Dentiraja Australis Common Name(S): Sydney Skate, Common Skate TAXONOMY Provide Any Relevant Detail on the Species' Taxonomy (E.G

Total Page:16

File Type:pdf, Size:1020Kb

Dentiraja Australis Common Name(S): Sydney Skate, Common Skate TAXONOMY Provide Any Relevant Detail on the Species' Taxonomy (E.G Threatened Species Nomination 2020 Details of the nominated species or subspecies NAME OF SPECIES (OR SUBSPECIES) Scientific name: Dentiraja australis Common name(s): Sydney skate, Common skate TAXONOMY Provide any relevant detail on the species' taxonomy (e.g. authors of taxon or naming authority, year and reference; synonyms; Family and Order). Dentiraja australis (Macleay 1884), synonymous with Dipturus australis and Raja australis Kingdom: Animalia Phylum: Chordata Class: Chondrichthyans Subclass: Elasmobranchii Order: Rajiformes Family: Rajidae Genus: Dentiraja Species: Australis This species was originally classed as Raja australis (Macleay 1884). A more fine-scale assessment of Australian skates placed it in the Dipturus genus (Last and Yearsley 2002; Last and Stevens 2009; Weigmann 2016) however a recent molecular assessment has reclassified it within the Dentiraja genus (Last et al., 2016, unpubl.). There is no evidence of hybridisation with other species. CONVENTIONALLY ACCEPTED Is the species’ taxonomy conventionally accepted? Yes No If the species is not conventionally accepted please provide the following information required by the EPBC Regulations 2000: • a taxonomic description of the species in a form suitable for publication in conventional scientific literature; OR • evidence that a scientific institution has a specimen of the species, and a written statement signed by a person who is a taxonomist and has relevant expertise (has worked with, or is a published author on, the class of species nominated), that the species is considered to be a new species. n.a. DESCRIPTION Provide a description of the species including where relevant, distinguishing features, size and social structure How distinct is this species in its appearance from other species? How likely is it to be misidentified? Dentiraja australis is a skate of medium size, with males and females both reaching approximately 55cm total length (TL; Last et al. 2016). Its disk is dorsoventrally flattened, quadrangular and smooth, usually brown with pale yellow blotches on the dorsal side (Last et al. 2016; Figure 1). Its snout is moderately elongated. Similar to other skates, it has five pairs of ventral gill slits and its flat pectoral fins are fused to the head. Its eyes are located dorsally, along with relatively large spiracles. It has two dorsal fins located near the tail tip, and rows of thorns along the tail (three in males, five in females; Last et al. 2016). Page 2 of 19 It has several features that are distinctive from similar skates, including the breadth of the tail, number of thorn rows, a single thorn in the central disc area and males have malar thorn patches near each eye (AFMA 2015; Last et al. 2016). Misidentification of this species is therefore unlikely. The social system of D. australis is unknown. DISTRIBUTION Provide a succinct overview of the species’ known or estimated current and past distribution, including international/national distribution. Provide a map if available. Is the species protected within the reserve system (e.g. national parks, Indigenous Protected Areas, or other conservation estates, private land covenants, etc.)? If so, which populations? Which reserves are actively managed for this species? Give details. Skates of the Dentiraja genus are endemic to Australian waters and D.australis is found only on the east coast. It has a relatively restricted latitudinal and bathymetric range, occurring on the inner continental shelf to the upper slope (Last et al. 2016), from Moreton Bay (Queensland) in the north to Tathra (New South Wales) in the south (Stevens and Valenti 2009; Figure 2). There is evidence to suggest that other skates are geographically philopatric (Flowers et al. 2016), however the home range and movement patterns of D. australis are not known. Understanding the seasonal movements of this species should be a priority as this has major implications for fisheries impacts (the main threat to its viability, see Threats) and its response to management actions. There are no captive populations used for propagation. Heupel et al. (2018) found a range overlap of only 9.6% with Commonwealth marine protected parks (9.6% of distribution), all of which has no fishery exclusions. Therefore its range is afforded very little protection. The extent of state-based protected areas has not been assessed. The species is not known to occur within an ecological community listed under the Environment Protection and Biodiversity Conservation Act 1999 (EPBC Act). BIOLOGY/ECOLOGY Provide a summary of biological and ecological information. Include information required by the EPBC Regulations 2000 on: • life cycle including age at sexual maturity, life expectancy, natural mortality rates • specific biological characteristics • habitat requirements for the species • for fauna: feeding behaviour and food preference and daily seasonal movement patterns • for flora: pollination and seed dispersal patterns The biology and ecology of this species is poorly understood, but inference from closely related and sympatric skates can provide some insights. It is known that males and females both reach around 55cm TL (Last et al. 2016). Generation length is unknown but males are thought to be sexually mature at 43-48cm TL (Last and Stevens 1994). The average life expectancy is also unknown but closely related Australian skates are thought to live between 9 – 12 years (Treloar 2008). This late maturity suggests that, as with many skates and rays (Simpfendorfer and Kyne 2009), this species may have protracted recovery rates and are therefore vulnerable to exploitation. Natural mortality rates are unknown. D. australis is oviparous, and eggs are deposited in large, quadrangular cases with corner extensions. Our knowledge of its breeding system is limited, although some detail is known about related species. For example, the similarly sized and late maturing D. lemprieri (Thornback skate; maximum size 55cm; females mature at 42cm) have a gestation period of 4 to 5 months and a birth size of 9.5 to 10.8cm (Treloar 2015). It is generally agreed that this group of species have low productivity and are highly vulnerable to extinction with ongoing levels of exploitation (Simpfendorfer and Kyne 2009; Treloar 2008). D. australis is found on the inner continental shelf to upper slope, at depths of 22 to 325m, and is a demersal species that spends time resting on the sandy substrate (Last et al. 2016). Its trophic level is 3.34, Page 3 of 19 suggesting it is a meso-predator (Reis and Figueira 2020). It is likely to be an ambush predator, with a benthic diet of crustaceans, cephalopods and bony fish (Reis and Figueira 2020). Threats IDENTIFICATION OF KNOWN THREATS AND IMPACT OF THE THREATS Identify in the tables below any known threats to the species, under the provided headings indicate if the threat is past, current or future and whether the threats are actual or potential. Past threats Impact of threat Mortalities from commercial Given its demersal habitat, D. australis is most impacted by small and trawl fisheries. large-scale trawl operations (Stevens and Valenti 2009), predominantly from the otter trawl method (Figure 3), and to a lesser extent from the mid-water Danish Seine method (Walker and Gason 2007). It has been caught as marketable byproduct in the Commonwealth Trawl Sector (CTS) of the Southern and Eastern Scalefish and Shark Fishery (SESSF; Figure 4) which has been operating (in various forms) since 1915 (Stevens and Valenti 2009; Novaglio et al. 2018). In particular, the upper slope of NSW has been subject to relatively intensive trawling since 1968 (Graham et al. 2001). Historical estimates of catch and landing numbers are hampered by the lack of species-specific records (Stevens and Valenti 2009) but these records can still provide insight into population trends for this species. For example, a fishery-independent survey showed a decline of 83% in skate catch-per-unit-effort (CPUE) in southern NSW over 20 years (falling from 32-33 kg/h in 1976-77 to 4-8 kg/h in 1996-97; Graham et al. 2001; Graham et al. 1997). However, it is known that D. australis was one of the most common skates on the central-eastern continental shelf and this was reflected in the high proportion of D.australis in catches from its depth range (Graham et al. 2001). It is therefore likely that this decline is reflective of the species trend. Furthermore, data from the Integrated Scientific Monitoring Program (ISMP) of the SESSF and fisher logbooks from the South Eastern Trawl Fishery (now the CTS), showed a substantial decline of D. australis was observed, following a rise-peak-decline trend (from 1998 -2006, peaking in 2003; Walker and Gason 2007). During this period, the total annual catch of this species was 157 239 kg, all of which was discarded (Walker and Gason 2007). The targeted teleost species in the SESSF are now under quota and skates have increasingly been considered as an attractive alternative meat for consumption (Stevens and Valenti 2009). Skates in this region were generally discarded, but it is likely now that larger skates are more often retained as marketable byproduct (Stevens and Valenti 2009). In 2005 observer-monitored catches found a 29% retainment rate of D. australis (ISMP data in Stevens and Valenti 2009). Recent bycatch restrictions for D. australis may offset this (see Threat Abatement), but this is yet to be measured, and the post-release survival of discarded skates is unknown. Monitoring harvest numbers through sales is difficult due to ambiguous labelling in the major markets locally and nationally (Stevens and Valenti 2009) and requires on inference from pooled species numbers. For example, 43 tonnes of “flaps” (pectoral fins?) were sold in 2002 (around 134 tonnes live weight; Stevens and Valenti 2009). Trawling may also disturb benthic habitat and key behavioural processes, which in turn can have sublethal impacts that affect the species viability. It may also impact on recruitment, for example by damaging egg cases or juvenile refuges ( ).
Recommended publications
  • Shark Cartilage, Cancer and the Growing Threat of Pseudoscience
    [CANCER RESEARCH 64, 8485–8491, December 1, 2004] Review Shark Cartilage, Cancer and the Growing Threat of Pseudoscience Gary K. Ostrander,1 Keith C. Cheng,2 Jeffrey C. Wolf,3 and Marilyn J. Wolfe3 1Department of Biology and Department of Comparative Medicine, Johns Hopkins University, Baltimore, Maryland; 2Jake Gittlen Cancer Research Institute, Penn State College of Medicine, Hershey, Pennsylvania; and 3Registry of Tumors in Lower Animals, Experimental Pathology Laboratories, Inc., Sterling, Virginia Abstract primary justification for using crude shark cartilage extracts to treat cancer is based on the misconception that sharks do not, or infre- The promotion of crude shark cartilage extracts as a cure for cancer quently, develop cancer. Other justifications represent overextensions has contributed to at least two significant negative outcomes: a dramatic of experimental observations: concentrated extracts of cartilage can decline in shark populations and a diversion of patients from effective cancer treatments. An alleged lack of cancer in sharks constitutes a key inhibit tumor vessel formation and tumor invasions (e.g., refs. 2–5). justification for its use. Herein, both malignant and benign neoplasms of No available data or arguments support the medicinal use of crude sharks and their relatives are described, including previously unreported shark extracts to treat cancer (6). cases from the Registry of Tumors in Lower Animals, and two sharks with The claims that sharks do not, or rarely, get cancer was originally two cancers each. Additional justifications for using shark cartilage are argued by I. William Lane in a book entitled “Sharks Don’t Get illogical extensions of the finding of antiangiogenic and anti-invasive Cancer” in 1992 (7), publicized in “60 Minutes” television segments substances in cartilage.
    [Show full text]
  • Barndoor Skate, Dipturus Laevis, Life History and Habitat Characteristics
    NOAA Technical Memorandum NMFS-NE-173 Essential Fish Habitat Source Document: Barndoor Skate, Dipturus laevis, Life History and Habitat Characteristics U. S. DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration National Marine Fisheries Service Northeast Region Northeast Fisheries Science Center Woods Hole, Massachusetts March 2003 Recent Issues in This Series: 155. Food of Northwest Atlantic Fishes and Two Common Species of Squid. By Ray E. Bowman, Charles E. Stillwell, William L. Michaels, and Marvin D. Grosslein. January 2000. xiv + 138 p., 1 fig., 7 tables, 2 app. NTIS Access. No. PB2000-106735. 156. Proceedings of the Summer Flounder Aging Workshop, 1-2 February 1999, Woods Hole, Massachusetts. By George R. Bolz, James Patrick Monaghan, Jr., Kathy L. Lang, Randall W. Gregory, and Jay M. Burnett. May 2000. v + 15 p., 5 figs., 5 tables. NTIS Access. No. PB2000-107403. 157. Contaminant Levels in Muscle of Four Species of Recreational Fish from the New York Bight Apex. By Ashok D. Deshpande, Andrew F.J. Draxler, Vincent S. Zdanowicz, Mary E. Schrock, Anthony J. Paulson, Thomas W. Finneran, Beth L. Sharack, Kathy Corbo, Linda Arlen, Elizabeth A. Leimburg, Bruce W. Dockum, Robert A. Pikanowski, Brian May, and Lisa B. Rosman. June 2000. xxii + 99 p., 6 figs., 80 tables, 3 app., glossary. NTIS Access. No. PB2001-107346. 158. A Framework for Monitoring and Assessing Socioeconomics and Governance of Large Marine Ecosystems. By Jon G. Sutinen, editor, with contributors (listed alphabetically) Patricia Clay, Christopher L. Dyer, Steven F. Edwards, John Gates, Tom A. Grigalunas, Timothy Hennessey, Lawrence Juda, Andrew W. Kitts, Philip N.
    [Show full text]
  • DEEP SEA LEBANON RESULTS of the 2016 EXPEDITION EXPLORING SUBMARINE CANYONS Towards Deep-Sea Conservation in Lebanon Project
    DEEP SEA LEBANON RESULTS OF THE 2016 EXPEDITION EXPLORING SUBMARINE CANYONS Towards Deep-Sea Conservation in Lebanon Project March 2018 DEEP SEA LEBANON RESULTS OF THE 2016 EXPEDITION EXPLORING SUBMARINE CANYONS Towards Deep-Sea Conservation in Lebanon Project Citation: Aguilar, R., García, S., Perry, A.L., Alvarez, H., Blanco, J., Bitar, G. 2018. 2016 Deep-sea Lebanon Expedition: Exploring Submarine Canyons. Oceana, Madrid. 94 p. DOI: 10.31230/osf.io/34cb9 Based on an official request from Lebanon’s Ministry of Environment back in 2013, Oceana has planned and carried out an expedition to survey Lebanese deep-sea canyons and escarpments. Cover: Cerianthus membranaceus © OCEANA All photos are © OCEANA Index 06 Introduction 11 Methods 16 Results 44 Areas 12 Rov surveys 16 Habitat types 44 Tarablus/Batroun 14 Infaunal surveys 16 Coralligenous habitat 44 Jounieh 14 Oceanographic and rhodolith/maërl 45 St. George beds measurements 46 Beirut 19 Sandy bottoms 15 Data analyses 46 Sayniq 15 Collaborations 20 Sandy-muddy bottoms 20 Rocky bottoms 22 Canyon heads 22 Bathyal muds 24 Species 27 Fishes 29 Crustaceans 30 Echinoderms 31 Cnidarians 36 Sponges 38 Molluscs 40 Bryozoans 40 Brachiopods 42 Tunicates 42 Annelids 42 Foraminifera 42 Algae | Deep sea Lebanon OCEANA 47 Human 50 Discussion and 68 Annex 1 85 Annex 2 impacts conclusions 68 Table A1. List of 85 Methodology for 47 Marine litter 51 Main expedition species identified assesing relative 49 Fisheries findings 84 Table A2. List conservation interest of 49 Other observations 52 Key community of threatened types and their species identified survey areas ecological importanc 84 Figure A1.
    [Show full text]
  • Checklist of Philippine Chondrichthyes
    CSIRO MARINE LABORATORIES Report 243 CHECKLIST OF PHILIPPINE CHONDRICHTHYES Compagno, L.J.V., Last, P.R., Stevens, J.D., and Alava, M.N.R. May 2005 CSIRO MARINE LABORATORIES Report 243 CHECKLIST OF PHILIPPINE CHONDRICHTHYES Compagno, L.J.V., Last, P.R., Stevens, J.D., and Alava, M.N.R. May 2005 Checklist of Philippine chondrichthyes. Bibliography. ISBN 1 876996 95 1. 1. Chondrichthyes - Philippines. 2. Sharks - Philippines. 3. Stingrays - Philippines. I. Compagno, Leonard Joseph Victor. II. CSIRO. Marine Laboratories. (Series : Report (CSIRO. Marine Laboratories) ; 243). 597.309599 1 CHECKLIST OF PHILIPPINE CHONDRICHTHYES Compagno, L.J.V.1, Last, P.R.2, Stevens, J.D.2, and Alava, M.N.R.3 1 Shark Research Center, South African Museum, Iziko–Museums of Cape Town, PO Box 61, Cape Town, 8000, South Africa 2 CSIRO Marine Research, GPO Box 1538, Hobart, Tasmania, 7001, Australia 3 Species Conservation Program, WWF-Phils., Teachers Village, Central Diliman, Quezon City 1101, Philippines (former address) ABSTRACT Since the first publication on Philippines fishes in 1706, naturalists and ichthyologists have attempted to define and describe the diversity of this rich and biogeographically important fauna. The emphasis has been on fishes generally but these studies have also contributed greatly to our knowledge of chondrichthyans in the region, as well as across the broader Indo–West Pacific. An annotated checklist of cartilaginous fishes of the Philippines is compiled based on historical information and new data. A Taiwanese deepwater trawl survey off Luzon in 1995 produced specimens of 15 species including 12 new records for the Philippines and a few species new to science.
    [Show full text]
  • An Annotated Checklist of the Chondrichthyan Fishes Inhabiting the Northern Gulf of Mexico Part 1: Batoidea
    Zootaxa 4803 (2): 281–315 ISSN 1175-5326 (print edition) https://www.mapress.com/j/zt/ Article ZOOTAXA Copyright © 2020 Magnolia Press ISSN 1175-5334 (online edition) https://doi.org/10.11646/zootaxa.4803.2.3 http://zoobank.org/urn:lsid:zoobank.org:pub:325DB7EF-94F7-4726-BC18-7B074D3CB886 An annotated checklist of the chondrichthyan fishes inhabiting the northern Gulf of Mexico Part 1: Batoidea CHRISTIAN M. JONES1,*, WILLIAM B. DRIGGERS III1,4, KRISTIN M. HANNAN2, ERIC R. HOFFMAYER1,5, LISA M. JONES1,6 & SANDRA J. RAREDON3 1National Marine Fisheries Service, Southeast Fisheries Science Center, Mississippi Laboratories, 3209 Frederic Street, Pascagoula, Mississippi, U.S.A. 2Riverside Technologies Inc., Southeast Fisheries Science Center, Mississippi Laboratories, 3209 Frederic Street, Pascagoula, Missis- sippi, U.S.A. [email protected]; https://orcid.org/0000-0002-2687-3331 3Smithsonian Institution, Division of Fishes, Museum Support Center, 4210 Silver Hill Road, Suitland, Maryland, U.S.A. [email protected]; https://orcid.org/0000-0002-8295-6000 4 [email protected]; https://orcid.org/0000-0001-8577-968X 5 [email protected]; https://orcid.org/0000-0001-5297-9546 6 [email protected]; https://orcid.org/0000-0003-2228-7156 *Corresponding author. [email protected]; https://orcid.org/0000-0001-5093-1127 Abstract Herein we consolidate the information available concerning the biodiversity of batoid fishes in the northern Gulf of Mexico, including nearly 70 years of survey data collected by the National Marine Fisheries Service, Mississippi Laboratories and their predecessors. We document 41 species proposed to occur in the northern Gulf of Mexico.
    [Show full text]
  • Identification Guide to the Deep-Sea Cartilaginous Fishes Of
    Identification guide to the deep–sea cartilaginous fishes of the Southeastern Atlantic Ocean FAO. 2015. Identification guide to the deep–sea cartilaginous fishes of the Southeastern Atlantic Ocean. FishFinder Programme, by Ebert, D.A. and Mostarda, E., Rome, Italy. Supervision: Merete Tandstad, Jessica Sanders (FAO, Rome) Technical editor: Edoardo Mostarda (FAO, Rome) Colour illustrations, cover and graphic design: Emanuela D’Antoni (FAO, Rome) This guide was prepared under the “FAO Deep–sea Fisheries Programme” thanks to a generous funding from the Government of Norway (Support to the implementation of the International Guidelines on the Management of Deep-Sea Fisheries in the High Seas project) for the purpose of assisting states, institutions, the fishing industry and RFMO/As in the implementation of FAO International Guidelines for the Management of Deep-sea Fisheries in the High Seas. It was developed in close collaboration with the FishFinder Programme of the Marine and Inland Fisheries Branch, Fisheries Department, Food and Agriculture Organization of the United Nations (FAO). The present guide covers the deep–sea Southeastern Atlantic Ocean and that portion of Southwestern Indian Ocean from 18°42’E to 30°00’E (FAO Fishing Area 47). It includes a selection of cartilaginous fish species of major, moderate and minor importance to fisheries as well as those of doubtful or potential use to fisheries. It also covers those little known species that may be of research, educational, and ecological importance. In this region, the deep–sea chondrichthyan fauna is currently represented by 50 shark, 20 batoid and 8 chimaera species. This guide includes full species accounts for 37 shark, 9 batoid and 4 chimaera species selected as being the more difficult to identify and/or commonly caught.
    [Show full text]
  • Redescription and Taxonomic Status of Dipturus Chilensis (Guichenot, 1848), and Description of Dipturus Lamillai Sp
    Zootaxa 4590 (5): 501–524 ISSN 1175-5326 (print edition) https://www.mapress.com/j/zt/ Article ZOOTAXA Copyright © 2019 Magnolia Press ISSN 1175-5334 (online edition) https://doi.org/10.11646/zootaxa.4590.5.1 http://zoobank.org/urn:lsid:zoobank.org:pub:F484C560-CAE9-4A9E-B408-AEC2C8893DAD Redescription and taxonomic status of Dipturus chilensis (Guichenot, 1848), and description of Dipturus lamillai sp. nov. (Rajiformes: Rajidae), a new species of long-snout skate from the Falkland Islands FRANCISCO J. CONCHA1,2,7, JANINE N. CAIRA1, DAVID A. EBERT3,4,5 & JOOST H. W. POMPERT6 1Department of Ecology & Evolutionary Biology, University of Connecticut, 75 North Eagleville Road, Unit 3043 Storrs, CT 06269 – 3043, USA 2Facultad de Ciencias del Mar y de Recursos Naturales, Universidad de Valparaíso, Av. Borgoño 16344, Viña del Mar, Chile 3Pacific Shark Research Center, Moss Landing Marine Laboratories, Moss Landing, CA 95039, USA 4Department of Ichthyology, California Academy of Sciences, 55 Music Concourse Drive, San Francisco, CA 94118, USA 5South African Institute for Aquatic Biodiversity, Private Bag 1015, Grahamstown 6140, South Africa 6Georgia Seafoods Ltd, Waverley House, Stanley, Falkland Islands, United Kingdom 7Corresponding author. E-mail: [email protected] Abstract Recent molecular evidence has called into question the identity of skates collected in the waters off the Falkland Islands previously identified as Zearaja chilensis. NADH2 sequence data indicate that these specimens are not conspecific with those currently referred to as Z. chilensis from Chile and, in fact, represent a novel cryptic species. This study aimed to investigate this hypothesis based on morphological comparisons of specimens from the coasts of both western and eastern South America.
    [Show full text]
  • Age, Growth and Reproductive Biology of Two Endemic Demersal
    ZOOLOGIA 37: e49318 ISSN 1984-4689 (online) zoologia.pensoft.net RESEARCH ARTICLE Age, growth and reproductive biology of two endemic demersal bycatch elasmobranchs: Trygonorrhina fasciata and Dentiraja australis (Chondrichthyes: Rhinopristiformes, Rajiformes) from Eastern Australia Marcelo Reis1 , Will F. Figueira1 1University of Sydney, School of Life and Environmental Sciences. Edgeworth David Building (A11), Room 111, Sydney, NSW 2006, Australia. [email protected] Corresponding author: Marcelo Reis ([email protected]) http://zoobank.org/51FFF676-C96D-4B1A-A713-15921D9844BF ABSTRACT. Bottom-dwelling elasmobranchs, such as guitarfishes, skates and stingrays are highly susceptible species to bycatch due to the overlap between their distribution and area of fishing operations. Catch data for this group is also often merged in generic categories preventing species-specific assessments. Along the east coast of Australia, the Eastern Fiddler Ray, Trygonorrhina fasciata (Muller & Henle, 1841), and the Sydney Skate, Dentiraja australis (Macleay, 1884), are common components of bycatch yet there is little information about their age, growth and reproductive timing, making impact assessment difficult. In this study the age and growth (from vertebral bands) as well as reproductive parameters of these two species are estimated and reported based on 171 specimens of Eastern Fiddler Rays (100 females and 71 males) and 81 Sydney Skates (47 females and 34 males). Based on von Bertalanffy growth curve fits, Eastern Fiddler Rays grew to larger sizes than Sydney Skate but did so more slowly (ray: L∞ = 109.61, t0 = 0.26 and K = 0.20; skate: L∞ = 51.95, t0 = -0.99 and K = 0.34 [both sexes combined]). Both species had higher liver weight ratios (HSI) during austral summer.
    [Show full text]
  • Report on the Status of Mediterranean Chondrichthyan Species
    United Nations Environment Programme Mediterranean Action Plan Regional Activity Centre For Specially Protected Areas REPORT ON THE STATUS OF MEDITERRANEAN CHONDRICHTHYAN SPECIES D. CEBRIAN © L. MASTRAGOSTINO © R. DUPUY DE LA GRANDRIVE © Note : The designations employed and the presentation of the material in this document do not imply the expression of any opinion whatsoever on the part of UNEP concerning the legal status of any State, Territory, city or area, or of its authorities, or concerning the delimitation of their frontiers or boundaries. © 2007 United Nations Environment Programme Mediterranean Action Plan Regional Activity Centre for Specially Protected Areas (RAC/SPA) Boulevard du leader Yasser Arafat B.P.337 –1080 Tunis CEDEX E-mail : [email protected] Citation: UNEP-MAP RAC/SPA, 2007. Report on the status of Mediterranean chondrichthyan species. By Melendez, M.J. & D. Macias, IEO. Ed. RAC/SPA, Tunis. 241pp The original version (English) of this document has been prepared for the Regional Activity Centre for Specially Protected Areas (RAC/SPA) by : Mª José Melendez (Degree in Marine Sciences) & A. David Macías (PhD. in Biological Sciences). IEO. (Instituto Español de Oceanografía). Sede Central Spanish Ministry of Education and Science Avda. de Brasil, 31 Madrid Spain [email protected] 2 INDEX 1. INTRODUCTION 3 2. CONSERVATION AND PROTECTION 3 3. HUMAN IMPACTS ON SHARKS 8 3.1 Over-fishing 8 3.2 Shark Finning 8 3.3 By-catch 8 3.4 Pollution 8 3.5 Habitat Loss and Degradation 9 4. CONSERVATION PRIORITIES FOR MEDITERRANEAN SHARKS 9 REFERENCES 10 ANNEX I. LIST OF CHONDRICHTHYAN OF THE MEDITERRANEAN SEA 11 1 1.
    [Show full text]
  • Elasmobranch Biodiversity, Conservation and Management Proceedings of the International Seminar and Workshop, Sabah, Malaysia, July 1997
    The IUCN Species Survival Commission Elasmobranch Biodiversity, Conservation and Management Proceedings of the International Seminar and Workshop, Sabah, Malaysia, July 1997 Edited by Sarah L. Fowler, Tim M. Reed and Frances A. Dipper Occasional Paper of the IUCN Species Survival Commission No. 25 IUCN The World Conservation Union Donors to the SSC Conservation Communications Programme and Elasmobranch Biodiversity, Conservation and Management: Proceedings of the International Seminar and Workshop, Sabah, Malaysia, July 1997 The IUCN/Species Survival Commission is committed to communicate important species conservation information to natural resource managers, decision-makers and others whose actions affect the conservation of biodiversity. The SSC's Action Plans, Occasional Papers, newsletter Species and other publications are supported by a wide variety of generous donors including: The Sultanate of Oman established the Peter Scott IUCN/SSC Action Plan Fund in 1990. The Fund supports Action Plan development and implementation. To date, more than 80 grants have been made from the Fund to SSC Specialist Groups. The SSC is grateful to the Sultanate of Oman for its confidence in and support for species conservation worldwide. The Council of Agriculture (COA), Taiwan has awarded major grants to the SSC's Wildlife Trade Programme and Conservation Communications Programme. This support has enabled SSC to continue its valuable technical advisory service to the Parties to CITES as well as to the larger global conservation community. Among other responsibilities, the COA is in charge of matters concerning the designation and management of nature reserves, conservation of wildlife and their habitats, conservation of natural landscapes, coordination of law enforcement efforts as well as promotion of conservation education, research and international cooperation.
    [Show full text]
  • Chondrichthyan Bycatch: Risk Assessment, Spatiotemporal Trends and Contributions to Management
    CHONDRICHTHYAN BYCATCH: RISK ASSESSMENT, SPATIOTEMPORAL TRENDS AND CONTRIBUTIONS TO MANAGEMENT MARCELO REIS A thesis submitted in fulfilment for the requirements for the degree of Doctor in Philosophy at the University of Sydney School of Life and Environmental Sciences Coastal and Marine Ecosystems Group Sydney, Australia August 2018 Attribution of authorship for published and collaborative work contained in this thesis The work contained in the body of this thesis, except otherwise acknowledged, is the result of my own investigations. For the four data chapters, I led and undertook the following: study design, field organization, data analysis, and writing of thesis chapters. - Chapter 2 and Chapter 3: I wrote these studies entirely and conducted the analyses based on the database built upon individual fishing logbooks provided by the Australian Fisheries Management Authority – AFMA. The study was designed by me in collaboration with the Co- Author Dr. Will Figueira. - Chapter 4 and Chapter 5: Sample collection was made by the Department of Primary Industries, New South Wales – DPI Fisheries Observer Program under the Animal Research Authority permission ACEC Ref 16/02 provided by the Primary Industries (Fisheries) Animal Care & Ethics Committee. The study was designed by me in collaboration with the Co-Author Dr. Will Figueira. Samples processing and collection of data as well data analyses writing of the study were conducted by me. Marcelo Reis Signature: Date: 23/08/2018 Table of Contents List of Tables .........................................................................................................................................
    [Show full text]
  • Petition to List
    Petition to List the Northwest Atlantic Distinct Population Segment (DPS) of the Thorny Skate (Amblyraja radiata) as Endangered or Threatened or, alternatively, to List the United States DPS of the Thorny Skate as Endangered or Threatened under the U.S. Endangered Species Act Photograph by Bernd Ueberschaer Submitted to the United States Secretary of Commerce, Administrator of the National Oceanic and Atmospheric Administration, and the National Marine Fisheries Service Petitioners: Animal Welfare Institute Defenders of Wildlife 900 Pennsylvania Ave. SE 130 17th St NW Washington, DC 20003 Washington, DC 20036 May 28, 2015 i Executive Summary The Animal Welfare Institute and Defenders of Wildlife (Petitioners) hereby petition the Secretary of Commerce, the Administrator of the National Oceanic and Atmospheric Administration, and the Assistant Administrator for Fisheries of the National Oceanic and Atmospheric Administration, to list the Northwest Atlantic population of thorny skate (Amblyraja radiata) as an endangered or threatened Distinct Population Segment (DPS), pursuant to the Endangered Species Act (ESA) (16 U.S.C. § 1531–44). In the alternative, Petitioners request NMFS to list a U.S. DPS of the thorny skate as a threatened or endangered species. In addition, Petitioners seek the designation of critical habitat concurrently with any listing of the thorny skate, as authorized by statute. The thorny skate is a “K‐selected” species, meaning it is relatively long‐lived, reaches sexual maturity later in life, and has a low fecundity rate. These life history characteristics limit the species’ ability to recover in response to abrupt population declines, and render it particularly vulnerable to overexploitation. Thorny skate populations throughout the Northwest Atlantic have declined precipitously over the past four decades.
    [Show full text]