<<

Reagents for Alkylidenations

O

Jinglong Chen Feb. 2, 2005 Farewell the Monkey Year Welcome the Rooster Year 1 C=O Bond Cleavage Reactions

C(sp3) Dialkylation Reetz ( Ti ), Tani ( Zn/V ), Mole (Al) C(sp3)

2 Dialkenylation C(sp ) Schonberg ( Mg ) Xi ( Zr/Al ), Xi ( Li ) C(sp2) O

Dialkynylation C Unknown C

Olefination Wittig-type ( P), Julia (S) , Peterson (Si), Nysted (Zn), C Grubbs ( Ti ), McMurry ( Ti, Zn), Tebbe ( Ti ), Petasis ( Ti ), Takeda ( Ti ), Takai ( Ti, Zn ) 2 Dialkylation

C(sp3) Dialkylation Reetz ( Ti ), Tani ( Zn/V ), Mole (Al) C(sp3)

2 Dialkenylation C(sp ) Schonberg ( Mg ) Xi ( Zr/Al ), Xi ( Li ) C(sp2) O

Dialkynylation C Unknown C

Olefination Wittig-type ( P), Julia (S) , Peterson (Si), Nysted (Zn), C Grubbs ( Ti ), McMurry ( Ti, Zn), Tebbe ( Ti ), Petasis ( Ti ), Takeda ( Ti ), Takai ( Ti, Zn ) 3 Dialkylation

OO OO 1. EtLi 77% 2. CH3TiCl3/(CH3)2TiCl2 O

Reetz, M. T. et. al. J. Org. Chem. 1983, 48, 254 O

Br VCl2(TMEDA)2/Zn + R.T. to Reflux 59-84%

Tani, K. et. al. J. Org. Chem. 1997, 62, 8109

O

AlMe3 50% 17 h, 180 oC, PhCl

Mole, T. et. al. JCS. Chem. Comm. 1972, 595

4 Dialkenylation

C(sp3) Dialkylation Reetz ( Ti ), Tani ( Zn/V ), Mole (Al) C(sp3)

2 Dialkenylation C(sp ) Schonberg ( Mg ) Xi ( Zr/Al ), Xi ( Li ) C(sp2) O

Dialkynylation C Unknown C

Olefination Wittig-type ( P), Julia (S) , Peterson (Si), Nysted (Zn), C Grubbs ( Ti ), McMurry ( Ti, Zn), Tebbe ( Ti ), Petasis ( Ti ), Takeda ( Ti ), Takai ( Ti, Zn ) 5 Dialkenylation

O Ph Ph PhMgBr

S S S Benzene,Reflux, overnight S S S 20% Schonberg, A. et. al. J. Am. Chem. Soc. 1946, 609

O ZrCp2 and AlMe3 H H 50~70%

Xi, Z. et. al. Angew.Chem. Int. Ed. 2000, 39, 2950

Li Li

O 75%

Xi, Z. et. al. Angew.Chem. Int. Ed. 2001, 40, 1913 6 Dialkynylation—Opportunity

C(sp3) Dialkylation Reetz ( Ti ), Tani ( Zn/V ), Mole (Al) C(sp3)

2 Dialkenylation C(sp ) Schonberg ( Mg ) Xi ( Zr/Al ), Xi ( Li ) C(sp2) O

Dialkynylation C Unknown C

Olefination Wittig-type ( P), Julia (S) , Peterson (Si), Nysted (Zn), C Grubbs ( Ti ), McMurry ( Ti, Zn), Tebbe ( Ti ), Petasis ( Ti ), Takeda ( Ti ), Takai ( Ti, Zn ) 7 Olefination C(sp3) Dialkylation Reetz ( Ti ), Tani ( Zn/V ), Mole (Al) C(sp3)

2 Dialkenylation C(sp ) Schonberg ( Mg ) Xi ( Zr/Al ), Xi ( Li ) C(sp2) O

Dialkynylation C Unknown C

Olefination Wittig-type ( P), Julia (S) , Peterson (Si), Nysted (Zn), C Grubbs ( Ti ), McMurry ( Ti, Zn), Tebbe ( Ti ), Petasis ( Ti ), Takeda ( Ti ), Takai ( Ti, Zn )

8 Olefination (Alkylidenation)—Hot Field

1. sp3-Geminated Organodimetallic Reagents:

¦Ä_ 2 1 _ M O M O M1 ¦Ä M2 1 2 O M M + C C _ C C ¦Ä+ ¦Ä + _ ¦Ä ¦Ä C C

2. Metallacarbene or Carbene-like Species:

¦Ä_ + ¦Ä M O M O M O

+ C C C C ¦Ä+ ¦Ä_ C C

Schrock Carbene Or Carbene-like Species 9 sp3-Geminated Organodimetallic Reagents

1. Li/Mg, Li/Ti: O OH Ph Ph Ph PhO2S Ph H + PhO2S Ph PhO S Li Li 2 Ph Major Minor

MgI2 O Ph PhO2S Ph Ph H 70% IMg Li PhO2S Ph

Umani-Ronchi, A. et. al. J. Chem. Soc. Perkin Trans. I 1973, 1166

O

PhO2S 73% + 1. eq. Cl2Ti(OiPr)2 PhO S Li Li 2

Gais, H. J. et. al. Angew. Chem. Int. Ed. 1985, 24, 610

10 sp3-Geminated Organodimetallic Reagents

2. Mg: O H H Ph Me3Si Ph Ph 80% BrMg MgBr Me3Si Ph

Bertini. F. et. al. Tetrahedron 1970, 26, 1281

3. Al: O H R = Et 9% C H H Ph 5 11 Ph Ph R = Cl 71% R = Cl, Et 51% R2Al AlR2 C5H11 Ph

Eisch, J. J. et. al. J. Org. Chem. 1988, 53, 2829

11 sp3-Geminated Organodimetallic Reagents

4. B/Li: O H Ph Ph Heptyl H HPh HO Ms BLi 2 Heptyl H Heptyl 40% E 40%

Pelter, A. et. al. Tetrahedron Lett. 1983, 24, 635

5. B/Cu,Zn: O H Ph H HPh H O B Cu(CN)ZnI BF3 H O 70% H H O Ph B O OBF2

Miyarua, N. et. al. Tetrahedron 1996, 52, 915 12 sp3-Geminated Organodimetallic Reagents

6. Zr/Zn:

O ZrCp Ph 2 HPh Cl 83% Zn BF3 H

Knochel, P. et. al. J. Am. Chem.Soc. 1991, 113, 9888

7. Zn: O Br Zn HC11H23 CH2 O Zn 85% HC11H23 Zn BF3 Br

Matsubara, S. et. al. Synlett 1998, 313 Nysted Reagent US Pat. (1975) 13 sp3-Geminated Organodimetallic Reagents

8. Cr:

O I III C H H CrCl -DMF Cr HMe 5 11 C H CH 2 5 11 C5H11 CH C C THF I CrIII BF3 H Me 94% E/Z=96/4

Takai, K.; Utimoto, K. et. al. JACS. 1987, 109, 951

Takai-Utimoto Reaction

14 sp3-Geminated Organodimetallic Reagents

9. Li/Si:

OTES O O MeO OMe 1. LiCH2SiMe3 MeO OMe 2. DDQ, THF Me NNMe Me NNMe OMe O

Mitomycin Congeners Danishefsky, S.J. et. al. J. Org. Chem. 1988, 53, 3391.

Peterson Olefination JOC (1968) 15 sp3-Geminated Organodimetallic Reagents 10. Li/S:

R CHO R

R 1. TBSO OTBS Na-Hg OBz SO Ar 2. BzCl 2

Li SO2Ar TBSO OTBS TBSO OTBS

(+)-Himbacin Hart, D. and Kozikowski A.P. et. al. JOC, 1997, 62, 5023

Julia Olefination TL (1973) 16 11. Ti: CHO

O BnO OHC O OBn O O

TiCl4, Zn-Cu, DME 59%

O BnO O OBn O O

Archaeal 72-Membered Macrocyclic Tetraether Lipids Kakinuma, K. et. al. J. Org. Chem. 1998, 63, 2689

Ti Ti Ti Ti O 2 OO OO OO O O

17 Wittig and Horner-Wittig Reactions

12. P: O H H H H H PhLi Ph H + _ PPh3 Ph Ph Ph PPh3 I Ph 82%, 70% Z Wittig, G. et. al. Chem. Ber. 1954, 87, 1318

O Ph H Li H H H RLi Ph H OH Ph PPh2 Ph PPh Ph PPh2 2 Ph Ph O O O Clayden, J. et. al. Angew. Chem. Int. Ed. Engl. 1996, 35, 241

18 Why use Titanium-based Reagents?

1. Non-basic, reactive reagent

2. More reactive to the sterically hindered carbonyl group

19 Comparison of Tebbe and Wittig Reagents

TebbeWittig

O 97% 89%

O 77% 4%

O Ph Ph 63% 38%

Ph Ph

Pine, S. H.; Shen, G. S., Hoang, H. Synthesis, 1991, 165

20 Why use Titanium-based Reagents ?

1. Non-basic, reactive reagent

2. More reactive to the sterically hindered carbonyl group

3. Alkylidenate carboxylic acid and carboxylic acid derivatives

P(OEt)3 Ti Ti Me Zn, TiCl4, P(OEt)3 Cl Ti TMEDA, PbCl (cat), Ti Al Me 2 + RCHBr Cl 2 Cl Takai Ti RS SR Petasis Reagent Reagent Tebbe Reagent R1 R2 Grubbs Reagent Takeda Reagent

21 Citing Articles--Summary

OLEFIN HOMOLOGATION WITH TITANIUM METHYLENE-COMPOUNDS TEBBE FN, PARSHALL GW, REDDY GS JOURNAL OF THE AMERICAN CHEMICAL SOCIETY100: 3611- 3613 1978 These documents in the database cite the above record: 623 results found Go to Page: of 63 Records 1 -- 10 [ 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 ] Use the checkboxes to select individual records for marking, then click Submit to add them to the Marked List. 1. Eyrisch KK, Muller BKM, Herzig C, et al. Ethenolysis of functionalized cycloolefins DESIGNED MONOMERS AND POLYMERS 7 (6): 661-676 2004 Times Cited: 0

2. Korotchenko VN, Nenajdenko VG, Balenkova ES, et al. Olefination of carbonyl compounds. Modern and classical methods USPEKHI KHIMII 73 (10): 1039-1074 2004 Times Cited: 0

3. Yan TH, Tsai CC, Chien CT, et al. Dichloromethane activation. Direct methylenation of and with CH2Cl2 promoted by Mg/TiCl4/THF ORGANIC LETTERS 6 (26): 4961-4963 DEC 23 2004 Times Cited: 1

22 Tebbe Reagent

Without Base

O R Cl R R R Ti Al Ti O Cl Cl Cl Al

+ Cp2TiMeCl+ (MeAlO)n RR

Hughes, D. L. et. al. Organometallics 1996, 63, 2689

23 Tebbe Reagent

In the presence of base

O Cl Pyridine R Ti Al Ti CH R O R 2 Ti Cl Cl R

+ Ti O RR

Hughes, D. L. et. al. Organometallics 1996, 63, 2689 24 Tebbe Reagent with and

O Tebbe, PhMe 71% O O O O O EtO O EtO

Didemnenones Winterfeldt, E. et. al. JCS. Pekin Trans I 1994, 3525

O CHO O MOM MOM O N Tebbe,THF 65% O N MeN MeN

CH2OH CH2OH

Fukuyama, T. et. al. Pure Appl. Chem. 1997, 69, 501 25 Tebbe Reagent: and Lactones

Me OTBDMS Me OTBDMS

Tebbe,THF 61-85%

CO TBDMS CO2Me CO2TBDMS 2 MeO

Atrochrysone Steglich, W. et. al. JCS. Pekin Trans I 2000, 2483

O O O O Tebbe,THF/PhMe O 69% O O O O O O O O

Polyhydroxylated Molecules Sinay, P. et. al. TL 1994, 2537

26 Tebbe Reagent: Thioesters, Amids and Carbonates

Tebbe 25%

S S O

Tebbe 70%

S O

O Tebbe,THF/PhMe O Tebbe,THF/PhMe 97% 56% O O O O N(Me)Ph N(Me)Ph

Hartley, R. C. et. al. JCS, Perkin Trans. I 2002, 2763 and references therein. 27 Tebbe Reagent: Acid Chlorides and Enol ethers

TiClCp O Cp Ti O 2 Tebbe 2 O

RCl Cl R R

TiClCp Cp Ti O 2 Tebbe 2

1 OR1 ROR R R

CHO 55-78% Ph

OH

RPh

Hanzawa, Y.; and Taguchi, T. et. al. Tetrahedron 1998, 1138728 Tebbe Reagent:

Cp2TiCl2 (2.8 eq) AlMe3 (7.8 eq) O

O O Cp2TiCl2 (6 eq) AlMe3 (12 eq) O

O TiCp2

Aplysins Harrowven, D. C. et. al. Tetrahedron 2001, 791

29 Summary of the Tebbe Reagent

Tebbe methylenation of esters has been accomplished in the presence of many functional groups. Alkenes including dienes, Vinyl fluorides, vinyl chlorides, aryl bromides, and aryl iodides Ethers including benzyl,and trityl ethers, Silyl ethers including TMS,TBDMS,and di-tertbutylsilylene, Acetals including benzylidene acetal,MOM, and acetonides Selenoglycosides and thioglycosides Carbamates including NHBoc,and sulfonamides The key advantage of the Tebbe reagent over other titanium reagents used in alkylidenations is that the reactive titanium methylidene is generated and reacted at low temperature.

Its disadvantages are its high sensitivity to both moisture and air, its Lewis acidic character, and the fact that it is limited to methylenation.

30 Petasis Reagent: Aldehydes

THF or Toluene Ti Ti CH2 α-elimination

Petasis, N. A. et. al. J. Am. Chem. Soc.1990, 6392 H HO H H N O N O O Petasis, THF O 87%

N N O O

21-oxogelsemine Hart, D. J. et. al. J. Am. Chem. Soc.1990, 6392

O Petasis (2.5 eq.) THF O Ph 52% Ph O N O N MeO C MeO C 2 CHO 2

α--α-amino Acids Hegedus, L. S. JOC 1993, 5918 31 Petasis Reagent: and Lactones

Petasis (3 eq.) THF 73% OO O OO O

HO Petasis (1.5 eq.) THF ¦¤ H 70% O O OMe OMe EtO C Me EtO2C Me 2

O Petasis THF ¦¤ 65% Ph Ph

OEt OEt

O Ph Petasis PhMe ¦¤ Ph 62% O O

Hartley, R. C. et. al. JCS, Perkin Trans. I 2002, 2763 and references therein. 32 Petasis Reagent: β-Lactones

C H C H C11H23 C6H13 11 23 Petasis (3 eq.) THF ¦¤ 6 13 20% OO OO O O O t But NHCHO Bu NHCHO

Orlistat Howell, A. R. et. al. Bioorg. Mol. Chem. Lett. 1998, 977

33 Petasis Reagent: Thioesters, Selenoesters, Acylsilanes, Carbonates, and Lactams

O Petasis, PhMe, ¦¤ O Petasis, PhMe, ¦¤ 70% 77% SPh SPh Me SePh SePh

O Petasis, PhMe, ¦¤ 77%

H3C(H2C)8 SiMe3 H3C(H2C)8 SiMe3

Petasis, THF, ¦¤ O O 72% O O O

Petasis (1.4 eq.) t t PhMe, Pyridine, ¦¤ Bu Me 2SiO Bu Me2SiO 40-50% N NO CO2Me CO2Me

Hartley, R. C. et. al. JCS, Perkin Trans. I 2002, 2763 and references therein 34 Petasis Reagent: β-Lactams and α-Lactams

Ph Petasis (1.5 eq.) PhMe ¦¤ Ph N 63% N O

Petasis (1.5 eq.) PhMe ¦¤ 56% N N

O

OTBDMS Petasis (5 eq.) PhMe ¦¤ OTBDMS O 81% O

N N AcO Boc AcO Boc

Hartley, R. C. et. al. JCS, Perkin Trans. I 2002, 2763 and references therein.

35 Petasis Reagent: Imides, and Acid anhydrides

O Petasis, PhMe ¦¤ 75% NMe NMe + NMe

O O

1.5 eq. Petasis 1 : 0 4.0 eq. Petasis 1 : 20

O Petasis, THF, ¦¤ O 70% O O + O

O 1 eq. Petasis 10 : 1 2 eq. Petasis 2 : 1 4 eq. Petasis 0 : 1

Hartley, R. C. et. al. JCS, Perkin Trans. I 2002, 2763 and references therein. 36 Petasis’ Method for Alkylidenation

Ti

OO PhMe, ¦¤, 67% O

Cl

Ti

O Cl Cl O O PhMe, ¦¤, 100% only Z

Hartley, R. C. et. al. JCS, Perkin Trans. I 2002, 2763 and references therein.

37 Summary of the Petasis Reagent

The advantages of Petasis methylenation of carbonyl groups:

1. The stability to air and moisture of dimethyltitanocene, 2. The absence of Lewis acid from these reactions and 3. The ease of purification following reaction Titanium-containing impurities can often be precipitated and removed by simple filtration

The disadvantages

The high temperature (65°C) needed to induce elimination

38 Takeda Reaction

Mg, 2 P(OEt)3 Cp2TiCl2 Cp2Ti(P(OEt)3)2 Molecular Sieves 4A, THF, rt

O OBn H O O BnO MOMO H OBn PhS SPh

Cp2Ti(P(OEt)3)2 52-67%

O OBn H O O BnO MOMO H OBn

Takeda, T. et. al. JACS. 1997, 1127 Hirama, M. et. al. Chem. Comm. 2001, 381 39 Summary of the Takeda Reation

Advantages:

A range of alkylidenating agents that can be produced The mildness of the conditions The ease of synthesis of thioacetal substrates

Disadvantages:

The use of excess titanocene (at least 3 equiv.) and triethylphosphite (at least 6 equiv.).

40 Takai Reagent

Zn, TiCl4, TMEDA, THF 3 O HR 25 OC + R3CHBr2 R1 OR2 Zn, TiCl4, R1 OR2 TMEDA, THF O HMe 25 OC + MeCHBr2 Ph OBut Ph OBut 81% Zn, TiCl4, Z:E 100:29 TMEDA, THF HC5H11 O O n 25 C + C5H11CHBr2 Pri OMe Ph OMe 89% Z:E 100:0 Zn, TiCl4, PbCl2 TBDMSO TBDMSO O MeCHBr2, TMEDA, THF, rt, 14 h Ph OEt Ph OEt

Hartley, R. C. et. al. JCS, Perkin Trans. I 2002, 2763 and references therein. 81% 41 Z:E >98:2 Applications of the Takai Reagent

OTBDPS

O

OTBS O O

H H O

Zn, TiCl4, PbCl2 CH2I2,THF 65% OTBDPS

O

OTBS O O

H H O

Laulimalide Paterson, I. et. al. OL 2001, 213 42 Summary of the Takai Reagent

The advantage: A mild one-pot procedure that allows the alkylidenation of a range of carboxylic acid and carbonic acid derivatives with good stereoselectivity.

The disadvantage: 1,1-dibromoalkanes Methylenation is not good

43 Applications of Alkylidenation Reactions Alkylidenation-

CF3 CF3

O CF3 Petasis, THF/Toluene, 80 oC O O CF3 68% O O N N Ph Ph

H2, 10% Pd/C EtOAc/iPrOH

CF3

R2 R1 CF3 1, R1= CH3, R2= H O O 2, R1= H, R2= CH3 1 : 2 = 8:1, 84% N

Ph

Human NK-1 Receptor Antagonist Hale, J. J. et. al. JMC 1998, 41, 4607 44 Methylenation-

OMOM OMOM MOMO OMOM Petasis, THF, Reflfux MOMO OMOM

OMOM 89% OMOM O O O H H

9-BBN (2.6) THF, reflux, 5h

OMOM OMOM H MOMO Pd(0), Base O OMOM MOMO OMOM H OMOM O B OMOM O O O H H H OOTf H

Polycyclic ether Sasaki, M. et. al. TL 1998, 39, 9027

45 Methylenation-Hydrolysis and Alkoxylation

Cp2TiMe2 H H O+ H OMe 3 O 83% O

α-Oplopenone Taber, D. F. et. al. JOC 1998, 63, 7953 OMe OMe

Cp2TiMe2,MeLi O O O O OMe O OMe

MeOH, HCl

OMe OMe allyltrimethylsilane TiCl , CH Cl O 4 2 2 O o MeO O -78 C, 79% OMe O OMe 72% 46 (+)-nemorensic acid Donohoe, T. J. et. al. CC 2000, 465 Petasis-Ferrier Reaction

O O O O N O PMBO PMBO N O Cp2TiMe2 O O 83% O

PDBTS PDBTS

Me2AlCl 89%

O O PMBO N O

Phorboxazole O Smith III, A. B. et. al. OL 1999, 909 PDBTS

47 Petasis-Ferrier Reaction

O Ph(H2C)2 O Ph(H2C)2 O Cp2TiMe2 O O THF, 86% O O Ph AlR3

Ph(H C) O 2 2 Ph(H C) O PCC, CH2Cl2 2 2

O 98% (86% syn) 96% OH

Petasis, N. A. et. al. TL 1996, 141 48 Petasis-Ferrier-like Reaction

Me OTBDMS Me OTBDMS

Tebbe,THF 61-85%

CO TBDMS CO2Me CO2TBDMS 2 MeO

i. aq. K2CO3, MeOH ii. Tf2O, DMAP (10 eq. each) CH2Cl2 40-80%

Me Me OTBDMS OH

OH OH O MeO

Atrochrysone Steglich, W. et. al. JCS. Pekin Trans I 2000, 2483

49 Tebbe-Radical Reaction

R R OBn ' OBn ' R R O Me Al-TiCp Cl BnO 3 2 2 BnO O O

OBn OBn

ClCH(CO2Et)2 Bu3SnH

R CO2Et ' OBn R H

BnO CO2Et O

OBn Analogues of Glyceroglycolipids Nicotra, F. et. al. Tetrahedron 1997, 6163 50 Tebbe-Simmons-Smith and Tebbe-D-A Reaction

OMe OMe OMe O O O i ii O

Br Br Br

i. Tebbe Reagent, pyridine, 1:3 THF/toluene. ii. CH2I2, Zn-Cu couple, I2, ether, reflux

A potential antiinflamatory Duplantier, A. J. J. et. al. JMC 1996, 39, 120

OMe OMe MeO2C OMe O Tebbe 65%

O O MeO2C O

92% i. MeO2CCO2Me

ii. DDQ

Diaryl ethers Olsen, R. K. et. al. JOC 1995, 6025 51 Petasis-Diels-Alder Reaction

H H O O OTBS Tebbe 97% O OTBS

Me Me

o K2CO3, 100 C O

58%

H O OTBS O Me

Reveromycin B Rizzacasa, M. A. et. al. JOC 1997, 1196

52 Tebbe-Claisen Reaction

OMe OMe Br Br

O Tebbe O O O O

80 oC, 82%

OMe Br

O O

Frondosin B Danishefsky, S. G. et. al. Angew. Chem.Int. Ed. 2000, 39, 761

53 Tebbe-Claisen Reaction

H H H TBSO 1. Tebbe, PyH, CH2Cl2, THF o H OBn 2. p-cymene, 120-130 C TBSO O O H OTBS O

Kalmanol Paquette, L. A. et. al. JACS 1996, 118, 727

O

o O 1. Tebbe,THF, 65 C O o n 2. decalin, 190 C n

Petasis, N. A. et. al. TL 1993, 34, 1721

54 Takai-

Zn, TiCl4, PbCl2 TBDMSO TBDMSO O MeCHBr2, TMEDA, THF, rt, 14 h Ph OEt Ph OEt

81% Z:E >98:2

Bu4NF, THF, 4A MS, rt, 1h

OH HO KH, 18-crown-6, O THF, rt, 3h

Ph Ph OEt dr 11:1

Hartley, R. C. et. al. TL 1998, 39, 685

55 Tebbe-RCM Reaction R R R O Tebbe O O O

TiCp2

R R

OR O O

TiCp2 TiCp2

O O O O OBn BnO

BnO O TBSO O OBn HHH H H H

Tebbe (4 eq.), THF, 25oC,0.5h,then, reflux 71% O O O OBn BnO

BnO O O OBn HHH OTBSH H

Nicolaou, K. C. et. al. JACS 1996, 118, 1565 56 Tebbe-ROM Reaction

OtBu Tebbe or Cp2Ti

90 oC

CO2tBu

Capnellene Grubbs, R. H. et. al. JOC 1990, 55, 843

O

H i. Tebbe, DMAP H OEt ii. 90 oC iii. 1M HCl O H

Hydroindanone Harlterman, R. L. et. al. JOMC 1997, 547, 41 57 Summary

Hurry up! Please Use Tebbe and Petasis!

The End!

58