UC Berkeley Consortium on Deburring and Edge Finishing

Total Page:16

File Type:pdf, Size:1020Kb

UC Berkeley Consortium on Deburring and Edge Finishing UC Berkeley Consortium on Deburring and Edge Finishing Title Advancing Cutting Technology Permalink https://escholarship.org/uc/item/7hd8r1ft Authors Byrne, G. Dornfeld, David Denkena, B. Publication Date 2003 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Advancing Cutting Technology G. Byrne1 (1), D. Dornfeld2 (1), B. Denkena3 1 University College Dublin, Ireland 2 University of California, Berkeley, USA 3 University of Hannover, Germany Abstract This paper reviews some of the main developments in cutting technology since the foundation of CIRP over fifty years ago. Material removal processes can take place at considerably higher performance levels 3 in the range up to Qw = 150 - 1500 cm /min for most workpiece materials at cutting speeds up to some 8.000 m/min. Dry or near dry cutting is finding widespread application. The superhard cutting tool materi- als embody hardness levels in the range 3000 – 9000 HV with toughness levels exceeding 1000 MPa. Coated tool materials offer the opportunity to fine tune the cutting tool to the material being machined. Machining accuracies down to 10 µm can now be achieved for conventional cutting processes with CNC machine tools, whilst ultraprecision cutting can operate in the range < 0.1µm. The main technological developments associated with the cutting tool and tool materials, the workpiece materials, the machine tool, the process conditions and the manufacturing environment which have led to this advancement are given detailed consideration in this paper. The basis for a roadmap of future development of cutting tech- nology is provided. Keywords: Cutting, Material Removal, Process Development ACKNOWLEDGEMENTS geometrie”. In a further presentation by OPITZ, the doc- The authors are grateful to the following persons for their toral work of SALJÉ was presented on external cylindrical contributions to the preparation of this paper: grinding. Wheel speeds of vs = 32 m/s and depths of cut as low as 6 µm were utilised. At that time considerable Professor Taylan Altan, The Ohio State University, USA, work was in progress on the development of dynamome- Professor Ekkart Brinksmeier, University of Bremen, Ger- ters for force measurement arising in machining proc- many, Professor John Corbett, Cranfield University, UK, esses and this paper reports on a state of the art grinding Professor Fritz Klocke WZL, Aachen University, Germany, dynamometer. BICKEL (ETH Zürich) addressed the issue Professor T. Moriwaki, Kobe University, Japan, Professor of two dimensional heat flow in the vicinity of the cutting John Sutherland ,University of Michigan, USA, Professor edge while EUGÈNE presented micrographs of chip roots Rafi Wertheim, Iscar Ltd., Israel, Professor Scott Smith, at magnifications of x70 and x60. Clearly, the heritage of University of North Carolina at Charlotte, USA, Professor the Scientific Committee “Cutting” [STC”C”] within the Matt Davies, University of North Carolina at Charlotte, CIRP community is very strong. USA, Professor Kees van Luttervelt, Delft University of Technology, Holland, Alex Corcoran and Garret Having achieved strong technical competence during 50 O’Donnell, University College Dublin, Ireland, Professor years of remarkable technological development, it is now Eckart Uhlmann, Technical University Berlin, Germany, appropriate to consider the future needs of production Professor Klaus Weinert, University of Dortmund, Ger- engineering from the perspective of cutting technologies. many. There is a need to re-examine the spectrum of cutting technologies so as to ensure that the balance of CIRP activities is attuned to the real needs of modern manufac- 1 BACKGROUND turing industry. It is deemed to be very important that Since the foundation of CIRP in 1950, the Scientific Tech- manufacturing engineering and then by implication cutting nical Committee for Cutting [STC “C”] has been highly technologies be considered from the holistic perspective. active in pioneering the development of all aspects of the Cutting technology is multidisciplinary with economics cutting process [1]. Central to the work has been the com- playing an increasingly important role. Recent studies [1] plete analysis of the tool/workpiece engagement including came to the conclusion that there should be a strong the chip formation mechanisms, the investigation of the integration of technologies and management using infor- fundamental wear mechanisms and life of the cutting tool mation technologies (IT), for example, integration of the and the analysis and characterisation of the machined process planning and production planning, simulation of surface and surface layer. This analysis has not just been manufacturing systems, agile manufacturing, fast redesign performed from a materials science perspective, but also of new products, modelling of manufacturing equipment from the perspectives of the energy balance and dynamic performance, including the human operator, functional behaviour. product analysis, virtual machining and inspection algo- rithms etc. The key change drivers in the case of cutting It is most interesting to review the first available Annals of technology include: diminishing component size, en- CIRP Volume I, 1952 which reports on the Assemblée hanced surface quality, tighter tolerances and manufactur- Générale De Louvain, 1952 [2] organised by PETERS. ing accuracies, reduced costs, diminished component NICOLAU presented on the subject “Position du probléme weight and reduced batch sizes (Figure 1). de la qualification des aberrations microgéométriques des surfaces de pieces mecaniques”. OPITZ presented on These change drivers have a direct influence on the pri- “Eine Zusammenfassung über die Deformation des Spa- mary inputs to the cutting process namely the cutting tool nes und den Verschleiss der Werkzeuge” and KIENZLE and tool material, the workpiece material and the cutting on “Bemerkung zu den Grundbegriffen der Oberflächen- fluid. Each of these inputs are given detailed treatment in Hard-metal Silicon the paper (sections 2, 3 and 4 respectively). Steel, Non-ferrous metals, Ceramic, Silicon Etching Glass, Polymers µm Laser machining 5 LIGA Metals, Micro-machining Ceramic, 1 Polymers 10 Non-ferrous metals, Polymer, Electric Discharge Infrared Crystals 25 Machining Grinding Structure Dimensions Hard-metal, Steel, Steel, Non-ferrous Ceramic, 50 metals Glass Geometry-Variation Planar Freeform 200 100 50 25 10nm 5 Surface Quality Ra Figure 3: Micromachining relative to other machining processes [IPT-Aachen]. In parallel with the achievement of increased manufactur- ing accuracy there has been significant development in Figure 1: Primary aspects associated with advancing the reduction of the size of engineering components. cutting technology. Figure 4 shows the historical development in the weight reduction of the ABS system for automotive application. In These inputs go to the machine tool, which in parallel with the period 1989 to 2001, the weight has reduced from 6.2 cutting technology has also been the subject of enormous kg to 1.8 kg. One of the important issues associated with development since the early days of CIRP (summarised in miniature components is that the surface area to volume section 5). SPUR [1] notes that the foundation of CIRP ratio increases. This being the case, the surface and its concurred with the early development of NC control for integrity takes on increasing importance. machine tools. Central to the whole issue of cutting tech- nology is the performance capability and control of the manufacturing system. The ability to predict and evaluate cutting performance is addressed in section 6 of the pa- 6 per. The curves presented by [3] and updated recently by kg 6.2 kg McKeown [4] in Figure 2 (in simplified form) trace the development in manufacturing capability in terms of achievable machining accuracy since the 1940’s. Today, Weight 3 ultra-precision machine tools under computer control can 3.8 kg position the tool relative to the workpiece to a resolution 1989 and positioning accuracy in the order of 1nm. Figure 2 2.6 kg shows that the achievable machining accuracy includes 2.5 kg the use of not only cutting tools and abrasive techniques 1.8 kg but also energy beam processes such as ion beam and 0 1989 1992 1995 1998 2001 electron beam machining, plus scanning probe techniques for surface measurement and molecular manipulation [4]. Figure 4: Weight reduction of the ABS system [Source: Figure 3 shows the capability of micromachining relative to Bosch]. other processes such as laser machining, EDM, grinding and the LIGA process. It can be seen that Ra values in One of the key inputs to the cutting process is the cutting the range down to almost 5 nm can be attained for fea- tool. When CIRP was founded, the range of cutting tool tures down to 1µm. For the case of “normal machining” materials available was restricted primarily to: tool steels, e.g. CNC turning and milling machines, accuracies of 10 high speed steel, stellite and tungsten carbide with ce- to 100 µm can be achieved (Figure 2). ramic materials coming on stream. For economic manu- facture, the throughput time is the critical issue and the development of cutting tool materials has permitted a Machine Tools & Equipment significant increase not just of cutting speed but also of Turning & Milling Machines 100 Grinding Machines feedrates. Normal Machining CNC Machines 10 m Unit material cost of 140 mm µ Lapping, Honing, Boring mm useful useable area 101.6 mm
Recommended publications
  • Milling & Drilling Machine Operating Manual
    Model ZX32G Model ZX32GP MILLING & DRILLING MACHINE OPERATING MANUAL Please read this manual carefully before using your machine. 1. SPECIFICATION Model Specification Max. Drilling capacity 1 1/4" Max. Face milling capacity 2 1/2" Max. End milling capacity 13/16" Swivel angle of head-stock at perpendicular direction ±90° Swivel angle of head-stock at level direction 360° Spindle travel 3 3/8" Max. Distance between spindle nose and table 17 5/16" Distance between spindle axis and surface of column7 3/8" Spindle taper MT3 50Hz 95、180、270、500、930、1420 r/min Spindle speed (1400r/min motor) 60Hz 115、220、320、600、1120、1700 r/min T-solt Forward and backward travel of table 5 1/2" Left and right travel of table 16 1/8" Table size 27 9/16" x 7 1/16" Motor 0.75KW Net weight 232kg Milling cutter holder Ø63 Vice 90mm Special accessories end mill cutter 2-20mm drill 1-20mm machine stand Double-head wrench 19mm×22mm 1pc Allen wrench 5mm,6mm 1pc each Screw driver(-) 150mm 1pc Drill stock MT3 1pc Standard accessories Drill chuck 1-13mm 1pc Wedge Drawbar 1pc Drawbar washer 1pc 1 No. Description No. Description 1 bolt 11 Scale 2 Head handle 12 Adjustable lock screw 3 nut 13 Longitudinal table feed handle wheel 4 Combined switch 14 Micro feed handle wheel 5 Speed handle 15 Operate bar 6 Gauge bar 16 Head body 7 Plexiglass protective cover 17 Oil filler plug 8 Longitudinal table feed handle wheel 18 To raise and lower body 9 Stop block 19 Arbor bolt cover 10 Cross table feed handle wheel 20 Column 2.USES AND FEATURES 2.1This machine has several functions: milling, drilling, boring, grinding, working face and tapping etc.
    [Show full text]
  • Review of Superfinishing by the Magnetic Abrasive Finishing Process
    High Speed Mach. 2017; 3:42–55 Review Article Open Access Lida Heng, Yon Jig Kim, and Sang Don Mun* Review of Superfinishing by the Magnetic Abrasive Finishing Process DOI 10.1515/hsm-2017-0004 In the conventional lapping process, loose abrasive Received May 2, 2017; accepted June 20, 2017 particles in the form of highly-concentrated slurry are of- ten used. The finishing mechanism then involves actions Abstract: Recent developments in the engineering indus- between the lapping plate, the abrasive, and the work- try have created a demand for advanced materials with su- piece, in which the abrasive particles roll freely, creating perior mechanical properties and high-quality surface fin- indentation cracks along the surface of the workpiece, ishes. Some of the conventional finishing methods such as which are then removed to finally achieve a smoother sur- lapping, grinding, honing, and polishing are now being re- face [1]. The lapping process typically is not used to change placed by non-conventional finishing processes. Magnetic the dimensional accuracy due to its very low material re- Abrasive Finishing (MAF) is a non-conventional superfin- moval rate. Grinding, on the other hand, is used to achieve ishing process in which magnetic abrasive particles inter- the surface finish and dimensional accuracy of the work- act with a magnetic field in the finishing zone to remove piece simultaneously [2]. In grinding, fixed abrasives are materials to achieve very high surface finishing and de- used by bonding them on paper or a plate for fast stock burring simultaneously. In this review paper, the working removal.
    [Show full text]
  • Big Performance
    AUGUST 2008 / VOLUME 60 / ISSUE 8 All images: Sunnen Products A motorcycle connecting rod is honed to a diameter of 1.4173", +0.0001"/-0.0003", with roundness of 0.00008", straightness of 0.00004" and cylindricity of 0.0001". Small Engines, By Rich Moellenberg, Sunnen Products Co. Big Performance Honing of cylinder bores improves sealing and component life to help small internal combustion engines increase power density and reduce exhaust emissions. changing federal regulatory climate that targets their big brothers on the NASCAR circuit, these reduced emissions and noise has led to a con- engines are also beginning to share a performance- vergence of design goals for both small internal enhancing technology used for racecar and most combustion engines and automotive engines other auto engines—honing. Honing optimizes the in the last decade. Today, small-engine OEMs cylinder bore’s geometry, surface finish and dimen- are striving for higher power densities (producing sional accuracy, boosting power density, extending more horsepower and torque from an engine with life and lowering emissions. the same physical size), lower fuel consumption and The fit between the piston and bore, along with lower emissions, all while controlling costs. the quality of the surface contact between the two, Engines for outdoor power equipment, ATVs, influences power output, combustion efficiency, snowmobiles, motorcycles and outboard motors, emissions, component life and vibration. The pre- along with many piston-type air and refrigeration cision of bore geometry (roundness, straightness, compressors, share a common operating principle— cylindricity and diameter) and surface finish play a piston reciprocates in a cylinder bore.
    [Show full text]
  • Effect of Aluminum Oxide and Silicon Carbide Abrasive Type on Stainless Steel Ground Surface Integrity
    EFFECT OF ALUMINUM OXIDE AND SILICON CARBIDE ABRASIVE TYPE ON STAINLESS STEEL GROUND SURFACE INTEGRITY MUHD SYAKIR BIN ABDUL RAHMAN Report submitted in partial fulfillment of the requirements for the award of Bachelor of Mechanical Engineering with Manufacturing Faculty of Mechanical Engineering UNIVERSITI MALAYSIA PAHANG DECEMBER 2010 ii SUPERVISOR’S DECLARATION I hereby declare that I have checked this project and in my opinion, this project is adequate in terms of scope and quality for the award of the degree of Bachelor of Mechanical Engineering. Signature: Name of Supervisor: DR. MAHADZIR BIN ISHAK @ MUHAMMAD Position: LECTURER OF MECHANICAL ENGINEERING Date: 6 DECEMBER 2010 iii STUDENT’S DECLARATION I hereby declare that the work in this report is my own except for quotations and summaries which have been duly acknowledged. The report has not been accepted for any degree and is not concurrently submitted for award of other degree. Signature: Name: MUHD SYAKIR BIN ABDUL RAHMAN ID Number: ME07013 Date: 6 DECEMBER 2010 v ACKNOWLEDGEMENTS In the name of Allah, the Most Benevolent, the Most Merciful. First of all I wish to record immeasurable gratitude and thankfulness to the One and The Almighty Creator, the Lord and Sustainers of the universe, and the Mankind in particular. It is only had mercy and help that this work could be completed and it is keenly desired that this little effort be accepted by Him to be some service to the cause of humanity. I would like to express my sincere gratitude to my supervisor DR. Mahadzir Bin Ishak @ Muhammad for his germinal ideas, invaluable guidance, continuous encouragement and constant support in making this research possible.
    [Show full text]
  • A Fully Symmetrical High Performance Modular Milling Cutter
    S S symmetry Article A Fully Symmetrical High Performance Modular Milling Cutter Mircea-Viorel Dragoi *, Dorin Mircea Rosca, Milena Flavia Folea and Gheorghe Oancea * Department of Manufacturing Engineering, Transilvania University of Brasov, B-dul Eroilor 29, 500036 Bras, ov, Romania; [email protected] (D.M.R.); [email protected] (M.F.F.) * Correspondence: [email protected] (M.-V.D.); [email protected] (G.O.) Abstract: Milling cutters belong to a widely used category of cutting tools. In this category, modular milling cutters are a narrow niche, less studied, and developed. Usually, they are symmetrical cutting tools. A milling cutting tool that can be reconfigured due to its modularity and still keeps its symmetry becomes more interesting and useful for machining. The paper presents such a new concept in a computer aided design (CAD) model of a cutting tool based on some novel features. The tool itself is designed as a modular complex. The way the torque is transmitted from the shaft to the elementary cutters is an original one, as they are joined together based on a profiled assembling. The profile is one formed of filleted circular sectors and segments. The reaming of the elementary cutters has two sections each of them assuming a task: transmitting the torque, and precisely centring, respectively. The cooling system, which is a component of the tool, provides the cutting area with coolant both on the front and side face of the cutting tool. Some nozzles placed around the cutting tool send jets or curtains of coolant towards the side surface of the cutter, instead of parallel, as some existing solutions do.
    [Show full text]
  • Geometric Modeling of Engineered Abrasive Processes Andres L
    Rochester Institute of Technology RIT Scholar Works Articles 2005 Geometric Modeling of Engineered Abrasive Processes Andres L. Carrano Rochester Institute of Technology James B. Taylor Rochester Institute of Technology Follow this and additional works at: http://scholarworks.rit.edu/article Recommended Citation Carrano AL, Taylor JB. Geometric modeling of engineered abrasive processes. J Manuf Process 2005;7(1):17–27. https://doi.org/ 10.1016/S1526-6125(05)70078-5 This Article is brought to you for free and open access by RIT Scholar Works. It has been accepted for inclusion in Articles by an authorized administrator of RIT Scholar Works. For more information, please contact [email protected]. *Geometric Modeling of Engineered Abrasive Processes* Carrano, Andres L Abstract One of the common issues that arises in abrasive machining is the inconsistency of the surface roughness within the same batch and under identical machining conditions. Recent advances in engineered abrasives have allowed replacement of the random arrangement of minerals on conventional belts with precisely shaped structures uniformly cast directly onto a backing material. This allows for abrasive belts that are more deterministic in shape, size, distribution, orientation, and composition. A computer model based on known tooling geometry was developed to approximate the asymptotic surface profile that was achievable under specific loading conditions. Outputs included the theoretical surface parameters, R^sub q^, R^sub a^, R^sub v^, R^sub p^, R^sub t^, and R^sub sk^. Experimental validation was performed with a custom-made abrader apparatus and using engineered abrasives on highly polished aluminum samples. Interferometric microscopy was used in assessing the surface roughness.
    [Show full text]
  • Milling Machine Operations
    SUBCOURSE EDITION OD1644 8 MILLING MACHINE OPERATIONS US ARMY WARRANT OFFICER ADVANCED COURSE MOS/SKILL LEVEL: 441A MILLING MACHINE OPERATIONS SUBCOURSE NO. OD1644 EDITION 8 US Army Correspondence Course Program 6 Credit Hours NEW: 1988 GENERAL The purpose of this subcourse is to introduce the student to the setup, operations and adjustments of the milling machine, which includes a discussion of the types of cutters used to perform various types of milling operations. Six credit hours are awarded for successful completion of this subcourse. Lesson 1: MILLING MACHINE OPERATIONS TASK 1: Describe the setup, operation, and adjustment of the milling machine. TASK 2: Describe the types, nomenclature, and use of milling cutters. i MILLING MACHINE OPERATIONS - OD1644 TABLE OF CONTENTS Section Page TITLE................................................................. i TABLE OF CONTENTS..................................................... ii Lesson 1: MILLING MACHINE OPERATIONS............................... 1 Task 1: Describe the setup, operation, and adjustment of the milling machine............................ 1 Task 2: Describe the types, nomenclature, and use of milling cutters....................................... 55 Practical Exercise 1............................................. 70 Answers to Practical Exercise 1.................................. 72 REFERENCES............................................................ 74 ii MILLING MACHINE OPERATIONS - OD1644 When used in this publication "he," "him," "his," and "men" represent both
    [Show full text]
  • A Gentle Introduction to Abrasive (Waterjet) Machining Brought to You by the MIT Fablab Staff
    A Gentle Introduction to Abrasive (Waterjet) Machining Brought to you by the MIT FabLab Staff. In this brief two part tutorial we will give you a jump start toward making your first project parts utilizing the Department of Architecture’s new OMAX waterjet machine. In Part I we assume that you have access to a computer running the OMAX Layout software required to define new geometry or import your previously defined part geometry and then create tool paths based on this geometry. In Part II we assume that you have access to the actual waterjet machine itself, the OMAX Make software which controls the physical machine, as well as knowledgeable lab monitor or staff member who’ll be able to help with any questions or safety issues that might arise. First, a little background information about abrasive machining: The OMAX 2652 is a relatively new type of machine tool which uses a very high pressure (> 50k psi) stream of water and garnet abrasive to cut virtually any kind of material by eroding the material along an arbitrarily complex tool path that you define, leaving a thin (~0.025”), kerf. Both thin and thick materials such as aluminum, steel and stainless steel, plastics such Plexiglas and Lexan, rubber, brick and glass, and even wood may be cut on a waterjet. Material thickness can range from 1/16” through 4”, even when cutting very hard materials. Some special precautions and procedures are required for cutting brittle or very thin materials. The procedures and techniques required to use the OMAX waterjet are pretty straightforward and quick to learn.
    [Show full text]
  • New Products 2021
    NEW PRODUCTS 2021 CONTENTS 8 SOLID MILLING CUTTERS • S7 - TROCHOIDAL 5-FLUTE CUTTERS • S7 - HIGH PERFORMANCE END MILLS • S791 - BARREL END MILL • S6 - ALUMINIUM END MILLS • S561 - HARD MILLING CUTTER 42 TNGX 16 • ECONOMICAL MILLING CUTTERS AND INSERTS 52 GL • PARTING-OFF & GROOVING TOOLS AND INSERTS 66 T8430 • NEW GENERATION PVD GRADE 1 Ultimate Hardness Examples of material ISO group Tensile Strength WMG (Work Material Group) (HB or HRC) (AISI, EN, DIN, SS, STN, BS, UNE, CN, AFNOR, GOST, UNI...) (MPa) AISI 1108, EN 15S22, DIN 1.0723, SS 1922, ČSN 11120, BS 210A15, UNE F.210F, GB Y15, AFNOR 10F1, GOST A30, P1.1 sulfurized < 240 HB ≤ 830 UNI CF10S20 Free machining steel AISI 1211, EN 11SMn30, DIN 1.0715, SS 1912, ČSN 11109, BS 230M7, UNE F.2111, GB Y15, AFNOR S250, GOST A40G, P1.2 sulfurized and phosphorized < 180 HB ≤ 620 P1 (carbon steels with increased machinability) UNI CF9SMn28 sulfurized/phosphorized AISI 12L13, EN 11SMnPb30, DIN 1.0718, SS 1914, ČSN 12110, BS 210M16, UNE F.2114, GB Y15Pb, AFNOR S250Pb, P1.3 < 180 HB ≤ 620 and leaded GOST AS35G2, UNI CF10SPb20 P2.1 containing <0.25%C < 180 HB ≤ 620 AISI 1015, EN C15, DIN 1.0401, SS 1350, ČSN 11301 , BS 080A15, UNE F.111, GB 15, AFNOR C18RR, GOST St2ps, UNI Fe360 Plain carbon steel AISI 1030, EN C30, DIN 1.0528, SS 1550, ČSN 12031, BS 080M32, UNE F.1130, GB 30, AFNOR AF50C30, GOST 30G, P2.2 containing <0.55%C < 240 HB ≤ 830 P2 (steels comprised of mainly iron and carbon) UNI Fe590 P2.3 containing >0.55%C < 300 HB ≤ 1030 AISI 1060, EN C60, DIN 1.0601, SS 1655, ČSN 12061, BS 080A62,
    [Show full text]
  • Full Catalog
    Catalog Contents: Profile and Copy Milling Program Inch 6 • Metric 58 Graphite Machining Program Inch 8 • Metric 60 PCD & CBN Inserts Inch 18 • Metric 72 Copy Milling / Button Insert Cutters Inch 24 • Metric 77 APKT Square Shoulder Cutters Inch 28 • Metric 82 Aluminum Milling Cutters Inch 30 • Metric 83 High Feed Indexable Milling Program Inch 32 • Metric 87 Solid Carbide End Mill Program Inch 39 • Metric 97 SD Collet & HM Milling Chucks Inch 50 • Metric 117 Catalog Contents Catalog Millstar is an industry leader in producing die and mold profile tooling and solid carbide tools. Millstar tools are designed for conventional profile machining, and high speed and hard milling with modern machine tools and methods. Millstar Profile Milling Tools represent the latest in profile and contour milling technology, resulting in shorter machining and lead times, higher machining accuracy and true contouring results. Customers include die and mold machining companies, aluminum extrusion companies, high speed machining mold makers, and aerospace and medical component industries. Insert tooling is typically used in roughing and finishing applications. The Millstar product line is manufactured in the USA, and all tools are fully traceable. Nearly six decades of cutting tool design and manufacturing for automotive, aerospace and many other industries, as well as special design capabilities using 3-D CAD allow us to respond quickly to requests for special designs. The Millstar Story The 1 Insert Overview The Inserts • Choose from side-cutting ball nose Rock Solid Insert Millstar inserts are fully ground inserts with 180 degree nose radius, Clamping and popular ball nose inserts with a precision inserts for better chip control, Cutting insert clamping is highly cutting edge covering 230 degrees faster metal removal and higher surface accurate and rigid.
    [Show full text]
  • Machining of Aluminum and Aluminum Alloys / 763
    ASM Handbook, Volume 16: Machining Copyright © 1989 ASM International® ASM Handbook Committee, p 761-804 All rights reserved. DOI: 10.1361/asmhba0002184 www.asminternational.org MachJning of Aluminum and AlumJnum Alloys ALUMINUM ALLOYS can be ma- -r.. _ . lul Tools with small rake angles can normally chined rapidly and economically. Because be used with little danger of burring the part ," ,' ,,'7.,','_ ' , '~: £,~ " ~ ! f / "' " of their complex metallurgical structure, or of developing buildup on the cutting their machining characteristics are superior ,, A edges of tools. Alloys having silicon as the to those of pure aluminum. major alloying element require tools with The microconstituents present in alumi- larger rake angles, and they are more eco- num alloys have important effects on ma- nomically machined at lower speeds and chining characteristics. Nonabrasive con- feeds. stituents have a beneficial effect, and ,o IIR Wrought Alloys. Most wrought alumi- insoluble abrasive constituents exert a det- num alloys have excellent machining char- rimental effect on tool life and surface qual- acteristics; several are well suited to multi- ity. Constituents that are insoluble but soft B pie-operation machining. A thorough and nonabrasive are beneficial because they e,,{' , understanding of tool designs and machin- assist in chip breakage; such constituents s,~ ,.t ing practices is essential for full utilization are purposely added in formulating high- of the free-machining qualities of aluminum strength free-cutting alloys for processing in alloys. high-speed automatic bar and chucking ma- Strain-hardenable alloys (including chines. " ~ ~p /"~ commercially pure aluminum) contain no In general, the softer ailoys~and, to a alloying elements that would render them lesser extent, some of the harder al- c • o c hardenable by solution heat treatment and ,p loys--are likely to form a built-up edge on precipitation, but they can be strengthened the cutting lip of the tool.
    [Show full text]
  • Precision Tools for Milling, Drilling and Cutting of Fiber-Reinforced Plastics
    MAGENTIFY COMPOSITE PROCESSING COMPOSITE MACHINING Precision tools for milling, drilling and cutting of fiber-reinforced plastics www.leuco.com FIBER-REINFORCED PLASTICS & WOOD WHY LEUCO? DRILL BITS & COUNTERSINKS Drilling into fiber-reinforced plastics leads to significant wear of common carbide drill bits or delamination of the component. LEUCO offers a special patented drill bit geometry in tungsten carbide, combining long tool life with excellent machining quality. Its range also includes dia- mond-tipped drill bits for long edge life in abrasive materials. MILLING CUTTERS Milling of fiber-reinforced plastics is done in many industries, with very different requirements for milling tools. What material is to be machined? What machining method is to be used? Using robust and rigid CNC machines or more unstable robots? LEUCO offers a vast range of shank-type cutters for ma- chining composites. The range of tools extends from simple double-edge shank-type cutters for standard applications to the patented p-System cutter fea- turing excellent edge life and cutting quality. This range is supplemented by cutters with a large number of teeth, which allow high cutting speeds and can therefore be used very economically. SAW BLADES Sawing is the most effective machining method for long straight contours. This method is still rather unknown for fiber-reinforced plastics. LEUCO saw blades achieve good cutting quality at high feed rates. This combination is made possible by the saw tooth geometry of LEUCO nn-System and g5-System tools, which allows for scoring. ACCESSORIES But tools are not alone responsible for successful machining. Often, it is only by intelligently combining tools, chucks and, if applicable, aggregate technology that the optimal and most economical machining results are achieved.
    [Show full text]