Ceratopteris Richardii )

Total Page:16

File Type:pdf, Size:1020Kb

Ceratopteris Richardii ) Chapter 10 Laboratory Investigations With C-Fern™ (Ceratopteris richardii ) Leslie G. Hickok and Thomas R. Warne Department of Botany University of Tennessee Knoxville, TN 37996 (423) 974-2256; [email protected] Leslie Hickok received his B.S. in Biology from Murray State University, his M.S. in Botany from Ohio University, Athens, and his Ph.D. in Botany from the University of Massachusetts, Amherst. Dr. Hickok is a Professor at the University of Tennessee, Knoxville. He has studied extensively the biology and use of Ceratopteris in basic research ranging from cytotaxonomic to genetic, physiological and molecular genetic studies. Thomas Warne received his B.S. in Botany from the University of Georgia, Athens and his M.S. and Ph.D. in Botany from Ohio University, Athens. Dr. Warne is a Research Associate at the University of Tennessee, Knoxville and has a research background in the evolutionary and population biology of Ceratopteris. Jointly, Drs. Hickok and Warne have pursued basic research on the physiology and genetics of salt tolerance in plants using Ceratopteris and are currently developing educational materials for university-level and grade 7-12 biology courses using this unique organism. Reprinted From: Hickok, L. G. and T. R. Warne. 1998. Laboratory investigations with C-Fern™ (Ceratopteris richardii). Pages 143-176, in Tested studies for laboratory teaching, Volume 19 (S. J. Karcher, th Editor). Proceedings of the 19 Workshop/Conference of the Association for Biology Laboratory Education (ABLE), 365 pages. - Copyright policy: http://www.zoo.utoronto.ca/able/volumes/copyright.htm Although the laboratory exercises in ABLE proceedings volumes have been tested and due consideration has been given to safety, individuals performing these exercises must assume all responsibility for risk. The Association for Biology Laboratory Education (ABLE)© disclaims any liability with regards to safety in connection with the use of the exercises in its proceedings volumes. © 1998 Leslie G. Hickok and Thomas R. Warne Association for Biology Laboratory Education (ABLE) ~ http://www.zoo.utoronto.ca/able 143 144 C-Fern™ Contents Introduction ....................................................................................................................................... 144 Overview of Investigations and Notes for the Instructor .................................................................. 147 Investigation 1. Plant Development and C-Fern Life Cycle............................................................ 150 Investigation 2. Quantitative Measurement -- Serial Dilution And The Mass Of An Individual C- Fern Spore........................................................................................................................................154 Investigation 3. Environmental Controls On Sex Determination - Gametophytic Density And Sex Expression in C-Fern ........................................................................................................................ 158 Investigation 4. Ecology in a dish - Environmental Controls On Sporophyte Development - Population Density And Growth of C-Fern Sporophytes................................................................. 162 Investigation 5. Genetics In Action! Visualizing Mendelian Inheritance Using C-Fern ................ 165 Acknowledgments............................................................................................................................. 171 Literature Cited ................................................................................................................................. 171 Appendix A. Surface Sterilization and Sowing of C-Fern Spores .................................................. 171 Appendix B. C-Fern Nutrient Medium - Composition And Preparation ........................................ 173 Appendix C. General Culture Instructions....................................................................................... 175 Appendix D. Sources of Supplies and Materials.............................................................................. 176 Introduction Laboratory-based education can serve many functions, such as, the reinforcement and illustration of lecture and text material and the exposure of students to the uses of sophisticated contemporary equipment and methodologies. However, an equally important and often neglected function is the use of the biological laboratory to promote general understanding of the scientific method. Laboratory-based education can teach students how the process of science works, what constitutes scientific information and how scientific information is acquired. In other words, this approach can teach students how to DO science. Comprehension of the scientific method involves understanding and applying a large set of interrelated skills -– problem identification, hypothesis formulation, experimental design, implementation, data collection, analysis and synthesis—that necessitate a different approach to teaching. However, normal constraints on time and equipment can make it difficult to implement such an approach. One option is the introduction of exercises in experimental science using amenable and flexible model organisms relevant to a broad range of disciplines and subject areas. In plants, only a few model systems have attributes that meet the demands of a wide range of situations and levels. Here, we describe a broadly useful model system, C-Fern, which is based on the homosporous fern, Ceratopteris richardii. C-Fern possesses a number of characteristics and developmental features that make it ideal for use in the classroom and in student-initiated research. Why Use C-Fern? The advantages of C-Fern as a model plant system derive from the unique properties of its development and life cycle (Chasan, 1992; Hickok et al., 1995; Hickok et al., 1997). Both haploid (gametophyte) and diploid (sporophyte) phases exist independently and, thus, experimental studies are possible at the cellular and whole plant level without artificial manipulations of the life cycle. Development from spores to sexually mature gametophytes to young sporophytes can be observed within a 2-3 week period and the complete, spore to spore, life cycle takes less than 12 weeks. The rapid growth and small size of gametophytes permit the ‘miniaturization’ of experiments, such that large numbers of individuals and treatments can be used in a small space and short time. The haploid / diploid genetic system is very simple. C-Fern combines features of both 'higher' and C-Fern™ 145 'lower' plant systems. The developmental simplicity and haploid status of the gametophytic phase provides opportunities that are not available in angiosperm models. At the same time, the ability to study any genotype or process within the complex vascular sporophyte phase allows direct comparisons with higher plant systems (e.g., Wisconsin Fast PlantsTM, Arabidopsis) that are not possible with developmentally simpler systems such as mosses (e.g., Funaria, Physcomitrella) or algae (e.g., Chlamydomonas, Euglena). We present here the protocols necessary to culture and use C-Fern™ for educational settings. Some investigations that capitalize on the unique attributes of this model plant system are given. Although these investigations are formatted in the ‘standard approach’, they are easily modified to a ‘student-guided’ or inquiry-based approach. What Is Ceratopteris? Ceratopteris is a genus of homosporous ferns found in most tropical and subtropical areas of the world (Lloyd, 1973). Species grow as either aquatics or sub-aquatics and are restricted in habitat to ponds, rivers or other intermittent wet areas such as ditches, rice paddies or taro patches. Although some require an aquatic habitat, most species can be successfully grown in standard greenhouse pot culture under warm, humid conditions. Currently, commercial applications are primarily limited to its use as an aquarium plant, where it is sold under the common name of 'water sprite' and has even been immortalized in plastic replicas. Although a number of homozygous diploid and tetraploid accessions of Ceratopteris are available, the Hn-n strain has been used in most experimental studies (Hickok, 1987; Hickok et al., 1995; Hickok et al., 1997). Hn-n is a diploid (n = 39) derived from a collection of C. richardii from Cuba (Killip 44595 GH). During the past several years, an improved diploid strain, RN, has been developed from a series of crosses and backcrosses. All of the exercises presented here are based on the use of the RN strain. The C-Fern Life Cycle (See Figure 10.I.1) Like all homosporous ferns, C-Fern has two independent, autotrophic phases: a developmentally simple haploid gametophyte and a vascular diploid sporophyte. The gametophytic phase, which develops mitotically after germination of the single-celled spore, can be cultured axenically on a simple inorganic nutrient medium. Development of this haploid phase is very rapid. Germination occurs three to four days following inoculation and full sexual maturity is attained within six days after germination. At maturity, the gametophyte consists of a small (2 mm), simple essentially two-dimensional (flat) thallus with rhizoids, vegetative cells and sexual organs (archegonia and antheridia). Archegonia (singular-archegonium) are female organs that contain one egg each that lies at the base of a small neck that sticks out from the surface of the gametophyte. The neck consists of four rows of cells and a few ‘central canal cells’
Recommended publications
  • Nematode, Ditylenchus, Stem and Bulb, Meloidogyne, Root Knot
    BIOLOGY AND CONTROL OF STEM AND ROOT KNOT NEMATODES r Becky B. Westerdahl1 Abstract: Plant parasitic nematodes are nonsegmented-microscopic roundworms which are frequently present in alfalfa fields. Although more than 10 different genera have been found in alfalfa fields in California, two (stem and bulb, and root knot) are most commonly associated with damage. A management plan to fit a particular growing situation should be developed using a combination of techniques including: planting site selection, certified seed, clean equipment, weed and irrigation management, resistant varieties, crop rotation, fallow, organic amendments and chemical nematicides. Ke~words nematode, Ditylenchus, stem and bulb, Meloidogyne, root knot, INTRODUCTION Plant parasitic nematodes are nonsegmented-microscopic roundworms which are frequently present in alfalfa fields. Whether or not alfalfa is to be planted in a nematode infested area, a grower should be knowledgeable about nematodes. If nematodes are present, both pre and postplant management strategies should be developed for pathogenic species. If an alfalfa field or a potential planting site is not infested, a grower should be aware of techniques available to prevent the introduction of harmful species. For growers to carry on a nematode pest management program they need to be familiar with (1) nematode biology; (2) symptoms and signs of nematode f damage; (3) how nematodes injure plants; (4) how to sample for nematodes; and (5) the principles underlying various management techniques including: planting site selection, the use of certified seed, the importance of using clean equipment and irrigation water, weed management, the use of resistant varieties, crop rotation, fallow, organic amendments, and chemical nematicides.
    [Show full text]
  • Research Paper PHYSICOCHEMICAL and PHYTOCHEMICAL CONTENTS of the LEAVES of Acrostichum Aureum L
    Journal of Global Biosciences ISSN 2320-1355 Volume 9, Number 4, 2020, pp. 7003-7018 Website: www.mutagens.co.in DOI: www.mutagens.co.in/jgb/vol.09/04/090407.pdf Research Paper PHYSICOCHEMICAL AND PHYTOCHEMICAL CONTENTS OF THE LEAVES OF Acrostichum aureum L. M. Arockia Badhsheeba1 and V. Vadivel2 1Department of UG Biotechnology, Kumararani Meena Muthiah College of Arts and Science, 4 - Crescent Avenue Road, Gandhi Nagar, Adiyar, Chennai – 600 020, Tamil Nadu, India, 2PG and Research Department of Botany, V. O. Chidambaram College, Tuticorin – 628008, Tamil Nadu, India. Abstract The physicochemical parameters are mainly used in judging the purity of the drug. Hence, in the present investigation, moisture content, total ash, water-soluble ash, acid-soluble ash, sulphated ash and different solvent extractive values are determined. Preliminary screening of phytochemicals is a valuable step, in the detection of the bioactive principles present in medicinal plants and subsequently, may lead to drug discovery and development. In the present study, chief phytoconstituents of the Acrostichum aureum L (Fern) medicinal plant of the Pteridaceae family were identified to relate their presence with bioactivities of the plants. These research findings highlight that methanolic extracts of A. aureum leaves had the highest number of phytochemicals compared to other solvent extracts. Hence, methanolic extracts of A. aureum leaves holds the great potential to treat various human diseases and has profound medical applicability. Fluorescence analysis of powder under visible light and UV light helps establish the purity of the drug. Hence, fluorescence analysis of leaf powder is undertaken. Key words: Acrostichum aureum L., Pteridophytes, Physicochemical, Phytochemical Screening, Fluorescence Analysis.
    [Show full text]
  • Plant Development & the Fern Life Cycle Using Ceratopteris Richardii
    How-To-Do-It Plant Development& the Fern Life Cycle Using Ceratopterisrichardii KarenS. Renzaglia Thomas R.Warne Leslie G. Hickok Plants can make importantcontribu- gametophytic phase of the life cycle. studies (Hickok 1985; Hickok et al. tions in demonstratingbasic biological In particular,phenomena such as ger- 1987). Ceratopterisis an ideal experi- Downloaded from http://online.ucpress.edu/abt/article-pdf/57/7/438/47354/4450034.pdf by guest on 27 September 2021 principles of development, genetics, mination, organogenesis, interactions mental organism because of several physiology and cytology because of between individuals, control of devel- unique features that distinguish it the ease with which they can be cul- opment, fertilization,and embryo de- from other ferns; these include a rapid tured, manipulated and observed. velopment can be investigated using life cycle, the ease of culture and ma- Presently, two flowering plant model very simple techniques. nipulation of both sporophytes and systems, Fast Plants (rapid cycling In this paper, we describe a labora- gametophytes, and the availabilityof a Brassica)and Arabidopsis,are used ex- tory exercise for high school students large variety of specific mutant lines tensively in research and teaching or undergraduatesin General Biology (Hickoket al. 1987). (Williams& Hill 1986; Goldberg 1988; using C. richardii.This exercise ex- Perhaps the most attractivefeature Patrusky 1991). However, the exclu- tends over four weeks, with potential of Ceratopterisis that it can complete its sive focus on angiosperm models con- for continued observation, and fo- life cycle from spore to spore in less tributesto a limited appreciationof the cuses on the development of sexually than 90 days, thus permitting semes- diversity of plant development, mor- mature gametophytes from single- ter use.
    [Show full text]
  • Ceratopteris Pteridoides in China, and Conservation Implications
    Ann. Bot. Fennici 47: 34–44 ISSN 0003-3847 (print) ISSN 1797-2442 (online) Helsinki 10 March 2010 © Finnish Zoological and Botanical Publishing Board 2010 Genetic variation and gene flow in the endangered aquatic fern Ceratopteris pteridoides in China, and conservation implications Yuan-Huo Dong1,*, Robert Wahiti Gituru2 & Qing-Feng Wang3 1) Department of Biologic Technology, College of Life Sciences, Jianghan University, Wuhan 430056, P. R. China (*corresponding author’s e-mail: [email protected]) 2) Botany Department, Jomo Kenyatta University of Agriculture and Technology, P.O. Box 62000- 00200, Nairobi, Kenya 3) Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, P. R. China Received 27 Mar. 2008, revised version received 3 Dec. 2009, accepted 24 Feb. 2009 Dong, Y. H., Wahiti Gituru, R. & Wang, Q. F. 2010: Genetic variation and gene flow in the endan- gered aquatic fern Ceratopteris pteridoides in China, and conservation implications. — Ann. Bot. Fennici 47: 34–44. Random Amplified Polymorphic DNA (RAPD) markers were used to measure the levels of genetic variation and patterns of the population structure within and among the five remaining populations of Ceratopteris pteridoides, an endangered aquatic fern in China. Fourteen RAPD primers amplified 101 reproducible bands, with 34 (33.66%) of them being polymorphic, indicating low levels of genetic diversity at the species level. The level of genetic diversity within the populations was consider- ably lower, with the percentage of polymorphic bands (PPB) ranging from 16.83% to 24.75%. AMOVA analysis revealed a low level of genetic variation (30.92%) among the populations. The UPGMA cluster of 72 samples detected that individuals from the same population did not form one distinct group, indicating high levels of gene flow between the populations.
    [Show full text]
  • (Polypodiales) Plastomes Reveals Two Hypervariable Regions Maria D
    Logacheva et al. BMC Plant Biology 2017, 17(Suppl 2):255 DOI 10.1186/s12870-017-1195-z RESEARCH Open Access Comparative analysis of inverted repeats of polypod fern (Polypodiales) plastomes reveals two hypervariable regions Maria D. Logacheva1, Anastasiya A. Krinitsina1, Maxim S. Belenikin1,2, Kamil Khafizov2,3, Evgenii A. Konorov1,4, Sergey V. Kuptsov1 and Anna S. Speranskaya1,3* From Belyaev Conference Novosibirsk, Russia. 07-10 August 2017 Abstract Background: Ferns are large and underexplored group of vascular plants (~ 11 thousands species). The genomic data available by now include low coverage nuclear genomes sequences and partial sequences of mitochondrial genomes for six species and several plastid genomes. Results: We characterized plastid genomes of three species of Dryopteris, which is one of the largest fern genera, using sequencing of chloroplast DNA enriched samples and performed comparative analysis with available plastomes of Polypodiales, the most species-rich group of ferns. We also sequenced the plastome of Adianthum hispidulum (Pteridaceae). Unexpectedly, we found high variability in the IR region, including duplication of rrn16 in D. blanfordii, complete loss of trnI-GAU in D. filix-mas, its pseudogenization due to the loss of an exon in D. blanfordii. Analysis of previously reported plastomes of Polypodiales demonstrated that Woodwardia unigemmata and Lepisorus clathratus have unusual insertions in the IR region. The sequence of these inserted regions has high similarity to several LSC fragments of ferns outside of Polypodiales and to spacer between tRNA-CGA and tRNA-TTT genes of mitochondrial genome of Asplenium nidus. We suggest that this reflects the ancient DNA transfer from mitochondrial to plastid genome occurred in a common ancestor of ferns.
    [Show full text]
  • Tyler Schmidt, Plant Science Major, Department of Horticultural Science
    Interspecific Breeding for Warm-Winter Tolerance in Tulipa gesneriana L. Tyler Schmidt, Plant Science Major, Department oF Horticultural Science 19 December 2015 EXECUTIVE SUMMARY Focus on breeding of Tulipa gesneriana has largely concentrated on appearance. Through interspecific breeding with more warm-tolerant species, tolerance of warm winters could be introduced into the species, decreasing dormancy requirements and expanding the range of tulips southward. Additionally, long-lasting foliage can be favored in breeding to allow plants to store more energy for daughter bulbs. Continued virus and fungal resistance breeding will decrease infection. Primary benefits are for gardeners and landscapers who, under the current planting schedule, are planting tulip bulbs annually, wasting money. Producers benefit from this by reducing cooling times, saving energy, greenhouse space, and tulip bulbs lost to diseases in coolers. UNIVERSITY OF MINNESOTA AQUAPONICS: REPORT TITLE 1 I. INTRODUCTION A. Study species Tulips (Tulip gesneriana L.) are one of the most historically significant and well-known horticultural crops in the world. Since entering Europe via Constantinople in the mid-sixteenth century, the Dutch tulip market became one of the first “economic bubbles” of modern civilization, creating and destroying fortunes in four brief years (Lesnaw and Ghabrial, 2000). Since this time, tulips have remained extremely popular as more improved cultivars are released. However, a problem remains: even though viral resistance and long-lasting cultivars are introduced, few are capable of surviving in a climate with truly mild winters and only select cultivars are able to store enough energy for another year of flowering, even in climates with colder winters. Current planting schemes suggest planting annually, wasting tulip bulbs (Dickey, 1954).
    [Show full text]
  • Bulbs: Culture and Maintenance by Diane Relf and Elizabeth Ball, Revised by Joyce Latimer, Virginia Cooperative Extension
    GARDENING FACT SHEET Harris County Cooperative Extension 3033 Bear Creek Drive, Houston, Texas 77084 281.855.5600 • http://harris-tx.tamu.edu/hort Bulbs Culture and Maintenance Originally published in the Arizona Master Gardener Manual, produced by the Cooperative Extension, College of Agriculture, The University of Arizona, 1998. Edited and reformatted by Texas Cooperative Extension, Harris County, September 2007 he term bulb is loosely used to include corms, tubers, tuberous roots, and rhizomes, as well as true bulbs. This publication will T refer to all of the above as bulbs. leaves A true bulb is a complete or nearly complete miniature of a plant stem encased in fleshy modified leaves called scales which contain reserves of food. Corms are the base of a stem that becomes swollen and solid with nutrients. It has no fleshy scales. The lateral bud tuber, which is an underground stem that stores food, differs from the true bulb internode Bulb or corm in that it has no covering of dry node leaves and no basal plant from which the old corm roots grow. Usually short, fat and rounded, it has a knobby surface with growth buds, or eyes, from which the shoots of the new plant emerge. Tuberous roots are the only ones Corm from this group that are real roots; their food supply is kept in root tissue, not in stem or leaf tissue as in other bulbs. Rhizomes, which are sometimes called rootstocks, are thickened stems that grow horizontally, weaving their way Tuber along or below the surface of the soil and at intervals sending stems above ground.
    [Show full text]
  • Seed, Tuber, Bulb
    Garden Education from the Salmon Center Seed, Tuber, and Bulb Exploration Activity Ages 9+ (can be adapted for younger age group if focus is primarily on observation) Overview: Most students know that plants grow from seeds, but did they know that they also grow from bulbs and tubers? The purpose of this activity is to investigate the differences and similarities between seeds, bulbs, and tubers through the use of observational skills. Students will also learn about the anatomy and function of seeds, bulbs, and tubers. Essential Questions: What do seeds, tubers, and bulbs have in common? What are their differences? Why does a seed, tuber, or bulb grow when planted, but if a leaf or stem is planted, it decomposes? Definitions: Tuber: A swollen, fleshy, usually underground part of a plant that provides food and bears buds from which a new plant arises (Examples include potatoes, artichokes, Jicama, and yams) Bulb: A short underground stem surrounded by fleshy leaves, which contain stored food for the embryo inside (Examples include garlic, tulips, daffodils, and lilies) Bud: Compact growth on a tuber and inside a bulb that develops into a leaf, flower, or shoot Seed: An embryonic plant enclosed in a protective outer layer Seed coat: The outer layer that protects the seed/embryo Embryo: The baby plant inside a seed. It has only two tiny leaves and the beginnings of a root Cotyledon: The part of the plant that provides food for the embryo Materials: ● Seeds of different shapes and sizes (If using beans, consider soaking beforehand to allow for easier dissection) ● A tuber (a potato is an easy one!) ● A bulb (try garlic or a flower bulb) ● Magnifying glass ● Dissection tools (tweezers, knife, fork, etc.) ● Seed, Tuber, and Bulb Anatomy Guide (included) Start the Activity: 1.
    [Show full text]
  • Specialized Roots and Stems Text Pages: 561 – 587
    57 Specialized Roots and Stems Text Pages: 561 – 587. Objectives: 1. Be able to describe the various types of specialized roots or stems on some species of plants. 2. Be able to describe and explain propagation procedures used to multiply plants by specialized roots or stems. 3. Be able to describe and explain limitations of propagating plants by specialized roots or stems. 4. Be able to predict how physical manipulations or treatments affect propagation of specialized roots or stems. I. SPECIALIZED STEMS AND ROOTS A. Introduction – specialized structures B. Tubers 1. Tuber - is a swollen, modified stem that functions a. A tuber has all the parts of a stem, and i. a tuber has buds, leaf scars, and ii. eyes - are the buds on iii. a terminal bud is at iv. tubers exhibit apical dominance b. The tuber is borne on c. Examples: 58 2. The growth pattern is that the tuber forms the first year, a. The tuber is used as a food source and b. Certain environmental conditions favor 3. Propagate tubers by 4. Tubercles - are small tubers C. Tuberous Roots and Stems - these structures are 1. Tuberous root - is an enlarged a. It is a root b. Buds that are formed are c. Example: d. Growth is as a biennial i. tuberous root forms one year ii. then in spring, new shoots grow and produce iii. the swollen root provides 2. Tuberous stems - include swelling of the hypocotyl, lower epicotyl, and upper 59 a. Note: this structure is vertically oriented b. More then one bud can be produced c.
    [Show full text]
  • Vegetative Vs. Reproductive Morphology
    Today’s lecture: plant morphology Vegetative vs. reproductive morphology Vegetative morphology Growth, development, photosynthesis, support Not involved in sexual reproduction Reproductive morphology Sexual reproduction Vegetative morphology: seeds Seed = a dormant young plant in which development is arrested. Cotyledon (seed leaf) = leaf developed at the first node of the embryonic stem; present in the seed prior to germination. Vegetative morphology: roots Water and mineral uptake radicle primary roots stem secondary roots taproot fibrous roots adventitious roots Vegetative morphology: roots Modified roots Symbiosis/parasitism Food storage stem secondary roots Increase nutrient Allow dormancy adventitious roots availability Facilitate vegetative spread Vegetative morphology: stems plumule primary shoot Support, vertical elongation apical bud node internode leaf lateral (axillary) bud lateral shoot stipule Vegetative morphology: stems Vascular tissue = specialized cells transporting water and nutrients Secondary growth = vascular cell division, resulting in increased girth Vegetative morphology: stems Secondary growth = vascular cell division, resulting in increased girth Vegetative morphology: stems Modified stems Asexual (vegetative) reproduction Stolon: above ground Rhizome: below ground Stems elongating laterally, producing adventitious roots and lateral shoots Vegetative morphology: stems Modified stems Food storage Bulb: leaves are storage organs Corm: stem is storage organ Stems not elongating, packed with carbohydrates Vegetative
    [Show full text]
  • Fern Classification
    16 Fern classification ALAN R. SMITH, KATHLEEN M. PRYER, ERIC SCHUETTPELZ, PETRA KORALL, HARALD SCHNEIDER, AND PAUL G. WOLF 16.1 Introduction and historical summary / Over the past 70 years, many fern classifications, nearly all based on morphology, most explicitly or implicitly phylogenetic, have been proposed. The most complete and commonly used classifications, some intended primar• ily as herbarium (filing) schemes, are summarized in Table 16.1, and include: Christensen (1938), Copeland (1947), Holttum (1947, 1949), Nayar (1970), Bierhorst (1971), Crabbe et al. (1975), Pichi Sermolli (1977), Ching (1978), Tryon and Tryon (1982), Kramer (in Kubitzki, 1990), Hennipman (1996), and Stevenson and Loconte (1996). Other classifications or trees implying relationships, some with a regional focus, include Bower (1926), Ching (1940), Dickason (1946), Wagner (1969), Tagawa and Iwatsuki (1972), Holttum (1973), and Mickel (1974). Tryon (1952) and Pichi Sermolli (1973) reviewed and reproduced many of these and still earlier classifica• tions, and Pichi Sermolli (1970, 1981, 1982, 1986) also summarized information on family names of ferns. Smith (1996) provided a summary and discussion of recent classifications. With the advent of cladistic methods and molecular sequencing techniques, there has been an increased interest in classifications reflecting evolutionary relationships. Phylogenetic studies robustly support a basal dichotomy within vascular plants, separating the lycophytes (less than 1 % of extant vascular plants) from the euphyllophytes (Figure 16.l; Raubeson and Jansen, 1992, Kenrick and Crane, 1997; Pryer et al., 2001a, 2004a, 2004b; Qiu et al., 2006). Living euphyl• lophytes, in turn, comprise two major clades: spermatophytes (seed plants), which are in excess of 260 000 species (Thorne, 2002; Scotland and Wortley, Biology and Evolution of Ferns and Lycopliytes, ed.
    [Show full text]
  • The Culture of Spring Flowering Bulbs
    Chemung County Tel: 607 734-4453 Human Resources Center Fax: 607 734-7740 425 Pennsylvania Avenue E-mail: [email protected] Elmira, NY 14904-1766 www.cce.cornell.edu/chemung Cooperative Extension The Culture of Spring Flowering Bulbs Hardy bulbs exceed all other groups of plants in producing color in the spring garden. For the most part they are the earliest plants to bloom and most of them have exceptionally showy flowers. The gardening season begins with the snow drops and winter aconite, usually in early March. These are soon followed by Crocus, Scilla, and Chionodoxa; then come the hyacinths, daffodils, and tulips. Bulbs are also a most versatile group of plants — there is a type for any location. Attractive mass plantings may be made in solid beds, to be followed in June by annuals. Groupings may be spotted about in a perennial border or rock garden. Bulbs are attractive along paths and walks, or planted around pools, or placed in front of foundation plantings around the home. Most spring bulbs, with the exception of tulips and hyacinths, may also be effectively naturalized. Site. Most bulbs do well the first year regardless of where they are planted. Very few do well for several years unless they have a fair amount of light and generally favorable growing conditions. Planting bulbs beneath large trees is seldom satisfactory because of the dense shade cast by the trees and the competition with tree roots. Scilla sibirica, crocus, winter aconite, and snowdrops (Galanthus) will, however, give satisfactory performance under trees. Very few of the hardy, spring flowering bulbs tolerate wet, soggy soil conditions during the winter.
    [Show full text]