Urochordata, Pyuridae

Total Page:16

File Type:pdf, Size:1020Kb

Urochordata, Pyuridae A preliminary evaluation of the distribution and trophodynamics of demersal fish from Spencer Gulf Report to the South Australian Department for Environment and Heritage SARDI Publication No. F2010/000088-1 SARDI Research Report Series No. 424 David R. Currie and Shirley J. Sorokin SARDI Aquatic Sciences PO Box 120 Henley Beach SA 5022 February 2010 A preliminary evaluation of the distribution and trophodynamics of demersal fish from Spencer Gulf Report to the South Australian Department for Environment and Heritage David R. Currie and Shirley J. Sorokin February 2010 SARDI Publication No. F2010/000088-1 SARDI Research Report Series No. 424 Currie, D.R. and Sorokin, S.J. (2010) Trophodynamics of fish from Spencer Gulf This Publication may be cited as: Currie, D.R. and Sorokin, S.J. (2010). A preliminary evaluation of the distribution and trophodynamics of demersal fish from Spencer Gulf. Report to the South Australian Department for Environment and Heritage. South Australian Research and Development Institute (Aquatic Sciences), Adelaide. SARDI Publication No. F2010/000088-1. South Australian Research and Development Institute SARDI Aquatic Sciences 2 Hamra Avenue West Beach SA 5024 Telephone: (08) 8207 5400 Facsimile: (08) 8207 5406 http://www.sardi.sa.gov.au DISCLAIMER The authors warrant that they have taken all reasonable care in producing this report. The report has been through the SARDI internal review process, and has been formally approved for release by the Chief of Division. Although all reasonable efforts have been made to ensure quality, SARDI does not warrant that the information in this report is free from errors or omissions. SARDI does not accept any liability for the contents of this report or for any consequences arising from its use or any reliance placed upon it. © 2010 SARDI This work is copyright. Apart from any use as permitted under the Copyright Act 1968, no part may be reproduced by any process without prior written permission from the authors. Printed in Adelaide: February 2010 SARDI Publication No. F2010/000088-1 SARDI Research Report Series No. 424 Author(s): Dr David R. Currie and Ms Shirley J. Sorokin Reviewers: Dr Michael A. Steer and Mr Cameron D. Dixon Approved by: Dr Jason E. Tanner Signed: Date: 10 February 2010 Distribution: Public Domain Circulation: SARDI Library SARDI Aquatic Sciences Report - Page I Currie, D.R. and Sorokin, S.J. (2010) Trophodynamics of fish from Spencer Gulf TABLE OF CONTENTS LIST OF FIGURES ..................................................................................................................... III LIST OF TABLES....................................................................................................................... III LIST OF APPENDICES..............................................................................................................IV EXECUTIVE SUMMARY ............................................................................................................. 1 1 INTRODUCTION .................................................................................................................. 4 1.1 BACKGROUND................................................................................................................................................. 4 1.2 OBJECTIVES .................................................................................................................................................... 5 2 METHODS............................................................................................................................ 6 2.1 FISH SAMPLING ............................................................................................................................................... 6 2.2 DIETARY COMPOSITION................................................................................................................................... 6 2.3 STATISTICAL ANALYSES.................................................................................................................................. 8 2.3.1 Data standardisation ............................................................................................................................ 8 2.3.2 Species composition and distribution ................................................................................................... 8 2.3.3 Dietary composition.............................................................................................................................. 9 2.3.4 Trophic model....................................................................................................................................... 9 3 RESULTS ........................................................................................................................... 11 3.1 COMPOSITION AND DISTRIBUTION OF FISH COMMUNITIES ............................................................................. 11 3.1.1 Species abundance, biomass and occurrence ..................................................................................... 11 3.1.2 Environmental linkages ...................................................................................................................... 12 3.1.3 Community structure........................................................................................................................... 15 3.1.4 Regional differences in biomass ......................................................................................................... 19 3.2 FISH DIETS..................................................................................................................................................... 21 3.2.1 Differences in prey composition between species............................................................................... 21 3.2.2 Multivariate analyses of guild structure ............................................................................................. 24 3.3 TROPHIC MODEL............................................................................................................................................ 28 4 DISCUSSION ..................................................................................................................... 32 4.1 SPECIES COMPOSITION AND DISTRIBUTION.................................................................................................... 32 4.2 DIETARY COMPOSITION................................................................................................................................. 33 4.3 TROPHIC MODEL............................................................................................................................................ 34 4.4 FUTURE RESEARCH ....................................................................................................................................... 35 REFERENCES .......................................................................................................................... 36 ACKNOWLEDGEMENTS ......................................................................................................... 41 SARDI Aquatic Sciences Report - Page II Currie, D.R. and Sorokin, S.J. (2010) Trophodynamics of fish from Spencer Gulf LIST OF FIGURES Figure 1. Bathymetric map of Spencer Gulf showing the locations of 120 sites sampled by commercial prawn trawlers during February 2007....................................................................... 7 Figure 2. Bubble plots of demersal fish abundance, biomass and richness at 120 trawl sites in the Spencer Gulf surveyed during February 2007. Note all values presented are standardised to an area of one hectare............................................................................................................... 14 Figure 3. Non-metric MDS plots of a) demersal fish community structure at 120 trawl sites sampled in Spencer Gulf during February 2007, with b) regional symbols superimposed on ordination: green triangles = north (<120 km from top of Gulf (TOG)), blue circles = central (120- 230 km from TOG), red diamonds = south (230-300 km from TOG). ........................................ 17 Figure 4. Map of Spencer Gulf showing the locations of 120 trawl sampling sites surveyed during February 2007, and their classification into three regional groups following MDS ordination of fish biomass. ......................................................................................................... 18 Figure 5. Mean biomass (grams per hectare) of the 10 most common species in each of three regions of Spencer Gulf identified in MDS ordination (Figure 3b).............................................. 21 Figure 6. Dendrogram of similarities (Euclidean distance) in dietary composition of 101 fish species collected from Spencer Gulf. Five feeding guilds are recognised (a = echinoderm specialists, b = piscivorous fish, c = mollusc specialists, d = crustacean specialists, e = worm specialists). ................................................................................................................................26 Figure 7. Proportional biomass of main dietary components in the guts of fish comprising five feeding guilds identified from cluster analysis (a = echinoderm specialists, b = piscivorous fish, c = mollusc specialists, d = crustacean specialists, e = worm specialists). .................................. 28 Figure 8. Estimates of total prey consumption (g ha-1 day-1) by 132 demersal fish in three regions (north, central, south)
Recommended publications
  • Cumacea (Crustacea) from Shallow Waters of Bermuda
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Annalen des Naturhistorischen Museums in Wien Jahr/Year: 2001 Band/Volume: 103B Autor(en)/Author(s): Petrescu I., Sterrer W. Artikel/Article: Cumacea (Crustacea) from shallow waters of Bermuda. 89-128 ©Naturhistorisches Museum Wien, download unter www.biologiezentrum.at Ann. Naturhist. Mus. Wien 103 B 89- 128 Wien, Dezember 2001 Cumacea (Crustacea) from shallow waters of Bermuda I. Petrescu* & W. Sterrer** Abstract Seven species of Cumacea, two new {Cumella somersi sp.n. and Schizotrema wittmanni sp.n.) were identified in samples from shallow waters and sea caves of Bermuda. This is the first record of the genus Schizotrema in the Atlantic Ocean, and the first record of Cumella serrata CALM AN, 1911 and Schizotrema agglutinanta (BÂCESCU, 1971) for Bermuda. The paper includes revisions of all species reported from Bermuda. Keywords: Cumacea, Bermuda, new taxa, revisions. Zusammenfassung Von sieben Cumaceen-Arten aus Seichtwasser- und Meereshöhlenproben von Bermuda sind zwei neu für die Wissenschaft: Cumella somersi sp.n. und Schizotrema wittmanni sp.n. Das Genus Schizotrema wird zum erstenmal aus dem Atlantik vermeldet, und die Arten Cumella serrata CALMAN, 1911 and Schizotrema agglutinanta (BÂCESCU, 1971) zum erstenmal von Bermuda. Alle bisher in Bermuda gefundenen Arten wer- den kritisch revidiert. Introduction Situated at 32°18'N, 64°46'W in the northwestern Atlantic Ocean, the archipelago of Bermuda is made up of approximately 150 islands and islets, with a total land mass of only 50 km2. Despite its high latitude, the oceanic island of Bermuda boasts the north- ernmost coral reef system in the world, largely thanks to the warm Gulf Stream which passes halfway between the island and North America.
    [Show full text]
  • Order BERYCIFORMES ANOPLOGASTRIDAE Anoplogaster
    click for previous page 2210 Bony Fishes Order BERYCIFORMES ANOPLOGASTRIDAE Fangtooths by J.R. Paxton iagnostic characters: Small (to 16 cm) Dberyciform fishes, body short, deep, and compressed. Head large, steep; deep mu- cous cavities on top of head separated by serrated crests; very large temporal and pre- opercular spines and smaller orbital (frontal) spine in juveniles of one species, all disap- pearing with age. Eyes smaller than snout length in adults (but larger than snout length in juveniles). Mouth very large, jaws extending far behind eye in adults; one supramaxilla. Teeth as large fangs in pre- maxilla and dentary; vomer and palatine toothless. Gill rakers as gill teeth in adults (elongate, lath-like in juveniles). No fin spines; dorsal fin long based, roughly in middle of body, with 16 to 20 rays; anal fin short-based, far posterior, with 7 to 9 rays; pelvic fin abdominal in juveniles, becoming subthoracic with age, with 7 rays; pectoral fin with 13 to 16 rays. Scales small, non-overlap- ping, spinose, cup-shaped in adults; lateral line an open groove partly covered by scales. No light organs. Total vertebrae 25 to 28. Colour: brown-black in adults. Habitat, biology, and fisheries: Meso- and bathypelagic. Distinctive caulolepis juvenile stage, with greatly enlarged head spines in one species. Feeding mode as carnivores on crustaceans as juveniles and on fishes as adults. Rare deepsea fishes of no commercial importance. Remarks: One genus with 2 species throughout the world ocean in tropical and temperate latitudes. The family was revised by Kotlyar (1986). Similar families occurring in the area Diretmidae: No fangs, jaw teeth small, in bands; anal fin with 18 to 24 rays.
    [Show full text]
  • TPS23861 IEEE 802.3At Quad Port Power-Over-Ethernet PSE
    Product Order Technical Tools & Support & Folder Now Documents Software Community TPS23861 SLUSBX9I –MARCH 2014–REVISED JULY 2019 TPS23861 IEEE 802.3at Quad Port Power-over-Ethernet PSE Controller 1 Features 3 Description The TPS23861 is an easy-to-use, flexible, 1• IEEE 802.3at Quad Port PSE controller IEEE802.3at PSE solution. As shipped, it – Auto Detect, classification automatically manages four 802.3at ports without the – Auto Turn-On and disconnect need for any external control. – Efficient 255-mΩ sense resistor The TPS23861 automatically detects Powered • Pin-Out enables Two-Layer PCB Devices (PDs) that have a valid signature, determines • Kelvin Current Sensing power requirements according to classification and applies power. Two-event classification is supported • 4-Point detection for type-2 PDs. The TPS23861 supports DC • Automatic mode – as shipped disconnection and the external FET architecture – No External terminal setting required allows designers to balance size, efficiency and – No Initial I2C communication required solution cost requirements. • Semi-Automatic mode – set by I2C command The unique pin-out enables 2-layer PCB designs via logical grouping and clear upper and lower – Continuous Identification and Classification differentiation of I2C and power pins. This delivers – Meets IEEE 400-ms TPON specification best-in-class thermal performance, Kelvin accuracy – Fast-Port shutdown input and low-build cost. – Operates best when used in conjunction with In addition to automatic operation, the TPS23861 system reference code supports Semi-Auto Mode via I2C control for precision http://www.ti.com/product/TPS23861/toolssoftw monitoring and intelligent power management. are Compliance with the 400-ms TPON specification is ensured whether in semi-automatic or automatic • Optional I2C control and monitoring mode.
    [Show full text]
  • Original Sport Performance Indicators in Football 7- A
    Rev.int.med.cienc.act.fís.deporte - vol. 19 - número 74 - ISSN: 1577-0354 Gamonales, J.M.; León, K.; Jiménez, A. y Muñoz, J. (2019) Indicadores de rendimiento deportivo en el fútbol-7 para personas con parálisis cerebral / Sport Performance Indicators in Football 7- A-Side for People with Cerebral Palsy. Revista Internacional de Medicina y Ciencias de la Actividad Física y el Deporte vol. 19 (74) pp. 309-328 Http://cdeporte.rediris.es/revista/revista74/artindicadores1023.htm DOI: http://doi.org/10.15366/rimcafd2019.74.009 ORIGINAL SPORT PERFORMANCE INDICATORS IN FOOTBALL 7- A-SIDE FOR PEOPLE WITH CEREBRAL PALSY INDICADORES DE RENDIMIENTO DEPORTIVO EN EL FÚTBOL-7 PARA PERSONAS CON PARÁLISIS CEREBRAL Gamonales, J.M.1; León, K.1,2; Jiménez, A.1 y Muñoz-Jiménez, J.1,2 1 Facultad de Ciencias de la Actividad Física y el Deporte. Universidad de Extremadura (España) [email protected], [email protected], [email protected], [email protected] 2 Universidad Autónoma de Chile (Chile) [email protected], [email protected] Spanish-English translator: Rocío Domínguez Castells. [email protected] ACKNOWLEDGEMENTS AND/OR FUNDING This work was developed by the Research Group for the Optimization of Training and Sport Performance (Grupo de Optimización del Entrenamiento y Rendimiento Deportivo, G.O.E.R.D.) of the Faculty of Sport Sciences of the University of Extremadura. This work has been supported by the funding for research groups (GR15122) of the Government of Extremadura (Employment and infrastructure officeConsejería de Empleo e Infraestructuras), with the contribution of the European Union through the European Regional Development Fund (ERDF).
    [Show full text]
  • Phylogeny of the Epinephelinae (Teleostei: Serranidae)
    BULLETIN OF MARINE SCIENCE, 52(1): 240-283, 1993 PHYLOGENY OF THE EPINEPHELINAE (TELEOSTEI: SERRANIDAE) Carole C. Baldwin and G. David Johnson ABSTRACT Relationships among epinepheline genera are investigated based on cladistic analysis of larval and adult morphology. Five monophyletic tribes are delineated, and relationships among tribes and among genera of the tribe Grammistini are hypothesized. Generic com- position of tribes differs from Johnson's (1983) classification only in the allocation of Je- boehlkia to the tribe Grammistini rather than the Liopropomini. Despite the presence of the skin toxin grammistin in the Diploprionini and Grammistini, we consider the latter to be the sister group of the Liopropomini. This hypothesis is based, in part, on previously un- recognized larval features. Larval morphology also provides evidence of monophyly of the subfamily Epinephelinae, the clade comprising all epinepheline tribes except Niphonini, and the tribe Grammistini. Larval features provide the only evidence of a monophyletic Epine- phelini and a monophyletic clade comprising the Diploprionini, Liopropomini and Gram- mistini; identification of larvae of more epinephelines is needed to test those hypotheses. Within the tribe Grammistini, we propose that Jeboehlkia gladifer is the sister group of a natural assemblage comprising the former pseudogrammid genera (Aporops, Pseudogramma and Suttonia). The "soapfishes" (Grammistes, Grammistops, Pogonoperca and Rypticus) are not monophyletic, but form a series of sequential sister groups to Jeboehlkia, Aporops, Pseu- dogramma and Suttonia (the closest of these being Grammistops, followed by Rypticus, then Grammistes plus Pogonoperca). The absence in adult Jeboehlkia of several derived features shared by Grammistops, Aporops, Pseudogramma and Suttonia is incongruous with our hypothesis but may be attributable to paedomorphosis.
    [Show full text]
  • New Zealand Fishes a Field Guide to Common Species Caught by Bottom, Midwater, and Surface Fishing Cover Photos: Top – Kingfish (Seriola Lalandi), Malcolm Francis
    New Zealand fishes A field guide to common species caught by bottom, midwater, and surface fishing Cover photos: Top – Kingfish (Seriola lalandi), Malcolm Francis. Top left – Snapper (Chrysophrys auratus), Malcolm Francis. Centre – Catch of hoki (Macruronus novaezelandiae), Neil Bagley (NIWA). Bottom left – Jack mackerel (Trachurus sp.), Malcolm Francis. Bottom – Orange roughy (Hoplostethus atlanticus), NIWA. New Zealand fishes A field guide to common species caught by bottom, midwater, and surface fishing New Zealand Aquatic Environment and Biodiversity Report No: 208 Prepared for Fisheries New Zealand by P. J. McMillan M. P. Francis G. D. James L. J. Paul P. Marriott E. J. Mackay B. A. Wood D. W. Stevens L. H. Griggs S. J. Baird C. D. Roberts‡ A. L. Stewart‡ C. D. Struthers‡ J. E. Robbins NIWA, Private Bag 14901, Wellington 6241 ‡ Museum of New Zealand Te Papa Tongarewa, PO Box 467, Wellington, 6011Wellington ISSN 1176-9440 (print) ISSN 1179-6480 (online) ISBN 978-1-98-859425-5 (print) ISBN 978-1-98-859426-2 (online) 2019 Disclaimer While every effort was made to ensure the information in this publication is accurate, Fisheries New Zealand does not accept any responsibility or liability for error of fact, omission, interpretation or opinion that may be present, nor for the consequences of any decisions based on this information. Requests for further copies should be directed to: Publications Logistics Officer Ministry for Primary Industries PO Box 2526 WELLINGTON 6140 Email: [email protected] Telephone: 0800 00 83 33 Facsimile: 04-894 0300 This publication is also available on the Ministry for Primary Industries website at http://www.mpi.govt.nz/news-and-resources/publications/ A higher resolution (larger) PDF of this guide is also available by application to: [email protected] Citation: McMillan, P.J.; Francis, M.P.; James, G.D.; Paul, L.J.; Marriott, P.; Mackay, E.; Wood, B.A.; Stevens, D.W.; Griggs, L.H.; Baird, S.J.; Roberts, C.D.; Stewart, A.L.; Struthers, C.D.; Robbins, J.E.
    [Show full text]
  • Crustacea, Malacostraca)*
    SCI. MAR., 63 (Supl. 1): 261-274 SCIENTIA MARINA 1999 MAGELLAN-ANTARCTIC: ECOSYSTEMS THAT DRIFTED APART. W.E. ARNTZ and C. RÍOS (eds.) On the origin and evolution of Antarctic Peracarida (Crustacea, Malacostraca)* ANGELIKA BRANDT Zoological Institute and Zoological Museum, Martin-Luther-King-Platz 3, D-20146 Hamburg, Germany Dedicated to Jürgen Sieg, who silently died in 1996. He inspired this research with his important account of the zoogeography of the Antarctic Tanaidacea. SUMMARY: The early separation of Gondwana and the subsequent isolation of Antarctica caused a long evolutionary his- tory of its fauna. Both, long environmental stability over millions of years and habitat heterogeneity, due to an abundance of sessile suspension feeders on the continental shelf, favoured evolutionary processes of “preadapted“ taxa, like for exam- ple the Peracarida. This taxon performs brood protection and this might be one of the most important reasons why it is very successful (i.e. abundant and diverse) in most terrestrial and aquatic environments, with some species even occupying deserts. The extinction of many decapod crustaceans in the Cenozoic might have allowed the Peracarida to find and use free ecological niches. Therefore the palaeogeographic, palaeoclimatologic, and palaeo-hydrographic changes since the Palaeocene (at least since about 60 Ma ago) and the evolutionary success of some peracarid taxa (e.g. Amphipoda, Isopo- da) led to the evolution of many endemic species in the Antarctic. Based on a phylogenetic analysis of the Antarctic Tanaidacea, Sieg (1988) demonstrated that the tanaid fauna of the Antarctic is mainly represented by phylogenetically younger taxa, and data from other crustacean taxa led Sieg (1988) to conclude that the recent Antarctic crustacean fauna must be comparatively young.
    [Show full text]
  • Parks Victoria Technical Series No
    Deakin Research Online This is the published version: Barton, Jan, Pope, Adam and Howe, Steffan 2012, Marine protected areas of the Flinders and Twofold Shelf bioregions Parks Victoria, Melbourne, Vic. Available from Deakin Research Online: http://hdl.handle.net/10536/DRO/DU:30047221 Reproduced with the kind permission of the copyright owner. Copyright: 2012, Parks Victoria. Parks Victoria Technical Paper Series No. 79 Marine Natural Values Study (Vol 2) Marine Protected Areas of the Flinders and Twofold Shelf Bioregions Jan Barton, Adam Pope and Steffan Howe* School of Life & Environmental Sciences Deakin University *Parks Victoria August 2012 Parks Victoria Technical Series No. 79 Flinders and Twofold Shelf Bioregions Marine Natural Values Study EXECUTIVE SUMMARY Along Victoria’s coastline there are 30 Marine Protected Areas (MPAs) that have been established to protect the state’s significant marine environmental and cultural values. These MPAs include 13 Marine National Parks (MNPs), 11 Marine Sanctuaries (MSs), 3 Marine and Coastal Parks, 2 Marine Parks, and a Marine Reserve, and together these account for 11.7% of the Victorian marine environment. The highly protected Marine National Park System, which is made up of the MNPs and MSs, covers 5.3% of Victorian waters and was proclaimed in November 2002. This system has been designed to be representative of the diversity of Victoria’s marine environment and aims to conserve and protect ecological processes, habitats, and associated flora and fauna. The Marine National Park System is spread across Victoria’s five marine bioregions with multiple MNPs and MSs in each bioregion, with the exception of Flinders bioregion which has one MNP.
    [Show full text]
  • Download Full Article 1.0MB .Pdf File
    Memoirs of the Museum of Victoria 57( I): 143-165 ( 1998) 1 May 1998 https://doi.org/10.24199/j.mmv.1998.57.08 FISHES OF WILSONS PROMONTORY AND CORNER INLET, VICTORIA: COMPOSITION AND BIOGEOGRAPHIC AFFINITIES M. L. TURNER' AND M. D. NORMAN2 'Great Barrier Reef Marine Park Authority, PO Box 1379,Townsville, Qld 4810, Australia ([email protected]) 1Department of Zoology, University of Melbourne, Parkville, Vic. 3052, Australia (corresponding author: [email protected]) Abstract Turner, M.L. and Norman, M.D., 1998. Fishes of Wilsons Promontory and Comer Inlet. Victoria: composition and biogeographic affinities. Memoirs of the Museum of Victoria 57: 143-165. A diving survey of shallow-water marine fishes, primarily benthic reef fishes, was under­ taken around Wilsons Promontory and in Comer Inlet in 1987 and 1988. Shallow subtidal reefs in these regions are dominated by labrids, particularly Bluethroat Wrasse (Notolabrus tet­ ricus) and Saddled Wrasse (Notolabrus fucicola), the odacid Herring Cale (Odax cyanomelas), the serranid Barber Perch (Caesioperca rasor) and two scorpidid species, Sea Sweep (Scorpis aequipinnis) and Silver Sweep (Scorpis lineolata). Distributions and relative abundances (qualitative) are presented for 76 species at 26 sites in the region. The findings of this survey were supplemented with data from other surveys and sources to generate a checklist for fishes in the coastal waters of Wilsons Promontory and Comer Inlet. 23 I fishspecies of 92 families were identified to species level. An additional four species were only identified to higher taxonomic levels. These fishes were recorded from a range of habitat types, from freshwater streams to marine habitats (to 50 m deep).
    [Show full text]
  • 5Th Indo-Pacific Fish Conference
    )tn Judo - Pacifi~ Fish Conference oun a - e II denia ( vernb ~ 3 - t 1997 A ST ACTS Organized by Under the aegis of L'Institut français Société de recherche scientifique Française pour le développement d'Ichtyologie en coopération ' FI Fish Conference Nouméa - New Caledonia November 3 - 8 th, 1997 ABSTRACTS LATE ARRIVAL ZOOLOGICAL CATALOG OF AUSTRALIAN FISHES HOESE D.F., PAXTON J. & G. ALLEN Australian Museum, Sydney, Australia Currently over 4000 species of fishes are known from Australia. An analysis ofdistribution patterns of 3800 species is presented. Over 20% of the species are endemic to Australia, with endemic species occuiring primarily in southern Australia. There is also a small component of the fauna which is found only in the southwestern Pacific (New Caledonia, Lord Howe Island, Norfolk Island and New Zealand). The majority of the other species are widely distributed in the western Pacific Ocean. AGE AND GROWTH OF TROPICAL TUNAS FROM THE WESTERN CENTRAL PACIFIC OCEAN, AS INDICATED BY DAILY GROWm INCREMENTS AND TAGGING DATA. LEROY B. South Pacific Commission, Nouméa, New Caledonia The Oceanic Fisheries Programme of the South Pacific Commission is currently pursuing a research project on age and growth of two tropical tuna species, yellowfm tuna (Thunnus albacares) and bigeye tuna (Thunnus obesus). The daily periodicity of microincrements forrned with the sagittal otoliths of these two spceies has been validated by oxytetracycline marking in previous studies. These validation studies have come from fishes within three regions of the Pacific (eastem, central and western tropical Pacific). Otolith microincrements are counted along transverse section with a light microscope.
    [Show full text]
  • AUSTRALIAN NATIONAL SPEARFISHING RECORDS JULY 2018 COMPILED by AUF RECORDS OFFICER VIN RUSHWORTH Common Names
    AUSTRALIAN NATIONAL SPEARFISHING RECORDS JULY 2018 COMPILED BY AUF RECORDS OFFICER VIN RUSHWORTH Common Names Common Name Pg. Common Name Pg. Albacore 37 Cod, Barramundi 39 Amberjack 8 Cod, Bearded 27 Amberjack, High-fin 9 Cod, Black 40 Angelfish Yellow-Mask 32 Cod, Blacksaddle Rock 40 Angelfish, Blue 32 Cod, Blackspotted 40 Angelfish, Imperial 32 Cod, Black-Tipped Rock 40 Angelfish, Six Banded 32 Cod, Break-Sea 39 Anglerfish, Spinycoat 3 Cod, Camouflage 40 Barracouta 13 Cod, Chinaman 41 Barracuda, Blackfin 44 Cod, Coral 39 Barracuda, Blue and Gold 44 Cod, Coral Rock 39 Barracuda, Chevron 44 Cod, Dusky 42 Barracuda, Great 44 Cod, Flowery 40 Barracuda, Pickhandle 44 Cod, Freckled Coral 39 Barramundi 20 Cod, Gold Spotted 39 Bass, Red 23 Cod, Highfin 40 Batfish, Black-tip 13 Cod, Long-finned Rock 41 Batfish, Hump-headed 13 Cod, Long-headed 41 Batfish, Long-finned 13 Cod, Maori 41 Batfish, Long-snout 13 Cod, Masked 41 Batfish, Short-finned 13 Cod, Ocellated 39 Bigeye, Lunar-tailed 33 Cod, Peacock Coral 39 Blackfish, Banded Rock 14 Cod, Potato 41 Blackfish, Rock 14 Cod, Pug-Nosed Wire-netting 40 Blackfish, Western Rock 14 Cod, Purple 40 Blanquillo, Blue 25 Cod, Rankin 40 Blue Devil, Eastern 31 Cod, Red 27 Blue Devil, Southern 31 Cod, Red Rock 37 Bluefish 13 Cod, Red Rock Western 38 Blue-lined Seabream 24 Cod, Red-flushed Rock 38 Boarfish, Giant 30 Cod, Speckledfin 40 Boarfish, Longsnout 30 Cod, Tomato Coral 39 Boarfish, Short 30 Cod, Twin-Spot 39 Boarfish, Yellow-spotted 30 Cod, White-lined Rock 38 Bonefish, Eastern 3 Coral Fish, New-moon
    [Show full text]
  • Diet of the Australian Sea Lion (Neophoca Cinerea): an Assessment of Novel DNA-Based and Contemporary Methods to Determine Prey Consumption
    Diet of the Australian sea lion (Neophoca cinerea): an assessment of novel DNA-based and contemporary methods to determine prey consumption Kristian John Peters BSc (hons), LaTrobe University, Victoria Submitted in fulfilment of the requirements for the degree of Doctor of Philosophy University of Adelaide (October, 2016) 2 DECLARATION OF ORIGINALITY I certify that this work contains no material which has been accepted for the award of any other degree or diploma in my name, in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text. In addition, I certify that no part of this work will, in the future, be used in a submission in my name, for any other degree or diploma in any university or other tertiary institution without the prior approval of the University of Adelaide and where applicable, any partner institution responsible for the joint-award of this degree. I give consent to this copy of my thesis when deposited in the University Library, being made available for loan and photocopying, subject to the provisions of the Copyright Act 1968. I acknowledge that copyright of published works contained within this thesis resides with the copyright holder(s) of those works. I also give permission for the digital version of my thesis to be made available on the web, via the University’s digital research repository, the Library Search and also through web search engines, unless permission has been granted by the University to restrict access for a period of time.
    [Show full text]