the hypolimnion.
    [Show full text]
  • University of Oklahoma Graduate College Microbial Ecology of Coastal Ecosystems: Investigations of the Genetic Potential For
    UNIVERSITY OF OKLAHOMA GRADUATE COLLEGE MICROBIAL ECOLOGY OF COASTAL ECOSYSTEMS: INVESTIGATIONS OF THE GENETIC POTENTIAL FOR ANAEROBIC HYDROCARBON TRANSFORMATION AND THE RESPONSE TO HYDROCARBON EXPOSURE A DISSERTATION SUBMITTED TO THE GRADUATE FACULTY in partial fulfillment of the requirements of the Degree of DOCTOR OF PHILOSOPHY By JAMIE M. JOHNSON DUFFNER Norman, Oklahoma 2017 MICROBIAL ECOLOGY OF COASTAL ECOSYSTEMS: INVESTIGATIONS OF THE GENETIC POTENTIAL FOR ANAEROBIC HYDROCARBON TRANSFORMATION AND THE RESPONSE TO HYDROCARBON EXPOSURE A DISSERTATION APPROVED FOR THE DEPARTMENT OF MICROBIOLOGY AND PLANT BIOLOGY BY ______________________________ Dr. Amy V. Callaghan, Chair ______________________________ Dr. Lee R. Krumholz ______________________________ Dr. Michael J. McInerney ______________________________ Dr. Mark A. Nanny ______________________________ Dr. Boris Wawrik © Copyright by JAMIE M. JOHNSON DUFFNER 2017 All Rights Reserved. This dissertation is dedicated to my husband, Derick, for his unwavering love and support. Acknowledgements I would like to thank my advisor, Dr. Amy Callaghan, for her guidance and support during my time as a graduate student, as well as for her commitment to my success as a scientist. I would also like to thank the members of my doctoral committee for their guidance over the years, particularly that of Dr. Boris Wawrik. I would like to also thank Drs. Josh Cooper, Chris Lyles, and Chris Marks for their friendship and support during my time at OU, both in and outside the lab. iv Table of Contents
    [Show full text]
  • Pila Genes. the Location of Alpha Helices (Represented by Red H) and Beta Strands (Represented by Yellow E) Was Predicted with Jpred 4 (Drozdetskiy Et Al, 2015)
    Supplementary Figure S1. Secondary structure of the N-terminus of PilA proteins from Desulfuromondales species and other bacteria that possess type IVa pilA genes. The location of alpha helices (represented by red H) and beta strands (represented by yellow E) was predicted with Jpred 4 (Drozdetskiy et al, 2015). Transmembrane helices (green background) were predicted with TmPred (Hofmann & Stoffel, 1993), TMHMM (Krogh et al, 2001), and HMMTOP (Tusnady & Simon, 2001). G. bemidjiensis (Gbem_2590) MLNKLRSNKGFTLIELLIVVAIIGILAAIAIPQFSAYREKAYNAASNSDLKNFKTGLEAFNADFQTYPAAYVASTN ---HHH----HHHHHHHHHHHHHHHHHHHH----HHHHHHHHHHHHH-----HHHHHHHHHH-------EEEE--- G. bremensis (K419DRAFT_00801) MLNKLRSNKGFTLIELLIVVAIIGILAAIAIPQFSAYREKAYNAASNSDLKNWKTGQEAYQADFQAYPAAYDVH --HHHH----HHHHHHHHHHHHHHHHHHH----HHHHHHHHHH------HHHHHHHHHHHHHHH---------- Pelobacter seleniigenes (N909DRAFT_0006) MLKKFRKNEKGFTLIELLIVVAIIGILAAIAIPQFASYRQKAFNSASQSDLKTIKTSLEGYYTDEYYYPY --HHHHH-----HHHHHHHHHHHHHHHHHHHHH-HHHHHHHHHHHHHHHHHHHHHHHHHHHHH------- Geobacter sp. OR-1 (WP_041974243) MLSKLRSNKGFTLIELLIVVAIIGILAAIAIPQFSAYREKAYNTAANADDKNAKTGEEAYNADNQKYPLAYDQH --HHHHH----HHHHHHHHHHHHHHHHHHH---HHHHHHHHHHHHHHHHHHHHHHHHHHHHH------------ Geobacter sp. M18 (GM18_2492) MLNKIRSNKGFTLIELLIVVAIIGILAAIAIPQFSAYRAKAYNAAANSDLKNIKTGMEAYMADRQAYPVSLDER --HHHHH-----HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH------------ Geobacter sp. M21 MLNKLRSNKGFTLIELLIVVAIIGILAAIAIPQFSAYRAKAYNSAANSDLKNMKTGMEAYMADRQAYPALLDQR --HHHHH-----HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH----------- Desulfuromonas
    [Show full text]
  • A Web Tool for Hydrogenase Classification and Analysis
    bioRxiv preprint doi: https://doi.org/10.1101/061994; this version posted September 16, 2016. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 HydDB: A web tool for hydrogenase 2 classification and analysis 3 Dan Søndergaarda, Christian N. S. Pedersena, Chris Greeningb, c* 4 5 a Aarhus University, Bioinformatics Research Centre, C.F. Møllers Allé 8, Aarhus 6 DK-8000, Denmark 7 b The Commonwealth Scientific and Industrial Research Organisation, Land and 8 Water Flagship, Clunies Ross Street, Acton, ACT 2060, Australia 9 c Monash University, School of Biological Sciences, Clayton, VIC 2800, Australia 10 11 Correspondence: 12 Dr Chris Greening ([email protected]), Monash University, School of 13 Biological Sciences, Clayton, VIC 2800, Australia 14 Dan Søndergaard ([email protected]), Aarhus University, Bioinformatics Research 15 Centre, C.F. Møllers Allé 8, Aarhus DK-8000, Denmark 1 bioRxiv preprint doi: https://doi.org/10.1101/061994; this version posted September 16, 2016. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 16 Abstract 17 H2 metabolism is proposed to be the most ancient and diverse mechanism of 18 energy-conservation. The metalloenzymes mediating this metabolism, 19 hydrogenases, are encoded by over 60 microbial phyla and are present in all major 20 ecosystems.
    [Show full text]
  • Distribution of Sulfate-Reducing Communities from Estuarine to Marine Bay Waters Yannick Colin, M
    Distribution of Sulfate-Reducing Communities from Estuarine to Marine Bay Waters Yannick Colin, M. Goñi-Urriza, C. Gassie, E. Carlier, M. Monperrus, R. Guyoneaud To cite this version: Yannick Colin, M. Goñi-Urriza, C. Gassie, E. Carlier, M. Monperrus, et al.. Distribution of Sulfate- Reducing Communities from Estuarine to Marine Bay Waters. Microbial Ecology, Springer Verlag, 2017, 73 (1), pp.39-49. 10.1007/s00248-016-0842-5. hal-01499135 HAL Id: hal-01499135 https://hal.archives-ouvertes.fr/hal-01499135 Submitted on 26 Sep 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution - ShareAlike| 4.0 International License Microb Ecol (2017) 73:39–49 DOI 10.1007/s00248-016-0842-5 MICROBIOLOGY OF AQUATIC SYSTEMS Distribution of Sulfate-Reducing Communities from Estuarine to Marine Bay Waters Yannick Colin 1,2 & Marisol Goñi-Urriza1 & Claire Gassie1 & Elisabeth Carlier 1 & Mathilde Monperrus3 & Rémy Guyoneaud1 Received: 23 May 2016 /Accepted: 17 August 2016 /Published online: 31 August 2016 # Springer Science+Business Media New York 2016 Abstract Estuaries are highly dynamic ecosystems in which gradient. The concentration of cultured sulfidogenic microor- freshwater and seawater mix together.
    [Show full text]
  • 1 Characterization of Sulfur Metabolizing Microbes in a Cold Saline Microbial Mat of the Canadian High Arctic Raven Comery Mast
    Characterization of sulfur metabolizing microbes in a cold saline microbial mat of the Canadian High Arctic Raven Comery Master of Science Department of Natural Resource Sciences Unit: Microbiology McGill University, Montreal July 2015 A thesis submitted to McGill University in partial fulfillment of the requirements of the degree of Master in Science © Raven Comery 2015 1 Abstract/Résumé The Gypsum Hill (GH) spring system is located on Axel Heiberg Island of the High Arctic, perennially discharging cold hypersaline water rich in sulfur compounds. Microbial mats are found adjacent to channels of the GH springs. This thesis is the first detailed analysis of the Gypsum Hill spring microbial mats and their microbial diversity. Physicochemical analyses of the water saturating the GH spring microbial mat show that in summer it is cold (9°C), hypersaline (5.6%), and contains sulfide (0-10 ppm) and thiosulfate (>50 ppm). Pyrosequencing analyses were carried out on both 16S rRNA transcripts (i.e. cDNA) and genes (i.e. DNA) to investigate the mat’s community composition, diversity, and putatively active members. In order to investigate the sulfate reducing community in detail, the sulfite reductase gene and its transcript were also sequenced. Finally, enrichment cultures for sulfate/sulfur reducing bacteria were set up and monitored for sulfide production at cold temperatures. Overall, sulfur metabolism was found to be an important component of the GH microbial mat system, particularly the active fraction, as 49% of DNA and 77% of cDNA from bacterial 16S rRNA gene libraries were classified as taxa capable of the reduction or oxidation of sulfur compounds.
    [Show full text]
  • Impacts of Desulfobacterales and Chromatiales on Sulfate Reduction in The
    bioRxiv preprint doi: https://doi.org/10.1101/2020.08.16.252635; this version posted November 6, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Impacts of Desulfobacterales and Chromatiales on sulfate reduction in the 2 subtropical mangrove ecosystem as revealed by SMDB analysis 3 Shuming Mo 1, †, Jinhui Li 1, †, Bin Li 2, Ran Yu 1, Shiqing Nie 1, Zufan Zhang 1, Jianping 4 Liao 3, Qiong Jiang 1, Bing Yan 2, *, and Chengjian Jiang 1, 2 * 5 1 State Key Laboratory for Conservation and Utilization of Subtropical Agro- 6 bioresources, Guangxi Research Center for Microbial and Enzyme Engineering 7 Technology, College of Life Science and Technology, Guangxi University, Nanning 8 530004, China. 9 2 Guangxi Key Lab of Mangrove Conservation and Utilization, Guangxi Mangrove 10 Research Center, Guangxi Academy of Sciences, Beihai 536000, China. 11 3 School of Computer and Information Engineering, Nanning Normal University, 12 Nanning 530299, China. 13 † These authors contributed equally to this work. 14 *: Corresponding Author: 15 Tel: +86-771-3270736; Fax: +86-771-3237873 16 Email: [email protected] (CJ); [email protected] (BY) 17 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.08.16.252635; this version posted November 6, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.
    [Show full text]
  • Biogeochemical Processes and Microbial Diversity of the Gullfaks and Tommeliten Methane Seeps (Northern North Sea)
    Biogeosciences, 5, 1127–1144, 2008 www.biogeosciences.net/5/1127/2008/ Biogeosciences © Author(s) 2008. This work is distributed under the Creative Commons Attribution 3.0 License. Biogeochemical processes and microbial diversity of the Gullfaks and Tommeliten methane seeps (Northern North Sea) G. Wegener1, M. Shovitri1, K. Knittel1, H. Niemann1,2,*, M. Hovland3, and A. Boetius1,2,4 1Max Planck Institute for Marine Microbiology, Bremen, Germany 2Alfred Wegener Institute for Polar and Marine Research, Bremerhaven, Germany 3Statoil, Stavanger, Norway 4Jacobs University Bremen, Bremen, Germany *now at: Institute for Environmental Geosciences, University of Basel, Switzerland Received: 21 January 2008 – Published in Biogeosciences Discuss.: 25 February 2008 Revised: 3 June 2008 – Accepted: 11 July 2008 – Published: 18 August 2008 Abstract. Fluid flow related seafloor structures and gas seeps microbial community incorporates methane or its metabo- were detected in the North Sea in the 1970s and 1980s by lites. The microbial community composition of both shallow acoustic sub-bottom profiling and oil rig surveys. A vari- seeps shows high similarities to the deep water seeps asso- ety of features like pockmarks, gas vents and authigenic car- ciated with gas hydrates such as Hydrate Ridge or the Eel bonate cements were found to be associated with sites of River basin. oil and gas exploration, indicating a link between these sur- face structures and the underlying, deep hydrocarbon reser- voirs. In this study we performed acoustic surveys and videographic observation at Gullfaks, Holene Trench, Tom- 1 Introduction meliten, Witch’s Hole and the giant pockmarks of the UK Block 15/25, to investigate the occurrence and distribution of The North Sea is a marginal sea of the Atlantic on the Eu- cold seep ecosystems in the Northern North Sea.
    [Show full text]
  • High Diversity of Anaerobic Alkane-Degrading Microbial Communities in Marine Seep Sediments Based on (1-Methylalkyl)Succinate Synthase Genes
    ORIGINAL RESEARCH published: 07 January 2016 doi: 10.3389/fmicb.2015.01511 High Diversity of Anaerobic Alkane-Degrading Microbial Communities in Marine Seep Sediments Based on (1-methylalkyl)succinate Synthase Genes Marion H. Stagars1,S.EmilRuff1,2† , Rudolf Amann1 and Katrin Knittel1* 1 Department of Molecular Ecology, Max Planck Institute for Marine Microbiology, Bremen, Germany, 2 HGF MPG Joint Research Group for Deep-Sea Ecology and Technology, Max Planck Institute for Marine Microbiology, Bremen, Germany Edited by: Alkanes comprise a substantial fraction of crude oil and are prevalent at marine seeps. Hans H. Richnow, These environments are typically anoxic and host diverse microbial communities that Helmholtz Centre for Environmental Research, Germany grow on alkanes. The most widely distributed mechanism of anaerobic alkane activation Reviewed by: is the addition of alkanes to fumarate by (1-methylalkyl)succinate synthase (Mas). Here Beth Orcutt, we studied the diversity of MasD, the catalytic subunit of the enzyme, in 12 marine Bigelow Laboratory for Ocean sediments sampled at seven seeps. We aimed to identify cosmopolitan species as well Sciences, USA Zhidan Liu, as to identify factors structuring the alkane-degrading community. Using next generation China Agricultural University, China sequencing we obtained a total of 420 MasD species-level operational taxonomic units *Correspondence: (OTU0.96) at 96% amino acid identity. Diversity analysis shows a high richness and Katrin Knittel [email protected] evenness of alkane-degrading bacteria. Sites with similar hydrocarbon composition harbored similar alkane-degrading communities based on MasD genes; the MasD †Present address: community structure is clearly driven by the hydrocarbon source available at the various S.
    [Show full text]