Total Synthesis of the Tetracyclic Antimalarial Myrioneuron Alkaloid (±)-Myrioneurinol

Total Page:16

File Type:pdf, Size:1020Kb

Total Synthesis of the Tetracyclic Antimalarial Myrioneuron Alkaloid (±)-Myrioneurinol The Pennsylvania State University The Graduate School Eberly College of Science TOTAL SYNTHESIS OF THE TETRACYCLIC ANTIMALARIAL MYRIONEURON ALKALOID (±)-MYRIONEURINOL A Dissertation in Chemistry by Anthony J. Nocket © 2015 Anthony J. Nocket Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy August 2015 The dissertation of Anthony J. Nocket was reviewed and approved* by the following: Steven M. Weinreb Russell and Mildred Marker Professor of Natural Products Chemistry Dissertation Advisor Chair of Committee Kenneth E. Feldman Professor of Chemistry Alexander Radosevich Assistant Professor of Chemistry Edward G. Dudley Associate Professor of Food Science Tom Mallouk Evan Pugh Professor of Chemistry, Physics, Biochemistry, and Molecular Biology Head of the Department of Chemistry *Signatures are on file in the Graduate School ii ABSTRACT The first total synthesis of the tetracyclic antimalarial alkaloid myrioneurinol (19) in racemic form has been completed in twenty-seven steps and in 1.8% overall yield from commercially available materials. The spiranic A/D-ring subunit of the metabolite with the attendant C5,6-stereocenters was constructed via a highly diastereoselective intramolecular Michael addition (IMA) of N-Cbz lactam/(E)-α,β-unsaturated ester cyclization precursor 61 to afford spirocycle 62. After a series of failed attempts to alkylate various ester enolate and pyrrolidinoenamine derivatives of 62 at C7, an umpolung strategy involving the conjugate addition of a malonate enolate to the nitrosoalkene intermediate 124, derived from α-chloro-O- silylaldoxime 122, provided oxime geometric isomers 123a/b. Both of these isomers possessed the correct C7-stereochemistry for the natural product. Several methods were then explored to accomplish the pivotal C9,10 carbon-carbon bond formation to construct the B-ring within the cis- decahydroquinoline (DHQ) scaffold of the alkaloid. These approaches included the unsuccessful nitrile α-anion/imidate cyclization of precursor 133 and the olefin/lactam Rainier metathesis of N- sulfonyllactam precursors 156 and 160 to provide tricyclic enesulfonamides 157 and 161, respectively. Although the latter ring-closing metathesis method was successful, we were unable to functionalize tricycles 157 and 161 at C9 in order to complete the total synthesis. We were pleased to discover that an intramolecular allyl silane/N-sulfonyliminium ion variant of the Sakurai reaction could be utilized to construct the B-ring of the cis-DHQ system, resulting in a single diastereomer of tricycle 191 with the desired C9,10 relative configuration, which we were able to elaborate to (±)-myrioneurinol. iii TABLE OF CONTENTS LIST OF FIGURES vii ACKNOWLEDGEMENTS viii CHAPTER 1. INTRODUCTION AND BACKGROUND 1.1. Myrioneuron and Nitraria Alkaloids: Typical Structures and a Unified Biosynthetic Pathway 1 1.2. A Novel Tetracyclic Myrioneuron Alkaloid: (+)-Myrioneurinol 5 1.3. Previous Synthetic Studies toward the Myrioneuron Alkaloids 9 1.4. First Generation Retrosynthesis of (±)-Myrioneurinol 12 1.5. Background on Diastereoselective Intramolecular Michael Additions (IMAs) and Related Reactions 13 1.6. Preliminary Studies on the IMA Spirocyclization toward Myrioneurinol 17 CHAPTER 2. IMA STRATEGY TO CONSTRUCT A/D-RING SUBUNIT 2.1. ‘Soft’ Enolization Inspired by Evans, et al. 19 2.2. First Generation Route to N-Cbz Lactam Cyclization Precursor 20 2.3. Attempted ‘Soft’ IMA of Lactam Enoate 61 21 2.4. Determination of the Relative C5,6-Configuration of Spirocycle 62 23 2.5. Second Generation Route to Cyclization Precursor 61 25 2.6. Optimization Studies on the Pivotal IMA Spirocyclization 26 2.7. Exploration of Some Homologous IMA Spirocyclizations 28 2.7.1. Studies with Five-Membered Lactam Analog 74 29 2.7.2. Studies with Seven-Membered Lactam Analog 81 30 2.7.3. Rationalization for Failure of Enoates 74 and 81 to Spirocyclize 31 2.7.4. Modification of the Ester Tether Length 31 2.7.5. Studies with Homologues Pre-Functionalized at C7 33 iv 2.8. Attempted Asymmetric IMA Spirocyclization 35 2.8.1. Studies with (-)-Menthyl Carbamate Cyclization Precursor 103 35 2.8.2. Studies with (+)-TCC Ester Cyclization Precursor 107 36 CHAPTER 3: HOMOLOGATION OF A/D-RING SUBUNIT AT C7 3.1. Attempts to Homologate via Formation of C7 Ester Enolates 39 3.2. Attempts to Homologate at C7 via Enamine Chemistry 41 3.2.1. Studies with N-H Lactam (E)-Pyrrolidinoenamine 112 41 3.2.2. Studies with N-Bn Lactam (E)-Pyrrolidinoenamine 116 43 3.3 C7-Homologation via Nitrosoalkene Umpolung Conjugate Addition 44 3.3.1. Background on Nitrosoalkene Conjugate Additions 44 3.3.2. Nitrosoalkene Michael Addition of α-Chloro-O-Silylaldoxime 122 46 3.3.3. Rationalization of Observed C7-Diastereoselectivity 49 CHAPTER 4: B-RING CLOSURE STRATEGIES 4.1. Imidate/Nitrile α-Anion Cyclization Strategy 50 4.1.1. Preparation of Cyclization Precursor 50 4.1.2. Imidate/Nitrile α-Anion Cyclization Studies 52 4.2. Rainier Metathesis Strategy 54 4.2.1. Background on the Rainier Metathesis Reaction 54 4.2.2. Second Generation Retrosynthesis 55 4.2.3. Preparation of N-Tosyllactam/Terminal Olefin Cyclization Precursor 56 4.2.3.1. Lactam Nitrile System 56 4.2.3.2. Methoxymethyl (MOM) Ether System 57 4.2.3.3. Rainier Metathesis of N-Tosyllactam 156 59 4.2.3.4. Attempted Elaboration of N-Ts Enesulfonamide 157 60 4.2.4. N-SES-Lactam System 62 4.3. Allyl Silane/N-Sulfonyliminium Aza-Sakurai Strategy 63 4.3.1. Background: Weinreb Synthesis of the Sarain A Core Structure 63 v 4.3.2. Third Generation Myrioneurinol Retrosynthesis 66 4.3.3. Preparation of Cyclization Precursor 67 4.3.3.1. Attempted Allyl Silane Formation via Fleming Cuprate Methodology in Nitrile System 67 4.3.3.2. Attempted Allyl Silane Formation in Methoxymethyl (MOM) Ether-Protected System 68 4.3.3.3. Seyferth-Wittig Homologation of Aldehyde 182 70 4.3.4. Aza-Sakurai Reaction of N-Tosyllactam/Allyl Silane 189 72 4.3.5. Confirmation of the C9,10 Stereochemistry of Tricycle 191 74 CHAPTER 5: COMPLETION OF THE MYRIONEURINOL SYNTHESIS 5.1. Attempted Elaboration of N-Ts Tricyle 191 76 5.2. Alternative Protecting Groups for the Lactam Nitrogen 78 5.2.1. N-SES-Lactam System 78 5.2.2. N-Nosyllactam System 79 5.2.3. Acid-Labile Sulfonamides 80 5.2.4. Attempted Cyclization of N-Cbz Lactam 82 5.3. N-Tosyllactam System Revisted 82 5.4. Endgame: Closure of the 1,3-Oxazine C-Ring 84 5.5. Concluding Remarks 85 CHAPTER 6: EXPERIMENTAL SECTION 89 REFERENCES 163 vi LIST OF FIGURES Figure 1. Structures of Some Representative Myrioneuron Alkaloids 2 Figure 2. Structures of Some Representative Spiranic Nitraria Alkaloids 3 Figure 3. Structure and Conformation of (+)-Myrioneurinol (19) 5 Figure 4. Two-Dimensional NMR Analysis of (+)-Myrioneurinol (19) 6 Figure 5. NOESY Correlations for Tricycle 191 75 vii ACKNOWLEDGEMENTS Over the past five and a half years, I have had the great pleasure of pursuing my fascination with organic chemistry under the guidance of my advisor, Professor Steven M. Weinreb. I credit my growth as a scientist both to the challenging nature of natural product synthesis itself, and to the degree of independence and freedom of thought I have gained while working in his laboratory. Furthermore, I would like to acknowledge the insightful discussions, assistance, and training I have received from other members of the Weinreb laboratory, both past and present. My most heartfelt thanks must also be extended to the many wonderful friends I have made during my time here at Penn State, to whom I owe a great deal of my sanity. Finally, I would be remiss if I did not acknowledge the unwavering support of my beloved family, to whom I dedicate this dissertation. Without their constant words of encouragement in the face of the uncertainties and unavoidable setbacks of research, none of my accomplishments would have been possible. viii CHAPTER 1: INTRODUCTION AND BACKGROUND 1.1. Myrioneuron and Nitraria Alkaloids: Typical Structures and a Unified Biosynthetic Pathway The higher plant genus Myrioneuron (family Rubiaceae) includes approximately fifteen species distributed across southeast Asia. In recent years, M. nutans, a diminutive tree endemic to the forests of North Vietnam, has yielded a number of unusual secondary metabolites isolated from its aerial structures.1 These so-called ‘Myrioneuron alkaloids’ typically contain an array of chair six-membered rings including a cis-decahydroquinoline (cis-DHQ) moiety tightly fused to various carbocyclic or heterocyclic structural elements such as 1,3-oxazine and/or 1,3-diazine subunits. These natural products range in complexity from the simple tricyclic compounds (+)-myrioxazines A (Figure 1, 1) and B (2)2 to tetracycles such as (-)-schoberine (3) and (+)-myrionamide (4),3 pentacycles such as (+)-myriberine A (5),4 the hexacyclic compound (+)-myrobotinol (6),5 to the most complex metabolite isolated to date, the dimeric decacycle (+)-myrifabine (7).6 Myrioneuron alkaloids exhibit a variety of differing types of biological activity. For example, (+)-myriberine A (5) was reported to effectively inhibit the hepatitis C virus. Moreover, some alkaloids, including an ester derivative of (+)-myrobotinol (6) as well as (+)-myrifabine (7), have shown promising cytotoxicity against KB cell lines. 1 H H H H H H H H H H H N O N N R N H N H H H O O N O H (+)-myrioxazine A (1) (+)-myrioxazine B (2) R = H2, (-)-schoberine (3) R = O, (+)-myrionamide (4) H H H H H O H N H N H N N H N N N O N H N H H N N H O H H H H HO OH (+)-myriberine A (5) (+)-myrobotinol (6) (+)-myrifabine (7) Figure 1. Structures of Some Representative Myrioneuron Alkaloids. Bodo, et al. have suggested that these metabolites all share a common biosynthetic pathway from L-lysine, despite their structural diversity.1 Even more intriguing is the proposed intersection of Myrioneuron alkaloid biosynthesis with that of the alkaloids of the somewhat distantly related higher plant genus Nitraria (family Nitrariaceae) via a common intermediate (vide infra).
Recommended publications
  • Studies Directed Towards the Stereoselective Total Synthesis of Miyakolide
    Studies Directed Towards the Stereoselective Total Synthesis of Miyakolide by Jinhua Song Submitted to the Department of Chemistry in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Organic Chemistry at the Massachusetts Institute of Technology February, 1999 @1999 Jinhua Song All rights Reserved The author hereby grants MIT permissions to reproduce and to distribute publicly paper and electronic copies of this thesis document in whole or in part. Signature of Author: Department of Chemistry September 25, 1998 Certified by: Professor Satoru Masamune A. C. Cope Professor of Chemistry Thesis Supervisor Accepted by:, ProfessotDietmar Seyferth, Chairman Departmental Committee on Graduate Students MASSACHUSETTS INSTITUTE OF TECHNOLOGY LrL J This doctoral thesis has been examined by a committee of the Department of Chemistry as follows: Professor Timothy M. Swager Chairman Professor Satoru Masamune Thesis Supervisor Professor Rick L. Danheiser , 2 Studies Directed Towards the Stereoselective Total Synthesis of Miyakolide by Jinhua Song Submitted to the Department of Chemistry on September 25, 1998, in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Organic Chemistry Abstract Presented are the stereoselective syntheses of the A (C18-C28), B (C14-C17), C (C6-C13), D (Cl-C5), C'D' (C1-C13) fragments and the efficient coupling of B and C'D' fragments of the marine natural product miyakolide, a 24-membered polyketide macrolide which exhibits anti-cancer activity. Fragment A was synthesized from the chiral aldehyde 4-4 through the successful application of the newly developed boron mediated anti-selective aldol methodology using the chiral ester 3-4.
    [Show full text]
  • The Synthesis and Applications of N-Alkenyl Aziridines
    The Synthesis and Applications of N-Alkenyl Aziridines by Nicholas A. Afagh A thesis submitted in conformity with the requirements for the degree of Master of Science Department of Chemistry University of Toronto © Copyright by Nicholas A. Afagh 2010 The Synthesis and Applications of N-Alkenyl Aziridines Nicholas A. Afagh Master of Science Department of Chemistry University of Toronto 2010 Abstract N-alkenyl aziridines are a unique class of molecules that do not behave as typical enamines as a result of the inability of the nitrogen atom lone-pair of electrons to delocalize. The attenuated nucleophilicity of these enamines presents opportunities for the selective functionalization and reactivity not available to classical enamines. An operationally simple and mild copper-mediated coupling has been developed that facilitates the preparation of a broad range of N-alkenyl aziridines not available through existing methods. The preparation and reactivity of highly- functionalized N-alkenyl aziridines are reported. Also reported is the application of the chemoselective amine/aldehyde/alkyne (A 3) multicomponent coupling involving amphoteric aziridine aldehydes as the aldehyde component. This coupling allows access to propargyl amines with pendent aziridine functionality. ii Acknowledgments First and foremost, I would like to thank my supervisor, Professor Andrei K. Yudin for his continuous support and encouragement over the past two years. His wealth of knowledge and profound insight into all matters chemistry made for many interesting discussions. In addition, I would like to thank all the members of the Yudin group past and present with whom I have had the distinct pleasure of working alongside and shared many late evenings.
    [Show full text]
  • Radical Approaches to Alangium and Mitragyna Alkaloids
    Radical Approaches to Alangium and Mitragyna Alkaloids A Thesis Submitted for a PhD University of York Department of Chemistry 2010 Matthew James Palframan Abstract The work presented in this thesis has focused on the development of novel and concise syntheses of Alangium and Mitragyna alkaloids, and especial approaches towards (±)-protoemetinol (a), which is a key precursor of a range of Alangium alkaloids such as psychotrine (b) and deoxytubulosine (c). The approaches include the use of a key radical cyclisation to form the tri-cyclic core. O O O N N N O O O H H H H H H O N NH N Protoemetinol OH HO a Psychotrine Deoxytubulosine b c Chapter 1 gives a general overview of radical chemistry and it focuses on the application of radical intermolecular and intramolecular reactions in synthesis. Consideration is given to the mediator of radical reactions from the classic organotin reagents, to more recently developed alternative hydrides. An overview of previous synthetic approaches to a range of Alangium and Mitragyna alkaloids is then explored. Chapter 2 follows on from previous work within our group, involving the use of phosphorus hydride radical addition reactions, to alkenes or dienes, followed by a subsequent Horner-Wadsworth-Emmons reaction. It was expected that the tri-cyclic core of the Alangium alkaloids could be prepared by cyclisation of a 1,7-diene, using a phosphorus hydride to afford the phosphonate or phosphonothioate, however this approach was unsuccessful and it highlighted some limitations of the methodology. Chapter 3 explores the radical and ionic chemistry of a range of silanes.
    [Show full text]
  • Properties of Silicon Hafensteiner
    Baran Lab Properties of Silicon Hafensteiner Si vs. C Siliconium Ion - Si is less electronegative than C - Not believed to exist in any reaction in solution - More facile nucleophilic addition at Si center J. Y. Corey, J. Am. Chem. Soc. 1975, 97, 3237 - Pentacoordinate Si compounds have been observed Average BDE (kcal/mol) MeSiF4 NEt4 Ph3SiF2 NR4 C–C C–Si Si–Si C–F Si–F 83 76 53 116 135 - Lack of cation justified by high rate of bimolecular reactivity at Si C–O Si–O C–H Si–H Mechanism of TMS Deprotection 86 108 83 76 OTMS O Average Bond Lengths (Å) C–C C–Si C–O Si–O 1.54 1.87 1.43 1.66 Workup Si Si Silicon forms weak p-Bonds O O F F NBu4 p - C–C = 65 kcal/mol p - C–Si = 36 kcal/mol Pentavalent Silicon Baran Lab Properties of Silicon Hafensteiner Nucleophilic addition to Si b-Silicon effect and Solvolysis F RO–SiMe3 RO F–SiMe3 SiMe3 Me H H vs. Me3C H Me3C H OSiMe O Li 3 H OCOCF H OCOCF MeLi 3 3 A B Me-SiMe3 12 kA / kB = 2.4 x 10 Duhamel et al. J. Org. Chem. 1996, 61, 2232 H H SiMe Me b-Silicon Effect 3 vs. Me3C H Me3C H - Silicon stabalizes b-carbocations H OCOCF3 H OCOCF3 - Stabalization is a result of hyperconjugation 4 kA / kB = 4 x 10 SiR3 CR3 Evidence for Stepwise mechanism vs. Me3Si SiMe2Ph SiMe2Ph A B Me3Si SiMe2Ph *A is more stable than B by 38 kcal/mol * Me3Si SiMe2Ph Me3Si Jorgensen, JACS, 1986,107, 1496 Product ratios are equal from either starting material suggesting common intermediate cation Baran Lab Properties of Silicon Hafensteiner Evidence for Rapid Nucleophilic Attack Extraordinary Metallation Me SiMe3 SiMe3 Li Si t-BuLi Me SnCl4 Cl Me3Si Cl Me2Si Cl SiMe MeO OMe 3 OMe OMe Me2Si Cl vs.
    [Show full text]
  • Syllabus CHEM 6352 2014
    CHEM 6352 Organic Reactions & Synthesis Fall 2014 Jeremy A. May Office: 5025 SERC Office hours: T/Th 10-11 am or by appointment (email me) Email: [email protected] Website: http://mynsm.uh.edu/groups/maygroup/wiki/b24dc/Classes.html Lectures: 154 Fleming Tuesdays and Thursdays 8:30–10:00. August 26–December 6, 2014. Homework Session Saturdays 3:00 pm to 5:30 pm in Fleming 154/160/162. No class November 27–29, 2014 (Thanksgiving recess); Oct. 31st is last day to withdraw Optional Texts (on reserve at MD Anderson Library) Zweifel, G.; Nantz, M. “Modern Organic Synthesis: An Introduction” March, J. “Advanced Organic Chemistry” Corey, E. J.; Cheng, X.-M. “The Logic of Chemical Synthesis” Warren, S. “Designing Organic Syntheses: A Programmed Introduction to the Synthon Approach” Kürti, L.; Czakó, B. “Strategic Applications of Named Reactions in Organic Synthesis” Grossman, R. “The Art of Writing Reasonable Organic Reaction Mechanisms” Model Sets: Students are strongly encouraged to purchase at least one set. HGS biochemistry molecular model sets are recommended and are available at Research Stores in the Old Science Building. Other relevant texts and references: Greene; Wuts. “Protective Groups in Organic Synthesis” Nicolaou, K.C.; Sorensen, E. “Classics in Total Synthesis” Nicolaou, K.C.; Snyder, S. “Classics in Total Synthesis II” Larock, R. C. "Comprehensive Organic Transformations" Hartwig, J. “Organotransition Metal Chemistry: From Bonding to Catalysis” Tsuji, J. “Palladium Reagents and Catalysts” Hegedus, L. “Transition Metals in the Synthesis of Complex Organic Molecules” Problem Sets: Problem Sets will be distributed on Tuesdays (or before) and are due by the next Saturday at the Homework Session.
    [Show full text]
  • Appendix I: Named Reactions Single-Bond Forming Reactions Co
    Appendix I: Named Reactions 235 / 335 432 / 533 synthesis / / synthesis Covered in Covered Featured in problem set problem Single-bond forming reactions Grignard reaction various Radical couplings hirstutene Conjugate addition / Michael reaction strychnine Stork enamine additions Aldol-type reactions (incl. Mukaiyama aldol) various (aldol / Claisen / Knoevenagel / Mannich / Henry etc.) Asymmetric aldol reactions: Evans / Carreira etc. saframycin A Organocatalytic asymmetric aldol saframycin A Pseudoephedrine glycinamide alkylation saframycin A Prins reaction Prins-pinacol reaction problem set # 2 Morita-Baylis-Hillman reaction McMurry condensation Gabriel synthesis problem set #3 Double-bond forming reactions Wittig reaction prostaglandin Horner-Wadsworth-Emmons reaction prostaglandin Still-Gennari olefination general discussion Julia olefination and heteroaryl variants within the Corey-Winter olefination prostaglandin Peterson olefination synthesis Barton extrusion reaction Tebbe olefination / other methylene-forming reactions tetrodotoxin hirstutene / Selenoxide elimination tetrodotoxin Burgess dehydration problem set # 3 Electrocyclic reactions and related transformations Diels-Alder reaction problem set # 1 Asymmetric Diels-Alder reaction prostaglandin Ene reaction problem set # 3 1,3-dipolar cycloadditions various [2,3] sigmatropic rearrangement various Cope rearrangement periplanone Claisen rearrangement hirstutene Oxidations – Also See Handout # 1 Swern-type oxidations (Swern / Moffatt / Parikh-Doering etc. N1999A2 Jones oxidation
    [Show full text]
  • Organic & Biomolecular Chemistry
    Organic & Biomolecular Chemistry View Article Online PAPER View Journal | View Issue Diastereoselective synthesis of trisubstituted olefins using a silicon-tether ring-closing Cite this: Org. Biomol. Chem., 2020, 18, 2297 metathesis strategy† Stéphane Wittmann,‡ Alexander F. Tiniakos and Joëlle Prunet * The diastereoselective synthesis of trisubstituted olefins with concomitant C–C bond formation is still adifficult challenge, and olefin metathesis reactions for the formation of such alkenes are usually not high yielding or/and diastereoselective. Herein we report an efficient and diastereoselective synthesis of trisubstituted olefins flanked by an allylic alcohol, by a silicon-tether ring-closing metathesis strategy. Both E-andZ-trisubstituted alkenes were synthesised, depending on the method employed Received 30th November 2019, to cleave the silicon tether. Furthermore, this methodology features a novel Peterson olefination for Accepted 4th March 2020 the synthesis of allyldimethylsilanes. These versatile intermediates were also converted into the DOI: 10.1039/c9ob02563d corresponding allylchlorodimethylsilanes, which are not easily accessible in high yields by other Creative Commons Attribution 3.0 Unported Licence. rsc.li/obc methods. Introduction However, there are much fewer examples of RCM reactions with O–Si–C tethers. The reported formations of trisubstituted The trisubstituted E olefin motif with a methyl substituent is olefins from allyl silanes lead to bicyclic products,8 and the present in numerous polyketide natural products. Among others focus on vinyl silanes.9 We propose a strategy for an these, callipeltoside A1 and dolabelide C2 possess another efficient and diastereoselective synthesis of trisubstituted This article is licensed under a common feature: an allylic alkoxy group on the lone substitu- olefins flanked by an allylic alcohol, which involves a RCM ent of the trisusbstituted olefin (highlighted in red in reaction with a O–Si–C tether.
    [Show full text]
  • Bridging Mcmurry and Wittig in One-Pot
    Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 1755 Bridging McMurry and Wittig in One-Pot Olefins from Stereoselective, Reductive Couplings of Two Aldehydes via Phosphaalkenes JURI MAI ACTA UNIVERSITATIS UPSALIENSIS ISSN 1651-6214 ISBN 978-91-513-0536-3 UPPSALA urn:nbn:se:uu:diva-368873 2019 Dissertation presented at Uppsala University to be publicly examined in Häggsalen, Ångströmlaboratoriet, Lägerhyddsvägen 1, Uppsala, Friday, 15 February 2019 at 10:15 for the degree of Doctor of Philosophy. The examination will be conducted in English. Faculty examiner: Professor Dr. Christian Müller (Freie Universität Berlin, Institute of Chemistry and Biochemistry). Abstract Mai, J. 2019. Bridging McMurry and Wittig in One-Pot. Olefins from Stereoselective, Reductive Couplings of Two Aldehydes via Phosphaalkenes. Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 1755. 112 pp. Uppsala: Acta Universitatis Upsaliensis. ISBN 978-91-513-0536-3. The formation of C=C bonds is of great importance for fundamental and industrial synthetic organic chemistry. There are many different methodologies for the construction of C=C bonds in the literature, but currently only the McMurry reaction allows the reductive coupling of two carbonyl compounds to form alkenes. This thesis contributes to the field of carbonyl olefinations and presents the development of a new synthetic protocol for a one-pot reductive coupling of two aldehydes to alkenes based on organophosphorus chemistry. The coupling reagent, a phosphanylphosphonate, reacts with an aldehyde to yield a phosphaalkene intermediate which upon activation with a base undergoes an olefination with a second aldehyde. A general overview of synthetic methods for carbonyl olefinations and the chemistry of phosphaalkenes is given in the background chapter.
    [Show full text]
  • Convergent Total Synthesis and Preliminary Biological Investigations
    Norrislide: Convergent Total Synthesis and Preliminary Biological Investigations Author: Krista Elizabeth Granger Persistent link: http://hdl.handle.net/2345/731 This work is posted on eScholarship@BC, Boston College University Libraries. Boston College Electronic Thesis or Dissertation, 2009 Copyright is held by the author, with all rights reserved, unless otherwise noted. Boston College The Graduate School of Arts and Sciences Department of Chemistry NORRISOLIDE: CONVERGENT TOTAL SYNTHESIS AND PRELIMINARY BIOLOGICAL INVESTIGATIONS a dissertation by KRISTA ELIZABETH GRANGER submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy August 2009 © copyright by KRISTA ELIZABETH GRANGER 2009 Norrisolide: Convergent Total Synthesis and Preliminary Biological Investigations Krista Elizabeth Granger Thesis Advisor: Professor Marc L. Snapper Abstract • Chapter 1: A review of Shapiro reactions as a coupling strategy in natural product total synthesis. The syntheses of lycoramine, galanthamine, yuehchukene analogues, ovalicin, studies toward the ingenol core, haemanthidine, pretazettine, tazettine, crinamine, Taxol, colombiasin A, elisapterosin B, the AB ring fragment of spongistatin 1 and 8-epipuupewhedione are discussed. Ar O S O nBuLi Li E+ E NH R' R' N R R R' R • Chapter 2: The convergent total synthesis of the marine natural product norrisolide is described. Both subunits, the hydrindane core and the norrisane side chain, are prepared in an asymmetric fashion through kinetic resolution and enantioselective cyclopropanation, respectively. A Shapiro reaction couples the two fragments and a Peterson olefination installs the 1,1-disubstituted olefin. O O MeO OTBS AcO MeO O O O O N Me Me Me MeO O O Me Li O OP H H Me Me Me Me norrisolide H Me Me • Chapter 3: Preliminary experiments to isolate the biological target of norrisolide through reductive alkylation and tritium labeling are investigated.
    [Show full text]
  • Science Fair Project
    OrganicOrganic ChemistryChemistry ofof LowLow--CoordinateCoordinate PhosphorusPhosphorus CompoundsCompounds Tom Hsieh University of Toronto Organic and Biological Seminar November 12, 2007 I.I. Background:Background: MakingMaking BondsBonds AnalogousAnalogous toto CC--CC DoubleDouble BondsBonds 2 BreakingBreaking thethe ““DoubleDouble BondBond RuleRule”” Generally held belief: elements outside the first row do not form multiple bonds Phosphaalkene chemistry deals with 3p-2p (P=C) π-bonds!! 3 CarbonCarbon--SiliconSilicon MultipleMultiple BondsBonds 1981: West discovered Si=Si double bond C N Si P 1981: Brook discovered Si=C double bond West, Fink, Michl. Science. 1981, 214, 4527. Brook, Abdesaken, Gutekunst, Gutekunst, Kallury. J. Chem. Soc., Chem. Commun. 1981, 191. 4 CarbonCarbon--NitrogenNitrogen MultipleMultiple BondsBonds C-N bonds are ubiquitous C N Si P C=N and C=C double bonds are stable Reactivity requires either: high-lying HOMOs accessible, low-lying LUMOs π-bonds, strained rings, electron deficient species, etc. 5 UltravioletUltraviolet PhotoelectronPhotoelectron SpectroscopySpectroscopy (UPS)(UPS) UPS determines molecular energy levels in the valence region Helium discharge lamp is used as the photon source Measures the kinetic energy spectra of electrons emitted by UV photons 6 UltravioletUltraviolet PhotoelectronPhotoelectron SpectroscopySpectroscopy (UPS)(UPS) Each of the peaks in the spectrum corresponds to the - 10.30 MO energy level - 10.70 (in eV) of one valence-region He (eV) 7 MethanimineMethanimine vs.vs. EthyleneEthylene UV photoelectron spectroscopic measurements C N Si P HOMO of methanimine is the lone pair π-bond lies much lower in energy Consequently, methanimine usually reacts through its lone pair before through its π-bond Lacombe, Gonbeau, Cabioch, Pellerin, Denis, Pfister-Guillouzo. J. Am. Chem. Soc.
    [Show full text]
  • Olefination Reactions Lecture Notes OTBS OPMB O
    Olefination Reactions Lecture Notes OTBS OPMB O Key Reviews: O Me O Me XX Wittig Reaction K. C. Nicolaou and co-workers, Ann. 1997, 1283. Horner-Wadsworth-Emmons and Tebbe Olefinations S. E. Kelly, Comprehensive Org. Synth. 1991, Vol. 1, 729. Peterson Olefination D. J. Ager, Synthesis 1984, 384. Julia (Julia-Lythgoe) Olefination B. M. Trost, Bull. Chem. Soc. Jpn. 1988, 61, 107. Wittig Olefination: Background and Principles R1 n-BuLi, Ph P 3 O X LDA, R R1 LiHMDS PPh + 1 3 X Ph3P + R1 Ph3P pKa = 18-20 ylide when R = alkyl, H Ph Ph Ph Ph Ph R1 P Ph P -[Ph3P=O] O R1 O R strong bond 1 formation drives reaction oxaphosphatane betaine G. Wittig and G. Schollkopf, Chem. Ber. 1954, 87, 1318. Wittig Olefination: Background and Principles Stereoselectivity with non-stabilized ylides Me OMe Me Ph3P Ph3P Ph3P Me Ph3P Ph3P Not stable; must be made in situ and used immediately Wittig Olefination: Background and Principles Stereoselectivity with non-stabilized ylides Me OMe Me Ph3P Ph3P Ph3P Me Ph3P Ph3P Not stable; must be made in situ and used immediately Addition to carbonyl is an irreversible and concerted [2+2] cycloaddition such that the R groups on the aldehyde and the ylide are as far apart as possible PPh3 Ph3P O H H H O + Me Me Ph3P R O R H -[Ph3P=O] As the size of the R groups increases, selectivity for Z-alkene increases Me Nonpolar solvents favor initial addition Polar solvents favor the elimination Z-alkene Wittig Olefination: Background and Principles Stereoselectivity with stabilized ylides Me O O Ph P Ph3P 3 Ph3P Me OEt semistabilized Incredibly stable; not moisture sensitive, can be chromatographed Price for stability is lower reactivity: reacts well with aldehydes, slowly with ketones Wittig Olefination: Background and Principles Stereoselectivity with stabilized ylides Me O O Ph P Ph3P 3 Ph3P Me OEt semistabilized Incredibly stable; not moisture sensitive, can be chromatographed Price for stability is lower reactivity: reacts well with aldehydes, slowly with ketones Initial addition to carbonyl is reversible so the thermodynamic elimination product results.
    [Show full text]
  • Name Reactions
    Name Reactions A Collection of Detailed Reaction Mechanisms Bearbeitet von Jie Jack Li 1. Auflage 2002. Buch. xviii, 417 S. Hardcover ISBN 978 3 540 43024 7 Format (B x L): 15,5 x 23,5 cm Gewicht: 780 g Weitere Fachgebiete > Chemie, Biowissenschaften, Agrarwissenschaften > Chemie Allgemein Zu Leseprobe schnell und portofrei erhältlich bei Die Online-Fachbuchhandlung beck-shop.de ist spezialisiert auf Fachbücher, insbesondere Recht, Steuern und Wirtschaft. Im Sortiment finden Sie alle Medien (Bücher, Zeitschriften, CDs, eBooks, etc.) aller Verlage. Ergänzt wird das Programm durch Services wie Neuerscheinungsdienst oder Zusammenstellungen von Büchern zu Sonderpreisen. Der Shop führt mehr als 8 Millionen Produkte. Table of Contents Preface ................................................................................................................XIII Abbreviations.......................................................................................................XV 1. Abnormal Claisen rearrangement..............................................................1 2. Alder ene reaction......................................................................................2 3. Allan–Robinson reaction ...........................................................................3 4. Alper carbonylation...................................................................................5 5. Amadori glucosamine rearrangement........................................................7 6. Angeli–Rimini hydroxamic acid synthesis................................................8
    [Show full text]