Front Matter Template

Total Page:16

File Type:pdf, Size:1020Kb

Front Matter Template Copyright by Rong Ma 2017 The Dissertation Committee for Rong Ma Certifies that this is the approved version of the following dissertation: Behavioral and Molecular Mechanisms of Pheromone Transmission in the Honey Bee (Apis mellifera) Committee: Ulrich Mueller, Supervisor Johann Hofmann Lawrence Gilbert Shalene Jha Christina Grozinger Behavioral and Molecular Mechanisms of Pheromone Transmission in the Honey Bee (Apis mellifera) by Rong Ma Dissertation Presented to the Faculty of the Graduate School of The University of Texas at Austin in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy The University of Texas at Austin August 2017 Acknowledgements At the threshold between graduate training and a professional career, I find myself reflecting on the importance of intentions. I began my PhD without a clear idea about how to join my interest in bees and chemical ecology together. It is a testament to the patience, encouragement, and guidance of my many mentors, colleagues, friends, and family that I managed any measure of success or to even complete it at all. I am deeply grateful to my advisor, Dr. Ulrich Mueller, for training me to be a careful scientist and helping me through several crises, both personal and professional, along the way. Early on, he encouraged me to spend time watching the bees, allowing my fascination with them to sustain and guide my work, which is a lesson I will not soon forget. Ulrich always had kind words of encouragement in moments of self-doubt, and I learned to trust his optimistic, yet brutally honest advice. He pushed me towards ever- greater degrees of research independence, encouraging me to find and collaborate with experts in the field. It was with his blessing that I spent much of my graduate student career in other labs, and I benefitted immeasurably from such experiences. Many thanks to my mentors, foremost among whom are the members of my dissertation committee—Drs. Larry Gilbert, Christina Grozinger, Hans Hofmann, Shalene Jha, and Ulrich Mueller—who pushed me to develop my ideas and grow as a scientist. Their comments, suggestions, and revisions greatly improved the quality of this dissertation, and I leaned on each of them through the course of my studies. I owe special thanks to Christina, who hosted me in her lab for a semester so that I could perform EAG iv experiments and learn bioinformatics methods. I am grateful to Dr. Juliana Rangel, who welcomed me into her lab for several field seasons and provided me with much guidance, support, and, importantly, all the honey bee colonies used in my experiments. Summers at the TAMU Riverside Campus, where I had all the time and space I could want to watch the bees, always held a unique calmness for me, even in the midst of hectic field seasons. I would also like the thank Dr. Bill Wcislo for giving me the opportunity to work in his lab in Panama, for making time for meandering discussions about pheromone evolution, and for introducing me to the beautiful rainforests on BCI. Big hugs all around to current and former members of the Mueller lab—Dr. Sabrina Amador-Vargas, Emma Dietrich, Chi-Chun Fang, Jake Herman, Hannah Marti, Dr. Quinn McFrederick, Zach Philips, and Dr. Chad Smith—who, in many ways, had a profound influence on my development as a scientist and as a person. While the Mueller lab was undoubtedly my academic home, I am grateful to members of the Rangel and Grozinger Labs for welcoming me into their ranks during field seasons. My heartfelt thanks to members of the Rangel lab, Dr. Adrian Fisher, Pierre Lau, Alex Payne, and Liz Walsh, for their friendship and for helping with my projects in myriad ways. Gene Ash taught me everything I know about beekeeping, which, as he might attest, may not be that much; nevertheless, my field seasons would have been complete failures without his help. I am especially indebted to Dr. Alejandra Gonzalez for holding my hand through RNA extractions, to Dr. Gabriel Villar for performing EAG experiments, and to Dr. Dave Galbraith for guiding me through transcriptome analyses. v My friends and fellow graduate students—who listened to my complaints, answered questions too embarrassingly basic for other ears, and shared in trials and tribulations—were a constant source of support, motivation, and inspiration. There are many who deserve my thanks and recognition, and I regret that I cannot list them all here. Among those I relied on most were Taylor Gullett, Luke Reding, and Chris Torres; without them, graduate school would have been a much duller experience. In the last couple years, I turned to rock climbing to maintain my sanity. Ron Safarik showed me the ropes, both literally and figuratively, and David Gawalt kept me alive despite many, many falls. By objective and conservative standards, it is safe to say that I owe them both my life. The diaspora of close friends and colleagues is a tragic and unfortunate reality of academia, but I hope that fate will bring us together again sooner than later. My parents emphasized diligence over achievement, impressing upon me from an early age that, win or lose, the trying mattered most. I am grateful to them both for this and countless other lessons, and it has been a comfort to me throughout my work and travels to have their boundless love and support, wherever I happened to be. I thank them for raising me from an early age to love books and the stories contained within them. Thanks also to Aisha for keeping me sane and grounded through dissertation writing. Her unwavering faith in me kept me going through those long months. vi Behavioral and Molecular Mechanisms of Pheromone Transmission in the Honey Bee (Apis mellifera) Rong Ma, PhD The University of Texas at Austin, 2017 Supervisor: Ulrich G. Mueller The European honey bee (Apis mellifera) has a sophisticated system of pheromonal signals that mediates a wide range of behaviors important for their fitness, including reproductive dominance, nest defense, and cooperative brood care. In honey bees, there are two distinct pheromones emitted by larvae, brood pheromone and (E)-beta-ocimene. By integrating behavior, chemical ecology, and transcriptomics, this dissertation analyzes several key stages in signal transmission in a systematic effort to understand how these two pheromones affect behavior, and in the process, generates a synthetic understanding of a highly complex system of communication. Previous studies have explored behavioral and gene expression patterns related to honey bee pheromones; however, none have compared the roles that two divergent pheromones from a common source play in rapid regulation of foraging behavior. Furthermore, while previous studies have investigated the mechanisms of pheromone detection and the factors involved in regulation of foraging behavior, it remains unclear how individual responses to pheromone exposure scales to colony-level changes in behavior. By investigating the behavioral, physiological, and genomic influences of honey bee chemical communication, this dissertation links phenotypic plasticity in behavior to gene expression profiles in the brain and provides insights into the evolution of a sophisticated chemical language. vii Table of Contents Acknowledgements ................................................................................................ iv List of Tables ......................................................................................................... xi List of Figures ....................................................................................................... xii Introduction ..............................................................................................................1 References .......................................................................................................6 Chapter 1: Assessing the Role of β-ocimene in Regulating Foraging Behavior of the Honey Bee, Apis mellifera ............................................................................10 Introduction ...................................................................................................10 Methods.........................................................................................................13 Honey bee colonies ..............................................................................13 Experimental design.............................................................................14 Synthetic pheromone and chemical analysis .......................................15 Statistical analysis ................................................................................17 RESULTS .....................................................................................................18 DISCUSSION ...............................................................................................20 Acknowledgement ........................................................................................28 References .....................................................................................................29 Chapter 2: Behavioral and Neurophysiological Mechanisms of Social Pheromone Transmission .................................................................................................32 Introduction ...................................................................................................32 METHODS: ..................................................................................................36 Experiment 1: Neurophysiological response to pheromone exposure
Recommended publications
  • A Primitively Social Wasp
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Crossref OBSERVATIONS OF XENORHYNCHIUM NITIDULUM (FABRICIUS) (HYMENOPTERA, EUMENINAE), A PRIMITIVELY SOCIAL WASP BY MARY JANE WEST-EBERHARD* Smithsonian Tropical Research Institute INTRODUCTION Until recently primitively social wasps, with more than one female sharing a nest but without a reproductive division of labor, were considered rare. For many years, the only such wasps known were the five species cited by Wheeler (1928) in his classic book on the social insects. More primitively social wasps are now known (for a partial list see West-Eberhard, 1979). It is clear, however, that many more remain to be discovered, and information on the biology of primitively social species is still scarce. It therefore seems worth- while to report the following brief notes on Xenorynchium nitidu- lum (Fabricius), a primitively social wasp found in India. The observations reported here were made on nests collected in the vil- lage of Janla, Puri District, Orissa (about 20 degrees N.Latitude) in November, 1979. X. nitidulum is widely distributed in India. Vecht (1963 p. 112) cites Dover and Rao (1922) as recording this species from Calcutta, Pusa, Bangalore, Lucknow, Kashmir, and Lahore (Punjab). NEST STRUCTURE AND CONTENTS Xenorhynchium nitidulum builds a nest consisting of several barrel-shaped mud cells coated with an amber-colored substance that is sticky when fresh, and that later forms a hard lumpy coating: This coating strengthens the rather fragile mud walls of the cells which are only 0.25-0.5 mm thick. It may also afford some protec- tion against insect predators and parasitoids, as further discussed below.
    [Show full text]
  • Biological Notes on Ground-Nesting Digger Wasps from Western Nebraska
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln The Prairie Naturalist Great Plains Natural Science Society 6-2005 Biological Notes on Ground-Nesting Digger Wasps from Western Nebraska Robert W. Matthews Janice R. Matthews Follow this and additional works at: https://digitalcommons.unl.edu/tpn Part of the Biodiversity Commons, Botany Commons, Ecology and Evolutionary Biology Commons, Natural Resources and Conservation Commons, Systems Biology Commons, and the Weed Science Commons This Article is brought to you for free and open access by the Great Plains Natural Science Society at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in The Prairie Naturalist by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Biological Notes on Ground-Nesting Digger Wasps from Western Nebraska ROBERTW. MATTHEWS· and JANICE R. MATTHEWS Department of Entomology, University of Georgia, Athens, GA 30602 ABSTRACT -- Nine species of sphecid wasps nesting in sparsely vegetated sandy soils near Ogallala, Keith County, Nebraska were studied during June 2003. The first records of the nest and prey of Cerceris clypeata gnarina Banks and Tachysphex williamsi R. Bohart are presented. Two species of weevils, Baris striata Say and B. subsimilis Casey, were prey of C. clypeata gnarina, with 12 to 22 individuals stocked per cell. Because B. subsimilis is a biological control agent for thistle, this finding is a caution to researchers not to ignore the potential impact of predatory wasps on the community. The single nest of T williamsi was a shallow burrow 5 cm deep; prey included grasshopper nymphs of Melanoplus sp. and M angustipennis (Dodge).
    [Show full text]
  • Comparative Methods Offer Powerful Insights Into Social Evolution in Bees Sarah Kocher, Robert Paxton
    Comparative methods offer powerful insights into social evolution in bees Sarah Kocher, Robert Paxton To cite this version: Sarah Kocher, Robert Paxton. Comparative methods offer powerful insights into social evolution in bees. Apidologie, Springer Verlag, 2014, 45 (3), pp.289-305. 10.1007/s13592-014-0268-3. hal- 01234748 HAL Id: hal-01234748 https://hal.archives-ouvertes.fr/hal-01234748 Submitted on 27 Nov 2015 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Apidologie (2014) 45:289–305 Review article * INRA, DIB and Springer-Verlag France, 2014 DOI: 10.1007/s13592-014-0268-3 Comparative methods offer powerful insights into social evolution in bees 1 2 Sarah D. KOCHER , Robert J. PAXTON 1Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA, USA 2Institute for Biology, Martin-Luther-University Halle-Wittenberg, Halle, Germany Received 9 September 2013 – Revised 8 December 2013 – Accepted 2 January 2014 Abstract – Bees are excellent models for studying the evolution of sociality. While most species are solitary, many form social groups. The most complex form of social behavior, eusociality, has arisen independently four times within the bees.
    [Show full text]
  • The Evolution of Parental Care Strategies in Subsocial Wasps
    ORE Open Research Exeter TITLE The evolution of parental care strategies in subsocial wasps AUTHORS Field, J; Gonzalez-Voyer, A; Boulton, RA JOURNAL Behavioral Ecology and Sociobiology DEPOSITED IN ORE 10 June 2020 This version available at http://hdl.handle.net/10871/121347 COPYRIGHT AND REUSE Open Research Exeter makes this work available in accordance with publisher policies. A NOTE ON VERSIONS The version presented here may differ from the published version. If citing, you are advised to consult the published version for pagination, volume/issue and date of publication Behavioral Ecology and Sociobiology (2020) 74:78 https://doi.org/10.1007/s00265-020-02853-w ORIGINAL ARTICLE The evolution of parental care strategies in subsocial wasps Jeremy Field1 & Alejandro Gonzalez-Voyer2 & Rebecca A. Boulton1 Received: 8 May 2020 /Revised: 8 May 2020 /Accepted: 21 May 2020 # The Author(s) 2020 Abstract Insect parental care strategies are particularly diverse, and prolonged association between parents and offspring may be a key precursor to the evolution of complex social traits. Macroevolutionary patterns remain obscure, however, due to the few rigorous phylogenetic analyses. The subsocial sphecid wasps are a useful group in which to study parental care because of the diverse range of strategies they exhibit. These strategies range from placing a single prey item in a pre-existing cavity to mass provi- sioning a pre-built nest, through to complex progressive provisioning where a female feeds larvae in different nests simulta- neously as they grow. We show that this diversity stems from multiple independent transitions between states. The strategies we focus on were previously thought of in terms of a stepping-stone model in which complexity increases during evolution, ending with progressive provisioning which is a likely precursor to eusociality.
    [Show full text]
  • Behavioral Phylogeny of Corbiculate Apidae (Hymenoptera; Apinae), with Special Reference to Social Behavior
    Cladistics 18, 137±153 (2002) doi:10.1006/clad.2001.0191, available online at http://www.idealibrary.com on Behavioral Phylogeny of Corbiculate Apidae (Hymenoptera; Apinae), with Special Reference to Social Behavior Fernando B. Noll1 Museum of Biological Diversity, Department of Entomology, The Ohio State University, 1315 Kinnear Road, Columbus, Ohio 43212 Accepted September 25, 2000 The phylogenetic relationships among the four tribes of Euglossini (orchid bees, about 175 species), Bombini corbiculate bees (Euglossini, Bombini, Meliponini, and (bumblebees, about 250 species), Meliponini (stingless Apini) are controversial. There is substantial incongru- bees, several hundred species), and Apini (honey bees, ence between morphological and molecular data, and the about 11 species) (Michener, 2000), that belong to the single origin of eusociality is questionable. The use of Apinae, a subfamily of long-tongued bees. They all behavioral characters by previous workers has been possess apical combs (the corbiculae) on the females' restricted to some typological definitions, such as soli- tibiae as well as several other morphological synapo- tary and eusocial. Here, I expand the term ªsocialº to 42 morphies (with the exception of the parasitic forms, characters and present a tree based only on behavioral and the queens of highly eusocial species). In addition, characters. The reconstructed relationships were similar with the exception of the Euglossini and the social to those observed in morphological and ªtotal evidenceº parasite Psithyrus in Bombini, all corbiculate bees are ؉ ؉ ؉ analyses, i.e., Euglossini (Bombini (Meliponini social. Apini)), all of which support a single origin of euso- Despite many studies that have focused on the classi- ciality. ᭧ 2002 The Willi Hennig Society ®cation and phylogeny of bees, many authors do not agree on one classi®cation and one phylogeny.
    [Show full text]
  • The Behavior and Reproductive Physiology of a Solitary Progressive Provisioning Vespid Wasp: Evidence for a Solitary-Cycle Origin of Reproductive Castes
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Stellenbosch University SUNScholar Repository vol. 191, no. 2 the american naturalist february 2018 E-Article The Behavior and Reproductive Physiology of a Solitary Progressive Provisioning Vespid Wasp: Evidence for a Solitary-Cycle Origin of Reproductive Castes Hans C. Kelstrup,1,* Klaus Hartfelder,2 Tiago Falcon Lopes,3 and Theresa C. Wossler1 1. Department of Botany and Zoology, Stellenbosch University, Private Bag XI, Matieland, 7602 Western Cape, South Africa; 2. Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Avenida Bandeirantes 3900, Ribeirão Preto, São Paulo 14049-900, Brazil; 3. Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Rua Ramiro Barcelos, 2350, Porto Alegre, Rio Grande do Sul 90035-903, Brazil Submitted June 20, 2016; Accepted July 21, 2017; Electronically published January 5, 2018 Online enhancements: appendix. Dryad data: http://dx.doi.org/10.5061/dryad.2v0hj. abstract: The emergence of queens and workers from solitary an- as well as within species, associated with phenotypic plas- tecedents mark a major evolutionary transition in the history of life. ticity. A good illustration of such evolutionary recruitment is The solitary progressive provisioning wasp Synagris cornuta, a mem- how caste phenotypes (queens and workers) likely emerged ber of the subfamily Eumeninae (basal to eusocial vespid wasps), from a decoupling of an ancestral reproductive cycle operat- alternates between behavioral states characterized as queenlike and ing in their solitary ancestors. In social vespid wasps, for ex- worker-like. Akin to a queen in eusocial wasps, a S.
    [Show full text]
  • Care-Giver Identity Impacts Offspring Development and Performance in an Annually Social Bumble Bee
    UC Riverside UC Riverside Previously Published Works Title Care-giver identity impacts offspring development and performance in an annually social bumble bee. Permalink https://escholarship.org/uc/item/0vk8d6hn Journal BMC ecology and evolution, 21(1) ISSN 2730-7182 Authors Costa, Claudinéia P Fisher, Kaleigh Guillén, Blanca M et al. Publication Date 2021-02-09 DOI 10.1186/s12862-021-01756-2 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Costa et al. BMC Ecol Evo (2021) 21:20 BMC Ecology and Evolution https://doi.org/10.1186/s12862-021-01756-2 RESEARCH ARTICLE Open Access Care-giver identity impacts ofspring development and performance in an annually social bumble bee Claudinéia P. Costa1, Kaleigh Fisher1, Blanca M. Guillén1, Naoki Yamanaka1, Guy Bloch2 and S. Hollis Woodard1* Abstract Background: The developmental fates of ofspring have the potential to be infuenced by the identity of their care- givers and by the nature of the care that they receive. In animals that exhibit both parental and alloparental care, such as the annually eusocial insects, the infuence of care-giver identity can be directly assessed to yield mechanistic and evolutionary insights into the origins and elaboration of brood care. Here, we performed a comparative investigation of maternal and worker brood care in bumble bees, a pollinator group where mothers (queens) rear the frst ofspring in the nest, and then daughters (workers) assume this role upon their emergence. Specifcally, we compared the efects of queen and worker brood care on ofspring development and also ofspring performance, for a set of traits related to sensory biology, learning, and stress resistance.
    [Show full text]
  • Polistes Dominula and Ammophila Pubescens
    A University of Sussex PhD thesis Available online via Sussex Research Online: http://sro.sussex.ac.uk/ This thesis is protected by copyright which belongs to the author. This thesis cannot be reproduced or quoted extensively from without first obtaining permission in writing from the Author The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the Author When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given Please visit Sussex Research Online for more information and further details 1 Alternative Reproductive Tactics in Social Wasps Submitted by: Christopher Francis Accleton to the University of Sussex as a thesis for the degree of Doctor of Philosophy in Biological Sciences 2018 2 Declaration I certify that all materials in this thesis that are not my own work have been identified, and that this thesis has not been and will not be submitted in whole or in part to another University for the award of any other degree. Signature: ………………………………………………………………………………………………. Christopher Francis Accleton 3 University of Sussex Christopher Francis Accleton, Doctor of Philosophy in Biological Sciences Alternative Reproductive Tactics in Social Wasps Abstract There is an abundance of different behavioural approaches, or tactics, employed by animals to maximise reproductive success in different situations. The best documented alternative reproductive tactics (ART) have mainly been those carried out by males. In this thesis I use field data and molecular genotyping to investigate ARTs carried out by females in two very different species of social wasps.
    [Show full text]
  • Author's Personal Copy
    Author's personal copy Ant, Bee and Wasp Social Evolution R. Gadagkar, Indian Institute Science, Bangalore, India ã 2010 Elsevier Ltd. All rights reserved. Introduction and Definitions nest building, brood care, and colony maintenance, are performed by the workers, and this leads to a society of Ants, bees, and wasps belong to the Hymenoptera, a 220- female subjects headed by a female monarch. My-old monophyletic order, which is among the largest and most diverse in the class Insecta (Figure 1). Among the characters that are common to all Hymenoptera, The Paradox of Altruism perhaps the one that is of greatest interest to the topic of this article (even if it eventually turns out to be only of Queens mate and lay both haploid, unfertilized eggs and historical interest) is haplodiploidy, a term that indicates diploid, fertilized eggs. Workers are, by and large, sterile. In that males are haploid on account of developing parthe- some ant genera, such as , , and nogenetically from unfertilized eggs and females are dip- Pheidole Pheidologeton Sole- nopsis, workers have altogether lost their ovaries. In others, loid on account of developing from fertilized eggs. In spite of the size of this order (more than 250 000 described they have much smaller ovaries compared to their queens and in some species, workers have lost the ability to mate. species), only a small fraction (<10%) of the species is social, and thus of interest to us here. Even among those In any case, workers never or very rarely lay eggs when that are social, there is a very large variation in the degree their queen is alive so that they usually spend their whole lives working to assist their queen to reproduce, while of sociality.
    [Show full text]
  • Doing Diabetes (Type 1): Symbiotic Ethics and Practices of Care Embodied in Human-Canine Collaborations and Olfactory Sensitivity
    Doing diabetes (Type 1): Symbiotic ethics and practices of care embodied in human-canine collaborations and olfactory sensitivity Submitted by Fenella Eason to the University of Exeter as a thesis for the degree of Doctor of Philosophy in Anthrozoology in August 2017 This thesis is available for Library use on the understanding that it is copyright material and that no quotation from the thesis may be published without proper acknowledgement. I certify that all material in this thesis which is not my own work has been identified and that no material has previously been submitted and approved for the award of a degree by this or any other University. Signature.................................................................. 1 ABSTRACT The chronically ill participants in this study are vulnerable experts in life’s uncertainties, and have become aware over time of multiple medical and social needs and practices. But, unlike the hypo-aware respondents documented in some studies of diabetes mellitus Type 1, these research participants are also conscious of their inability to recognise when their own fluctuating blood glucose levels are rising or falling to extremes, a loss of hyper- or hypo-awareness that puts their lives constantly at risk. Particular sources of better life management, increased self-esteem and means of social (re-)integration are trained medical alert assistance dogs who share the human home, and through keen olfactory sensitivity, are able to give advance warning when their partners’ blood sugar levels enter ‘danger’ zones. Research studies in anthrozoology and anthropology provide extensive literature on historic and contemporary human bonds with domestic and/or wild nonhuman animals.
    [Show full text]
  • A Solitary Mud Daubing Wasp, Brachymenes Dyscherus
    Rey. Biol. Trop.• 47(4 ): 949-958, 1999 www . ucr.ac.cr www.ots. ac. cr www.ots. duke. edu A solitary mud�daubing wasp, Brachymenes dyscherus (Hymenoptera: Vespidae) f:ron BrazH with evidence of a life-cyde polyphenism Evandro Camillo Departamento de Biologia, Faculd3.de de Filosofía Cienci3.S e Letr3.S de Ribeirao Preto- USP, 14040 -90 1,Ribeirao Preto, SP, Brasil. Fax: 55 !6 602 3666 . E-muí!: ecamillo@ffclrp. usp.br Receiyed 27-X-1998 . Corrected26- V-1999 . Accepted 28 -V -1999. Abstrad: Nests (n=60 ) of a solitary mud-daubing wasp, Brachymenes dyscherus were conected at Fazenda Santa Carlota, Cajuru, Sao Paulo, Brazil ín 1995 and 1996 . The multi-celled mud nests were constructed on the interior walls of abandoned houses in dry and shaded places. Nests were composed of 1 to 4 layers with cens constructed in tw o paralle! series. The number of censper nest ranged from 3 to 62. Cells containing prey (larvae ofLepidoptera) numbered fram 4 to 29. B. dyscherus is a uniyoltíne species. Adults emerge from September to December, and nesting talces place at the beginning of the following year; however, the developmental period for some immatures with proloFlged diapause l3.Sted up to 596 days. The total duration of immature stages �n nests collected in 1996 was less for males than for females. The sex ratio for the total populatíon was 1.5 males: 1 female with males emerging earher than females. Alife table was constructed, and details of lhe life cycle of the wasps and parasitoids are presented.
    [Show full text]
  • Download Preprint
    Review 1 The evolutionary relevance of social learning and transmission 2 in non-social arthropods with a focus on oviposition-related 3 behaviors 4 Caroline M. Nieberding 1*, Matteo Marcantonio 1, Raluca Voda 1, Thomas Enriquez 2 and Bertanne Visser 2 5 1 Evolutionary Ecology and Genetics group, Earth and Life Institute, UCLouvain, Louvain-la-Neuve, 6 Belgium; [email protected] 7 2 Evolution and Ecophysiology group, Earth and Life Institute, UCLouvain, Louvain-la-Neuve, Belgium; 8 [email protected] 9 * Correspondence: [email protected] 10 Abstract: Research on social learning has centered around vertebrates, but evidence is accumulating 11 that small-brained, non-social arthropods also learn from others. Social learning can lead to social 12 inheritance when socially acquired behaviors are transmitted to subsequent generations. Using 13 oviposition site selection, a critical behavior for most arthropods, as an example, we first highlight 14 the complementarities between social and classical genetic inheritance. We then discuss the 15 relevance of studying social learning and transmission in non-social arthropods and document 16 known cases in the literature, including examples of social learning from con- and hetero-specifics. 17 We further highlight under which conditions social learning can be adaptive or not. We conclude 18 that non-social arthropods and the study of oviposition behavior offer unparalleled opportunities 19 to unravel the importance of social learning and inheritance for animal evolution. 20 21 Keywords: Behavioral plasticity; Communication; Culture; Drosophila; Fitness; 22 Herbivores; Oviposition site selection; Natural selection 23 1. Introduction 24 The emergence and spread of novel behaviors through social learning, or “learning 25 from others”, has been documented in a wide variety of animals, mainly in social 26 vertebrates [1–5].
    [Show full text]