Lyle, JM, Bell, JD, Chuwen, BM, Barrett, N, Tracey, SR & Buxton, C

Total Page:16

File Type:pdf, Size:1020Kb

Lyle, JM, Bell, JD, Chuwen, BM, Barrett, N, Tracey, SR & Buxton, C Assessing the impacts of gillnetting in Tasmania: Implications for by-catch and biodiversity Jeremy M. Lyle, Justin D. Bell, Ben M. Chuwen, Neville Barrett, Sean R. Tracey, Colin D. Buxton August 2014 FRDC Project No 2010/016 FRDC 2010/016 - Impacts of gillnetting © 2014 Fisheries Research and Development Corporation. All rights reserved. ISBN 978-1-86295-758-9 Assessing the impacts of gillnetting in Tasmania: implications for by-catch and biodiversity 2010/016 June 2014 Ownership of Intellectual property rights Unless otherwise noted, copyright (and any other intellectual property rights, if any) in this publication is owned by the Fisheries Research and Development Corporation and the Institute for Marine and Antarctic Studies, University of Tasmania. This publication (and any information sourced from it) should be attributed to ‘Lyle, J.M., Bell, J.D., Chuwen, B.M, Barrett, N., Tracey, S.R., and Buxton, C.D., Institute for Marine and Antarctic Studies, University of Tasmania, 2014, Assessing the impacts of gillnetting in Tasmania: implications for by-catch and biodiversity, Hobart, August, CC BY 3.0’. Creative Commons licence All material in this publication is licensed under a Creative Commons Attribution 3.0 Australia Licence, save for content supplied by third parties, logos and the Commonwealth Coat of Arms. Creative Commons Attribution 3.0 Australia Licence is a standard form licence agreement that allows you to copy, distribute, transmit and adapt this publication provided you attribute the work. A summary of the licence terms is available from creativecommons.org/licenses/by/3.0/au/deed.en. The full licence terms are available from creativecommons.org/licenses/by/3.0/au/legalcode. Inquiries regarding the licence and any use of this document should be sent to: [email protected]. Disclaimer The authors do not warrant that the information in this document is free from errors or omissions. The authors do not accept any form of liability, be it contractual, tortious, or otherwise, for the contents of this document or for any consequences arising from its use or any reliance placed upon it. The information, opinions and advice containe d in this document may not relate, or be relevant, to a readers particular circumstances. Opinions expressed by the authors are the individual opinions expressed by those persons and are not necessarily those of the publisher, research provider or the FRDC. The Fisheries Research and Development Corporation plans, invests in and manages fisheries research and development throughout Australia. It is a statutory authority within the portfolio of the federal Minister for Agriculture, Fisheries and Forestry, jointly funded by the Australian Government and the fishing industry. Researcher Contact Details FRDC Contact Details Name: Jeremy Lyle Address: 25 Geils Court Address: Nubeena Crescent Deakin ACT 2600 Taroona TAS Phone: 02 6285 0400 Phone: +61 3 62 277 255 Fax: 02 6285 0499 Fax: +61 3 62 278 035 Email: [email protected] Email: [email protected] Web: www.frdc.com.au In submitting this report, the researcher has agreed to FRDC publishing this material in its edited form. FRDC 2010/016 - Impacts of gillnetting Contents List of tables ............................................................................ iv List of Figures ........................................................................ vii Acknowledgments .................................................................. ix Abbreviations ........................................................................... x Executive Summary ................................................................ xi Introduction .............................................................................. 1 Tasmanian gillnet fisheries ............................................................................................................... 1 Management of gillnet fishing in Tasmania ...................................................................................... 1 By-catch ............................................................................................................................................ 3 Post release survival .......................................................................................................................... 3 Need .................................................................................................................................................. 4 Objectives ................................................................................. 5 Methodology ............................................................................. 6 Overview ........................................................................................................................................... 6 Research fishing ................................................................................................................................ 6 Commercial catch sampling .............................................................................................................. 7 Effects of gillnet soak time on capture condition .............................................................................. 8 Effects of fish size on how fish are meshed ...................................................................................... 9 Post release survival of gillnet caught fish ........................................................................................ 9 Physiological effects of gillnet capture ........................................................................................... 10 Spatial and temporal variation in the abundance and diversity of fish communities ...................... 11 Threatened, endangered and protected species analysis ................................................................. 12 Recreational fisher survey ............................................................................................................... 13 Ecological risk assessment .............................................................................................................. 13 Results .................................................................................... 16 Tasmanian gillnet fisheries ............................................................................................................. 16 Condition and survival of gillnet caught fish .................................................................................. 27 Estimating post release survival using mark-recapture techniques ................................................. 40 Physiological effects of gillnet capture ........................................................................................... 43 Interactions with threatened, endangered and protected species and habitat .................................. 47 Variation in the abundance and diversity of fish communities with links to gillnetting ................. 52 Motivations, behaviour and attitudes of recreational gillnet fishers ............................................... 68 Ecological risk assessment .............................................................................................................. 81 Discussion ............................................................................ 102 Catch and by-catch in Tasmanian gillnet fisheries ........................................................................ 102 Condition and survival of gillnet caught fish ................................................................................ 104 Estimating post release survival using mark-recapture techniques ............................................... 108 Page ii FRDC 2010/016 - Impacts of gillnetting Physiological effects of gillnet capture .......................................................................................... 109 Interactions with threatened, endangered and protected species ................................................... 111 Interactions with habitat ................................................................................................................. 114 Variation in the abundance and diversity of fish communities with links to gillnetting ............... 114 Motivations, behaviour and attitudes of recreational gillnet fishers .............................................. 117 Ecological risk assessment ............................................................................................................. 119 Conclusion ........................................................................... 122 Implications .......................................................................... 125 Recommendations ............................................................... 127 Further development ...................................................................................................................... 129 Extension and Adoption ..................................................... 129 Project coverage ............................................................................................................................. 131 Appendix 1: Staff list ........................................................... 132 Appendix 2: Intellectual Property ....................................... 132 Appendix 3: Data summaries and additional statistical analyses ................................................................................ 133 Appendix 4: References ...................................................... 164 Page iii FRDC 2010/016
Recommended publications
  • Shark Cartilage, Cancer and the Growing Threat of Pseudoscience
    [CANCER RESEARCH 64, 8485–8491, December 1, 2004] Review Shark Cartilage, Cancer and the Growing Threat of Pseudoscience Gary K. Ostrander,1 Keith C. Cheng,2 Jeffrey C. Wolf,3 and Marilyn J. Wolfe3 1Department of Biology and Department of Comparative Medicine, Johns Hopkins University, Baltimore, Maryland; 2Jake Gittlen Cancer Research Institute, Penn State College of Medicine, Hershey, Pennsylvania; and 3Registry of Tumors in Lower Animals, Experimental Pathology Laboratories, Inc., Sterling, Virginia Abstract primary justification for using crude shark cartilage extracts to treat cancer is based on the misconception that sharks do not, or infre- The promotion of crude shark cartilage extracts as a cure for cancer quently, develop cancer. Other justifications represent overextensions has contributed to at least two significant negative outcomes: a dramatic of experimental observations: concentrated extracts of cartilage can decline in shark populations and a diversion of patients from effective cancer treatments. An alleged lack of cancer in sharks constitutes a key inhibit tumor vessel formation and tumor invasions (e.g., refs. 2–5). justification for its use. Herein, both malignant and benign neoplasms of No available data or arguments support the medicinal use of crude sharks and their relatives are described, including previously unreported shark extracts to treat cancer (6). cases from the Registry of Tumors in Lower Animals, and two sharks with The claims that sharks do not, or rarely, get cancer was originally two cancers each. Additional justifications for using shark cartilage are argued by I. William Lane in a book entitled “Sharks Don’t Get illogical extensions of the finding of antiangiogenic and anti-invasive Cancer” in 1992 (7), publicized in “60 Minutes” television segments substances in cartilage.
    [Show full text]
  • Parks Victoria Technical Series No
    Deakin Research Online This is the published version: Barton, Jan, Pope, Adam and Howe, Steffan 2012, Marine protected areas of the Flinders and Twofold Shelf bioregions Parks Victoria, Melbourne, Vic. Available from Deakin Research Online: http://hdl.handle.net/10536/DRO/DU:30047221 Reproduced with the kind permission of the copyright owner. Copyright: 2012, Parks Victoria. Parks Victoria Technical Paper Series No. 79 Marine Natural Values Study (Vol 2) Marine Protected Areas of the Flinders and Twofold Shelf Bioregions Jan Barton, Adam Pope and Steffan Howe* School of Life & Environmental Sciences Deakin University *Parks Victoria August 2012 Parks Victoria Technical Series No. 79 Flinders and Twofold Shelf Bioregions Marine Natural Values Study EXECUTIVE SUMMARY Along Victoria’s coastline there are 30 Marine Protected Areas (MPAs) that have been established to protect the state’s significant marine environmental and cultural values. These MPAs include 13 Marine National Parks (MNPs), 11 Marine Sanctuaries (MSs), 3 Marine and Coastal Parks, 2 Marine Parks, and a Marine Reserve, and together these account for 11.7% of the Victorian marine environment. The highly protected Marine National Park System, which is made up of the MNPs and MSs, covers 5.3% of Victorian waters and was proclaimed in November 2002. This system has been designed to be representative of the diversity of Victoria’s marine environment and aims to conserve and protect ecological processes, habitats, and associated flora and fauna. The Marine National Park System is spread across Victoria’s five marine bioregions with multiple MNPs and MSs in each bioregion, with the exception of Flinders bioregion which has one MNP.
    [Show full text]
  • Report on the Status of Mediterranean Chondrichthyan Species
    United Nations Environment Programme Mediterranean Action Plan Regional Activity Centre For Specially Protected Areas REPORT ON THE STATUS OF MEDITERRANEAN CHONDRICHTHYAN SPECIES D. CEBRIAN © L. MASTRAGOSTINO © R. DUPUY DE LA GRANDRIVE © Note : The designations employed and the presentation of the material in this document do not imply the expression of any opinion whatsoever on the part of UNEP concerning the legal status of any State, Territory, city or area, or of its authorities, or concerning the delimitation of their frontiers or boundaries. © 2007 United Nations Environment Programme Mediterranean Action Plan Regional Activity Centre for Specially Protected Areas (RAC/SPA) Boulevard du leader Yasser Arafat B.P.337 –1080 Tunis CEDEX E-mail : [email protected] Citation: UNEP-MAP RAC/SPA, 2007. Report on the status of Mediterranean chondrichthyan species. By Melendez, M.J. & D. Macias, IEO. Ed. RAC/SPA, Tunis. 241pp The original version (English) of this document has been prepared for the Regional Activity Centre for Specially Protected Areas (RAC/SPA) by : Mª José Melendez (Degree in Marine Sciences) & A. David Macías (PhD. in Biological Sciences). IEO. (Instituto Español de Oceanografía). Sede Central Spanish Ministry of Education and Science Avda. de Brasil, 31 Madrid Spain [email protected] 2 INDEX 1. INTRODUCTION 3 2. CONSERVATION AND PROTECTION 3 3. HUMAN IMPACTS ON SHARKS 8 3.1 Over-fishing 8 3.2 Shark Finning 8 3.3 By-catch 8 3.4 Pollution 8 3.5 Habitat Loss and Degradation 9 4. CONSERVATION PRIORITIES FOR MEDITERRANEAN SHARKS 9 REFERENCES 10 ANNEX I. LIST OF CHONDRICHTHYAN OF THE MEDITERRANEAN SEA 11 1 1.
    [Show full text]
  • Elasmobranch Biodiversity, Conservation and Management Proceedings of the International Seminar and Workshop, Sabah, Malaysia, July 1997
    The IUCN Species Survival Commission Elasmobranch Biodiversity, Conservation and Management Proceedings of the International Seminar and Workshop, Sabah, Malaysia, July 1997 Edited by Sarah L. Fowler, Tim M. Reed and Frances A. Dipper Occasional Paper of the IUCN Species Survival Commission No. 25 IUCN The World Conservation Union Donors to the SSC Conservation Communications Programme and Elasmobranch Biodiversity, Conservation and Management: Proceedings of the International Seminar and Workshop, Sabah, Malaysia, July 1997 The IUCN/Species Survival Commission is committed to communicate important species conservation information to natural resource managers, decision-makers and others whose actions affect the conservation of biodiversity. The SSC's Action Plans, Occasional Papers, newsletter Species and other publications are supported by a wide variety of generous donors including: The Sultanate of Oman established the Peter Scott IUCN/SSC Action Plan Fund in 1990. The Fund supports Action Plan development and implementation. To date, more than 80 grants have been made from the Fund to SSC Specialist Groups. The SSC is grateful to the Sultanate of Oman for its confidence in and support for species conservation worldwide. The Council of Agriculture (COA), Taiwan has awarded major grants to the SSC's Wildlife Trade Programme and Conservation Communications Programme. This support has enabled SSC to continue its valuable technical advisory service to the Parties to CITES as well as to the larger global conservation community. Among other responsibilities, the COA is in charge of matters concerning the designation and management of nature reserves, conservation of wildlife and their habitats, conservation of natural landscapes, coordination of law enforcement efforts as well as promotion of conservation education, research and international cooperation.
    [Show full text]
  • Nowhere Else on Earth
    Nowhere Else on Earth: Tasmania’s Marine Natural Values Environment Tasmania is a not-for-profit conservation council dedicated to the protection, conservation and rehabilitation of Tasmania’s natural environment. Australia’s youngest conservation council, Environment Tasmania was established in 2006 and is a peak body representing over 20 Tasmanian environment groups. Prepared for Environment Tasmania by Dr Karen Parsons of Aquenal Pty Ltd. Report citation: Parsons, K. E. (2011) Nowhere Else on Earth: Tasmania’s Marine Natural Values. Report for Environment Tasmania. Aquenal, Tasmania. ISBN: 978-0-646-56647-4 Graphic Design: onetonnegraphic www.onetonnegraphic.com.au Online: Visit the Environment Tasmania website at: www.et.org.au or Ocean Planet online at www.oceanplanet.org.au Partners: With thanks to the The Wilderness Society Inc for their financial support through the WildCountry Small Grants Program, and to NRM North and NRM South. Front Cover: Gorgonian fan with diver (Photograph: © Geoff Rollins). 2 Waterfall Bay cave (Photograph: © Jon Bryan). Acknowledgements The following people are thanked for their assistance The majority of the photographs in the report were with the compilation of this report: Neville Barrett of the generously provided by Graham Edgar, while the following Institute for Marine and Antarctic Studies (IMAS) at the additional contributors are also acknowledged: Neville University of Tasmania for providing information on key Barrett, Jane Elek, Sue Wragge, Chris Black, Jon Bryan, features of Tasmania’s marine
    [Show full text]
  • Petition to List
    Petition to List the Northwest Atlantic Distinct Population Segment (DPS) of the Thorny Skate (Amblyraja radiata) as Endangered or Threatened or, alternatively, to List the United States DPS of the Thorny Skate as Endangered or Threatened under the U.S. Endangered Species Act Photograph by Bernd Ueberschaer Submitted to the United States Secretary of Commerce, Administrator of the National Oceanic and Atmospheric Administration, and the National Marine Fisheries Service Petitioners: Animal Welfare Institute Defenders of Wildlife 900 Pennsylvania Ave. SE 130 17th St NW Washington, DC 20003 Washington, DC 20036 May 28, 2015 i Executive Summary The Animal Welfare Institute and Defenders of Wildlife (Petitioners) hereby petition the Secretary of Commerce, the Administrator of the National Oceanic and Atmospheric Administration, and the Assistant Administrator for Fisheries of the National Oceanic and Atmospheric Administration, to list the Northwest Atlantic population of thorny skate (Amblyraja radiata) as an endangered or threatened Distinct Population Segment (DPS), pursuant to the Endangered Species Act (ESA) (16 U.S.C. § 1531–44). In the alternative, Petitioners request NMFS to list a U.S. DPS of the thorny skate as a threatened or endangered species. In addition, Petitioners seek the designation of critical habitat concurrently with any listing of the thorny skate, as authorized by statute. The thorny skate is a “K‐selected” species, meaning it is relatively long‐lived, reaches sexual maturity later in life, and has a low fecundity rate. These life history characteristics limit the species’ ability to recover in response to abrupt population declines, and render it particularly vulnerable to overexploitation. Thorny skate populations throughout the Northwest Atlantic have declined precipitously over the past four decades.
    [Show full text]
  • Dynamic Distributions of Coastal Zooplanktivorous Fishes
    Dynamic distributions of coastal zooplanktivorous fishes Matthew Michael Holland A thesis submitted in fulfilment of the requirements for a degree of Doctor of Philosophy School of Biological, Earth and Environmental Sciences Faculty of Science University of New South Wales, Australia November 2020 4/20/2021 GRIS Welcome to the Research Alumni Portal, Matthew Holland! You will be able to download the finalised version of all thesis submissions that were processed in GRIS here. Please ensure to include the completed declaration (from the Declarations tab), your completed Inclusion of Publications Statement (from the Inclusion of Publications Statement tab) in the final version of your thesis that you submit to the Library. Information on how to submit the final copies of your thesis to the Library is available in the completion email sent to you by the GRS. Thesis submission for the degree of Doctor of Philosophy Thesis Title and Abstract Declarations Inclusion of Publications Statement Corrected Thesis and Responses Thesis Title Dynamic distributions of coastal zooplanktivorous fishes Thesis Abstract Zooplanktivorous fishes are an essential trophic link transferring planktonic production to coastal ecosystems. Reef-associated or pelagic, their fast growth and high abundance are also crucial to supporting fisheries. I examined environmental drivers of their distribution across three levels of scale. Analysis of a decade of citizen science data off eastern Australia revealed that the proportion of community biomass for zooplanktivorous fishes peaked around the transition from sub-tropical to temperate latitudes, while the proportion of herbivores declined. This transition was attributed to high sub-tropical benthic productivity and low temperate planktonic productivity in winter.
    [Show full text]
  • Rapid Assessment of Sustainability for Ecological Risk of Shark and Other
    Rapid assessment of sustainability for ecological risk of shark and other chondrichthyan bycatch species taken in the Southern and Eastern Scalefish and Shark Fishery Terence I. Walker, John D. Stevens, J. Matias Braccini, Ross K. Daley, Charlie Huveneers, Sarah B. Irvine, Justin D. Bell, Javier Tovar‐Ávila, Fabian I. Trinnie, David T. Phillips, Michelle A. Treloar, Cynthia A. Awruck, Anne S. Gason, John Salini, and William C. Hamlett Project No. 2002/033 Rapid assessment of sustainability for ecological risk of shark and other chondrichthyan bycatch species taken in the Southern and Eastern Scalefish and Shark Fishery Terence I. Walker, John D. Stevens, J. Matias Braccini, Ross K. Daley, Charlie Huveneers, Sarah B. Irvine, Justin D. Bell, Javier Tovar‐ Ávila, Fabian I. Trinnie, David T. Phillips, Michelle A. Treloar, Cynthia A. Awruck, Anne S. Gason, John Salini, and William C. Hamlett July 2008 Project Number 2002/033 Rapid assessment of sustainability for ecological risk of shark and other chondrichthyan bycatch species taken in the Southern and Eastern Scalefish and Shark Fishery FRDC Report 2002/033 Terence I. Walker, John D. Stevens, J. Matias Braccini, Ross J. Daley, Charlie Huveneers, Sarah B. Irvine, Justin D. Bell, Javier Tovar‐ Ávila, Fabian I. Trinnie, David T. Phillips, Michelle A. Treloar, Cynthia A. Awruck, Anne S. Gason, John Salini, and Hamlett, W. C. Published by Department of Primary Industries, Fisheries Research Brand, Queenscliff, Victoria, 3225. © Fisheries Research and Development Corporation, and Fisheries Victoria. 2008 This work is copyright. Except as permitted under the Copyright Act 1968 (Cth), no part of this publication may be reproduced by any process, electronic or otherwise, without the specific written permission of the copyright owners.
    [Show full text]
  • Report of the Workshop on Deep-Sea Species Identification, Rome, 2–4 December 2009
    FAO Fisheries and Aquaculture Report No. 947 FIRF/R947 (En) ISSN 2070-6987 Report of the WORKSHOP ON DEEP-SEA SPECIES IDENTIFICATION Rome, Italy, 2–4 December 2009 Cover photo: An aggregation of the hexactinellid sponge Poliopogon amadou at the Great Meteor seamount, Northeast Atlantic. Courtesy of the Task Group for Maritime Affairs, Estrutura de Missão para os Assuntos do Mar – Portugal. Copies of FAO publications can be requested from: Sales and Marketing Group Office of Knowledge Exchange, Research and Extension Food and Agriculture Organization of the United Nations E-mail: [email protected] Fax: +39 06 57053360 Web site: www.fao.org/icatalog/inter-e.htm FAO Fisheries and Aquaculture Report No. 947 FIRF/R947 (En) Report of the WORKSHOP ON DEEP-SEA SPECIES IDENTIFICATION Rome, Italy, 2–4 December 2009 FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS Rome, 2011 The designations employed and the presentation of material in this Information product do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations (FAO) concerning the legal or development status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. The mention of specific companies or products of manufacturers, whether or not these have been patented, does not imply that these have been endorsed or recommended by FAO in preference to others of a similar nature that are not mentioned. The views expressed in this information product are those of the author(s) and do not necessarily reflect the views of FAO.
    [Show full text]
  • Description of Key Species Groups in the East Marine Region
    Australian Museum Description of Key Species Groups in the East Marine Region Final Report – September 2007 1 Table of Contents Acronyms........................................................................................................................................ 3 List of Images ................................................................................................................................. 4 Acknowledgements ....................................................................................................................... 5 1 Introduction............................................................................................................................ 6 2 Corals (Scleractinia)............................................................................................................ 12 3 Crustacea ............................................................................................................................. 24 4 Demersal Teleost Fish ........................................................................................................ 54 5 Echinodermata..................................................................................................................... 66 6 Marine Snakes ..................................................................................................................... 80 7 Marine Turtles...................................................................................................................... 95 8 Molluscs ............................................................................................................................
    [Show full text]
  • A Tale on the Demersal and Bottom Dwelling Chondrichthyes in the South of Sicily
    Chapter 2 A Tale on the Demersal in the South and Bottom of Sicily Dwelling through 20 Years Chondrichthyesof Scientific Survey in the South of Sicily through 20 Years of Scientific Survey Michele Luca Geraci, Sergio Ragonese, MicheleGiacomo LucaNorrito, Geraci, Danilo SergioScannella, Ragonese, Fabio Falsone and Sergio Vitale Giacomo Norrito, Danilo Scannella, AdditionalFabio Falsone information and is availableSergio atVitale the end of the chapter Additional information is available at the end of the chapter http://dx.doi.org/10.5772/intechopen.69333 Abstract In the present work, an overview of the demersal (sharks‐chimaera) and bottom dwelling (batoids) of experimental survey international bottom trawl survey in them editerranean (MEDITS) data, from 1994 to 2013, is provided. The analysed data refer to a wide area located off the southern coast of Sicily, namely south of Sicily (according to the general fisheries com‐ mission for the mediterranean (GFCM) classification, Geographical Sub‐Area 16). A checklist of the recorded Chondrichthyes was integrated by density index, D.I. (N/Km2) and average individual weight (as the ratiobetween biomass index, D.I. (N/Km2) and D.I.). Results sug‐ gest that most of the Chondrichthyes in South of Sicily are in a steady state, although in the last few years, they seemed to recover. The spatial distribution of sharks‐chimaera in the geographical sub‐area (GSA) 16 is mainly concentrated in the southern and north‐western zones. Nevertheless, possible management actions to promote the recovering of these very important ecological and threatened species are discussed. Keywords: sharks, chimaera, batoids, checklist, abundance, South of Sicily, Mediterranean Sea 1.
    [Show full text]
  • A Trophic Model for Gulf St Vincent: Balancing Exploitation of Three Fisheries in an EBFM Framework
    A trophic model for Gulf St Vincent: Balancing exploitation of three fisheries in an EBFM framework Simon D Goldsworthy, Maylene Loo, Anthony Fowler, Michael Steer and Craig Noell April 2017 FRDC Project No. 2013/031 A trophic model for Gulf St Vincent: balancing exploitation of three fisheries ii © 2017 Fisheries Research and Development Corporation and South Australian Research and Development Institute. All rights reserved. ISBN: 978-1-921563-93-5 A trophic model for Gulf St Vincent: Balancing exploitation of three fisheries in an EBFM framework. 2013/031 2017 Ownership of Intellectual property rights Unless otherwise noted, copyright (and any other intellectual property rights, if any) in this publication is owned by the Fisheries Research and Development Corporation and the South Australian Research and Development Institute. This work is copyright. Apart from any use as permitted under the Copyright Act 1968 (Cth), no part may be reproduced by any process, electronic or otherwise, without the specific written permission of the copyright owner. Neither may information be stored electronically in any form whatsoever without such permission. This publication (and any information sourced from it) should be attributed to Goldsworthy, S.D., Loo, M., Fowler, A., Steer, M. and Noell, C. South Australian Research and Development Institute (Aquatic Sciences) 2017, A trophic model for Gulf St Vincent: Balancing exploitation of three fisheries in an EBFM framework. Adelaide, April. Creative Commons licence All material in this publication is licensed under a Creative Commons Attribution 3.0 Australia Licence, save for content supplied by third parties, logos and the Commonwealth Coat of Arms. Creative Commons Attribution 3.0 Australia Licence is a standard form licence agreement that allows you to copy, distribute, transmit and adapt this publication provided you attribute the work.
    [Show full text]