The Endocrinology and Evolution of Tropical Social Wasps: from Casteless Groups to High Societies

Total Page:16

File Type:pdf, Size:1020Kb

The Endocrinology and Evolution of Tropical Social Wasps: from Casteless Groups to High Societies 1 The endocrinology and evolution of tropical social wasps: from casteless groups to high societies Hans Kelstrup A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy University of Washington 2012 Reading Committee: Lynn M. Riddiford, Chair James W. Truman Jeff Riffell Program Authorized to Offer Degree: Biology Department 2 ©Copyright 2012 Hans Kelstrup 3 University of Washington Abstract The endocrinology and evolution of tropical social wasps: from casteless groups to high societies Hans Kelstrup Chair of the Supervisory Committee: Dr. Lynn M. Riddiford Biology Department The endocrinology and behavior of three social vespid wasps was studied in northeast Brazil (São Cristóvão, Sergipe) from 2010-2011. There were two main objectives of this work: to test a hypothesis on the origin of reproductive castes (i.e. queen and worker phenotypes) in a communal species (Zethus miniatus: Eumeninae), and to describe the endocrinology of two highly eusocial swarm founding species (Polybia micans and Synoeca surinama: Polistinae). Wasps offer an unparalleled opportunity for research on social evolution due to the continuous range of social organization among extant species. Yet little work has been devoted to the study of wasp physiology beyond Polistes, a large genus of primitively eusocial paper wasps. In Polistes, juvenile hormone (JH) has been shown to be important for reproduction, dominance, chemical signaling (e.g., cuticular hydrocarbons (CHCs)) in queens while promoting the early onset of certain tasks in workers. Evidence for a similar mechanism in bees and ants suggests a dual function of JH was intact in the last common ancestor of these groups (the sting- 4 possessing Hymenoptera). The ancestor was undoubtedly a wasp; since eusocial hymenopterans feed helpless brood as they grow, it is likely that the ancestor was also a progressive provisioner, a rare behavior in solitary wasps and bees. The emergence of prolonged maternal care may have set the stage for caste-like phenotypes to arise: an aggressive egg-laying phase (queen-like) followed by an alleged ovary-reduced phase associated with the brood rearing (worker-like). I tested this hypothesis in Z. miniatus, a progressive provisioning, group-living wasp with behavioral traits reminiscent of her caste- containing relatives, such as the susceptibility to adopt a hungry larva. Ironically, the high frequency of another behavior characteristic in eusocial societies, the destruction of nestmate eggs, appears to undermine the hypothesis on caste origin: the high rates of brood killing observed in nests of Z. miniatus likely explain why females produce multiple eggs at a time (i.e. there is not pronounced ovarian cycle). JH titers did not differ between gravid females looking for a cell (potential brood killers) and provisioners of young larvae. Instead, JH titers were high on a nest where females outnumbered cells, but once cells came to outnumber females, JH levels dropped precipitously, suggesting JH has a role in social competition, a relationship observed in Polistes. These results led me to expect a role for JH in reproductive competition in the swarm founders, where multiple, contending queens are the norm. Surprisingly, despite the similarity in the social structure between P. micans and S. surinama, in which both species determine caste in the adult stage, the endocrine profile of these two wasps could hardly be more different. For instance, queens of S. surinama had elevated titers compared to workers whereas JH titers were indistinguishable between queens and workers in oligarchic nests of P. micans. In complete contrast to the pattern observed in Polistes, only lone queens (lacking direct competition) of P. micans had elevated JH in non-swarming nests. JH titers did spike, however, in potential reproductives who were on a nest without a queen. Within a day or two, JH levels plummeted in these prospective replacement queens as they began producing eggs. In S. surinama, the rise in JH followed behavioral displays of dominance and remained high, 5 shaping a queen-like CHC profile and likely functioning as a gonadotropin. When these swarm founders shared a pattern in their endocrine profile, they typically contrasted with that observed in Polistes. For instance, circulating ecdysteroids are important for establishing dominance in Polistes, yet they are not biologically relevant in P. micans or S. surinama. The wild deviations in endocrine function in these wasps parallel the loss (or inversion) of hormone functions seen in highly derived bees and queenless ants. Fortunately, in the case of wasps, there is promise to track how hormone function was modified through evolution thanks to the preservation of wide-ranging social (and pre-social) arrangements present in today’s wasps. 6 The endocrinology and evolution of tropical social wasps: from casteless groups to high societies Chapter 1 (pp. 7-44) A brief review of social insect endocrinology with an emphasis on the Hymenoptera Chapter 2 (pp. 45-72) The endocrinology and behavior of Zethus miniatus Chapter 3 (pp.73-125) The endocrinology of Polybia micans Chapter 4 (pp. 126-178) The endocrinology of Synoeca surinama 7 Chapter 1: A brief review of social insect endocrinology with an emphasis on the Hymenoptera Table of Contents Introduction ................................................................................................................................................... 8 Juvenile hormones and the ecdysteroids: development and reproduction .................................................... 9 Termites ...................................................................................................................................................... 11 The Hymenoptera ........................................................................................................................................ 14 Caste determination: Development ......................................................................................................... 15 Bees ..................................................................................................................................................... 16 Wasps .................................................................................................................................................. 18 Ants ..................................................................................................................................................... 21 Endocrine Regulation of Reproduction and Dominance ........................................................................ 22 Primitively eusocial bees .................................................................................................................... 22 Primitively eusocial wasps .................................................................................................................. 25 Derived eusocial Hymenoptera ........................................................................................................... 28 Endocrine Regulation of Worker Behavior ............................................................................................ 30 Major gaps in our understanding of social evolution .................................................................................. 32 References ................................................................................................................................................... 35 8 Introduction The evolution of insect societies has fascinated and challenged biologists ever since Charles Darwin first tried to accommodate for neuter castes in his theory of natural selection (Darwin, 1859). Indeed, sterile workers have attracted much attention over the century for reasons on why they forego their own reproduction and help raise another’s offspring (Wilson, 1971). The only satisfying explanations to date for the existence of workers are kin selection (Hamilton, 1964a, b), mutualism (West-Eberhard, 1978b) and/or other hypotheses relating to self-interest (e.g., nest-inheritance opportunities among co-nesting non-relatives (Leadbeater et al., 2011)). The resurgence of group selection proponents (Nowak et al., 2010; Wilson and Wilson, 2008), who claim kin selection is inconsequential for the evolution of workers, promises to reignite a debate thought settled decades ago. Whatever consensus is reached on the ultimate reasons for caste evolution, there looms an arguably more important question that addresses the origins of macroevolutionary change: how, mechanistically, did castes originate? And once the reproductive castes were established, how were worker and queen phenotypes fine-tuned for a more efficient division of labor? Worker phenotypes have evolved many times over, from minute sponge-dwelling shrimp (Duffy, 1996) to naked mole rates (O'Riain et al., 2000), but the most well-known examples come from the insects (Wilson, 1971). The ants, honeybees and termites are famous for their amazing emergent complexity and morphologically discrete queens and workers. Except for a handful of highly derived species which employ genetic mechanisms for determining caste (Evison and Hughes, 2011; Hartfelder et al., 2006), to study caste differentiation is to study developmental plasticity, where multiple phenotypes (physiologies, behaviors and morphologies) can be generated from the same genotype. In insects, mechanisms of caste differentiation (and environmental-triggered
Recommended publications
  • Interações Plantas-Visitantes Florais Em Áreas De Restinga: Estrutura E Redes Ecológicas
    INTERAÇÕES PLANTAS-VISITANTES FLORAIS EM ÁREAS DE RESTINGA: ESTRUTURA E REDES ECOLÓGICAS MARIANA SCARAMUSSA DEPRÁ UNIVERSIDADE ESTADUAL DO NORTE FLUMINENSE DARCY RIBEIRO - UENF CAMPOS DOS GOYTACAZES - RJ FEVEREIRO/2018 INTERAÇÕES PLANTAS-VISITANTES FLORAIS EM ÁREAS DE RESTINGA: ESTRUTURA E REDES ECOLÓGICAS MARIANA SCARAMUSSA DEPRÁ “Tese apresentada ao Centro de Biociências e Biotecnologia da Universidade Estadual do Norte Fluminense Darcy Ribeiro, como parte das exigências para obtenção do título de Doutor em Ecologia e Recursos Naturais.” Orientadora: Dra. Maria Cristina Gaglianone CAMPOS DOS GOYTACAZES - RJ FEVEREIRO/2018 ii AGRADECIMENTOS À Universidade Estadual do Norte Fluminense Darcy Ribeiro e ao Laboratório de Ciências Ambientais (LCA) pelo apoio logístico para a realização deste trabalho. À Capes pela concessão da bolsa do Programa Doutorado Sanduíche no Exterior (PDSE) realizado na Newcastle University no Reino Unido. À prof.ª Maria Cristina Gaglianone pela confiança e oportunidade de orientação. Ao prof. Darren Evans da Newcatle University no Reino Unido por ter me recebido durante o estágio no exterior pelo PDSE e pelo auxílio nas análises de redes de interações. À Prumo Logística e ao Instituto Estadual do Ambiente (INEA-RJ), pela permissão de trabalho na Reserva Particular do Patrimônio Natural Fazenda Caruara; em particular ao Daniel Ferreira do Nascimento pelo auxílio na escolha das áreas de estudo e disponibilização de informações sobre o projeto de plantio de mudas para a restauração. Ao Alan Mattedi, na época bolsista do projeto “Restinga: Conhecer e Conservar” da Fundação Flora de Apoio à Botânica, pelo auxílio na escolha dos pontos amostrais na RPPN Caruara. Ao André Leal e a Cleide Tavares (Omega Energia) pela autorização de trabalho no Parque Eólico de Gargaú.
    [Show full text]
  • Observations on Forced Colony Emigration in Parachartergus Fraternus (Hymenoptera: Vespidae: Epiponini): New Nest Site Marked with Sprayed Venom
    Hindawi Publishing Corporation Psyche Volume 2011, Article ID 157149, 8 pages doi:10.1155/2011/157149 Research Article Observations on Forced Colony Emigration in Parachartergus fraternus (Hymenoptera: Vespidae: Epiponini): New Nest Site Marked with Sprayed Venom Sidnei Mateus Departamento de Biologia, Faculdade de Filosofia CiˆenciaseLetrasdeRibeir˜ao Preto, Universidade de S˜ao Paulo, Avenida Bandeirantes 3900, 14040-901 Ribeir˜ao Preto, SP, Brazil Correspondence should be addressed to Sidnei Mateus, sidneim@ffclrp.usp.br Received 8 September 2010; Revised 20 December 2010; Accepted 12 February 2011 Academic Editor: Robert Matthews Copyright © 2011 Sidnei Mateus. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Five cases of colony emigration induced by removal of nest envelope and combs and a single one by manipulation are described. The disturbance was followed by defensive patterns, buzz running, and adult dispersion. An odor trail created by abdomen dragging, probably depositing venom or Dufour’s gland secretions, connected the original nest to the newly selected nesting place and guided the emigration. The substrate of the selected nesting place is intensely sprayed with venom prior to emigration, and this chemical cue marked the emigration end point. The colony moves to the new site in a diffuse cloud with no temporary clusters formed along the odor trail. At the original nest, scouts performed rapid gaster dragging and intense mouth contacts stimulating inactive individuals to depart. Males were unable to follow the swarm. Individual scouts switched between different behavioral tasks before and after colony emigration.
    [Show full text]
  • Systematics of Polistes (Hymenoptera: Vespidae), with a Phylogenetic Consideration of Hamilton’S Haplodiploidy Hypothesis
    Ann. Zool. Fennici 43: 390–406 ISSN 0003-455X Helsinki 29 December 2006 © Finnish Zoological and Botanical Publishing Board 2006 Systematics of Polistes (Hymenoptera: Vespidae), with a phylogenetic consideration of Hamilton’s haplodiploidy hypothesis Kurt M. Pickett*, James M. Carpenter & Ward C. Wheeler Division of Invertebrate Zoology, American Museum of Natural History, Central Park West at 79th Street, New York, NY 10023, USA * Current address: Department of Biology, University of Vermont, Room 120A Marsh Life Science Building, 109 Carrigan Drive, Burlington, VT 05405, USA Received 30 Nov. 2005, revised version received 21 Nov. 2006, accepted 4 May 2006 Pickett, K. M., Carpenter, J. M. & Wheeler, W. C. 2006: Systematics of Polistes (Hymenoptera: Vespidae), with a phylogenetic consideration of Hamilton’s haplodiploidy hypothesis. — Ann. Zool. Fennici 43: 390–406. A review of previously published cladistic analyses of Polistes is presented. The two most recent analyses of Polistes are shown to be largely consistent phylogenetically. Although the taxonomy implied by each differs, this difference is shown to be mostly due to taxon sampling. After the review, a phylogenetic analysis of Polistes — the most data-rich yet undertaken — is presented. The analysis includes new data and the data from previously published analyses. The differing conclusions of the previous studies are discussed in light of the new analysis. After discussing the status of subge- neric taxonomy in Polistes, the new phylogeny is used to test an important hypothesis regarding the origin of social behavior: the haplodiploidy hypothesis of Hamilton. Prior phylogenetic analyses so while these studies achieved their goal, with within Polistes resolutions leading to rejection of Emery’s Rule, they had little to say about broader phylogenetic Cladistic analysis of species-level relationships patterns within the genus.
    [Show full text]
  • A Primitively Social Wasp
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Crossref OBSERVATIONS OF XENORHYNCHIUM NITIDULUM (FABRICIUS) (HYMENOPTERA, EUMENINAE), A PRIMITIVELY SOCIAL WASP BY MARY JANE WEST-EBERHARD* Smithsonian Tropical Research Institute INTRODUCTION Until recently primitively social wasps, with more than one female sharing a nest but without a reproductive division of labor, were considered rare. For many years, the only such wasps known were the five species cited by Wheeler (1928) in his classic book on the social insects. More primitively social wasps are now known (for a partial list see West-Eberhard, 1979). It is clear, however, that many more remain to be discovered, and information on the biology of primitively social species is still scarce. It therefore seems worth- while to report the following brief notes on Xenorynchium nitidu- lum (Fabricius), a primitively social wasp found in India. The observations reported here were made on nests collected in the vil- lage of Janla, Puri District, Orissa (about 20 degrees N.Latitude) in November, 1979. X. nitidulum is widely distributed in India. Vecht (1963 p. 112) cites Dover and Rao (1922) as recording this species from Calcutta, Pusa, Bangalore, Lucknow, Kashmir, and Lahore (Punjab). NEST STRUCTURE AND CONTENTS Xenorhynchium nitidulum builds a nest consisting of several barrel-shaped mud cells coated with an amber-colored substance that is sticky when fresh, and that later forms a hard lumpy coating: This coating strengthens the rather fragile mud walls of the cells which are only 0.25-0.5 mm thick. It may also afford some protec- tion against insect predators and parasitoids, as further discussed below.
    [Show full text]
  • The Evolution of Cooperative Breeding in the African Cichlid Fish, Neolamprologus Pulcher
    Biol. Rev. (2011), 86, pp. 511–530. 511 doi: 10.1111/j.1469-185X.2010.00158.x The evolution of cooperative breeding in the African cichlid fish, Neolamprologus pulcher Marian Wong∗ and Sigal Balshine Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, Ontario, L8S 4L8, Canada (Received 14 December 2009; revised 5 August 2010; accepted 16 August 2010) ABSTRACT The conundrum of why subordinate individuals assist dominants at the expense of their own direct reproduction has received much theoretical and empirical attention over the last 50 years. During this time, birds and mammals have taken centre stage as model vertebrate systems for exploring why helpers help. However, fish have great potential for enhancing our understanding of the generality and adaptiveness of helping behaviour because of the ease with which they can be experimentally manipulated under controlled laboratory and field conditions. In particular, the freshwater African cichlid, Neolamprologus pulcher, has emerged as a promising model species for investigating the evolution of cooperative breeding, with 64 papers published on this species over the past 27 years. Here we clarify current knowledge pertaining to the costs and benefits of helping in N. pulcher by critically assessing the existing empirical evidence. We then provide a comprehensive examination of the evidence pertaining to four key hypotheses for why helpers might help: (1) kin selection; (2) pay-to-stay; (3) signals of prestige; and (4) group augmentation. For each hypothesis, we outline the underlying theory, address the appropriateness of N. pulcher as a model species and describe the key predictions and associated empirical tests. For N.
    [Show full text]
  • Biological Notes on Ground-Nesting Digger Wasps from Western Nebraska
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln The Prairie Naturalist Great Plains Natural Science Society 6-2005 Biological Notes on Ground-Nesting Digger Wasps from Western Nebraska Robert W. Matthews Janice R. Matthews Follow this and additional works at: https://digitalcommons.unl.edu/tpn Part of the Biodiversity Commons, Botany Commons, Ecology and Evolutionary Biology Commons, Natural Resources and Conservation Commons, Systems Biology Commons, and the Weed Science Commons This Article is brought to you for free and open access by the Great Plains Natural Science Society at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in The Prairie Naturalist by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Biological Notes on Ground-Nesting Digger Wasps from Western Nebraska ROBERTW. MATTHEWS· and JANICE R. MATTHEWS Department of Entomology, University of Georgia, Athens, GA 30602 ABSTRACT -- Nine species of sphecid wasps nesting in sparsely vegetated sandy soils near Ogallala, Keith County, Nebraska were studied during June 2003. The first records of the nest and prey of Cerceris clypeata gnarina Banks and Tachysphex williamsi R. Bohart are presented. Two species of weevils, Baris striata Say and B. subsimilis Casey, were prey of C. clypeata gnarina, with 12 to 22 individuals stocked per cell. Because B. subsimilis is a biological control agent for thistle, this finding is a caution to researchers not to ignore the potential impact of predatory wasps on the community. The single nest of T williamsi was a shallow burrow 5 cm deep; prey included grasshopper nymphs of Melanoplus sp. and M angustipennis (Dodge).
    [Show full text]
  • Molecular Phylogeny and Historical Biogeography of the Neotropical Swarm- Founding Social Wasp Genus Synoeca (Hymenoptera: Vespidae)
    RESEARCH ARTICLE Molecular Phylogeny and Historical Biogeography of the Neotropical Swarm- Founding Social Wasp Genus Synoeca (Hymenoptera: Vespidae) Rodolpho Santos Telles Menezes1,2*, Seán Gary Brady2, Antônio Freire Carvalho3, Marco Antonio Del Lama3, Marco Antônio Costa1 1 Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Ilhéus, Bahia, Brazil, a11111 2 Department of Entomology, National Museum of Natural History, Smithsonian Institution, Washington, DC, United States of America, 3 Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil * [email protected] OPEN ACCESS Abstract Citation: Menezes RST, Brady SG, Carvalho AF, The Neotropical Region harbors high biodiversity and many studies on mammals, reptiles, Del Lama MA, Costa MA (2015) Molecular Phylogeny and Historical Biogeography of the Neotropical amphibians and avifauna have investigated the causes for this pattern. However, there is a Swarm-Founding Social Wasp Genus Synoeca paucity of such studies that focus on Neotropical insect groups. Synoeca de Saussure, (Hymenoptera: Vespidae). PLoS ONE 10(3): 1852 is a Neotropical swarm-founding social wasp genus with five described species that is e0119151. doi:10.1371/journal.pone.0119151 broadly and conspicuously distributed throughout the Neotropics. Here, we infer the phylo- Received: October 2, 2014 genetic relationships, diversification times, and historical biogeography of Synoeca species. Accepted: January 9, 2015 We also investigate samples of the disjoint populations of S. septentrionalis that occur in Published: March 4, 2015 both northwestern parts of South America through Central American and the Brazilian At- lantic rainforests. Our results showed that the interspecific relationships for Synoeca could Copyright: This is an open access article, free of all copyright, and may be freely reproduced, distributed, be described as follows: (S.
    [Show full text]
  • Leary, C.J. 2014. Close-Range Vocal Signals Elicit a Stress Response in Male Green Treefrogs
    Animal Behaviour 96 (2014) 39e48 Contents lists available at ScienceDirect Animal Behaviour journal homepage: www.elsevier.com/locate/anbehav Close-range vocal signals elicit a stress response in male green treefrogs: resolution of an androgen-based conflict * Christopher J. Leary Department of Biology, The University of Mississippi, Oxford, MS, U.S.A. article info Male courtship signals often stimulate the production of sex steroids in both female and male receivers. fi Article history: Such effects bene t signallers by increasing receptivity in females, but impose costs on signallers by Received 11 March 2014 promoting sexual behaviour and aggression in male competitors. To resolve this androgen-based conflict, Initial acceptance 24 April 2014 males should use strategies that suppress sex steroid production in rival males. In green treefrogs, Hyla Final acceptance 7 July 2014 cinerea, chorus sounds (i.e. advertisement calls from aggregates of males) are known to stimulate Published online 17 August 2014 androgen production in receiver males. Here, I examined whether males of this species counter these MS. number: A14-00205R effects by eliciting an endocrine stress response in male conspecifics during close-range vocal in- teractions. I show that corticosterone (CORT) levels were higher in males that lost vocal contests in Keywords: natural choruses compared to contest winners and nonaggressive males. Testosterone levels were also acoustic signal lower in contest losers compared to nonaggressive males, but not contest winners; dihydrotesterone challenge hypothesis levels did not differ among the three groups. Aggressive and advertisement calls were then broadcast to courtship signal glucocorticoid males in an experiment that simulated close-range vocal communication.
    [Show full text]
  • Juvenile Hormone, Reproduction, and Worker Behavior in the Neotropical Social Wasp Polistes Canadensis
    Juvenile hormone, reproduction, and worker behavior in the neotropical social wasp Polistes canadensis Tugrul Giray*†, Manuela Giovanetti‡, and Mary Jane West-Eberhard§ §Smithsonian Tropical Research Institute, Ancon, Panama Unit 0948, APO AA 34002, Panama; *Department of Biology, University of Puerto Rico, Rio Piedras, Puerto Rico 00931; and ‡Dipartimento Biologia, Sezione di Zoologia e Citologia, Universita´degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy Contributed by Mary Jane West-Eberhard, December 27, 2004 Previous studies of the division of labor in colonies of eusocial task performance, the expression of age polyethism is highly Hymenoptera (wasps and bees) have led to two hypotheses variable both within and between species. In some species, such regarding the evolution of juvenile hormone (JH) involvement. The as honey bees (14), the large-colony swarming wasp Polybia novel- or single-function hypothesis proposes that the role of JH occidentalis (15), and the primitively eusocial wasp Ropalidia has changed from an exclusively reproductive function in primi- marginata (reviewed in ref. 16), workers show a relatively clear tively eusocial species (those lacking morphologically distinct change in tasks with age, whereas at another extreme, the queen and worker castes), to an exclusively behavioral function in workers of the stingless bee Trigona minangkabau have no highly eusocial societies (those containing morphologically distinct age-associated change in task, showing instead lifetime task castes). In contrast, the split-function hypothesis proposes that JH specialization (10). Some species of primitively social genera originally functioned in the regulation of both reproduction and such as bumblebees and Polistes show a weak or no correlation behavior in ancestral solitary species.
    [Show full text]
  • Hymenoptera: Vespidae) in Three Ecosystems in Itaparica Island, Bahia State, Brazil
    180 March - April 2007 ECOLOGY, BEHAVIOR AND BIONOMICS Diversity and Community Structure of Social Wasps (Hymenoptera: Vespidae) in Three Ecosystems in Itaparica Island, Bahia State, Brazil GILBERTO M. DE M. SANTOS 1, CARLOS C. BICHARA FILHO1, JANETE J. RESENDE 1, JUCELHO D. DA CRUZ 1 AND OTON M. MARQUES2 1Depto. Ciências Biológicas, Univ. Estadual de Feira de Santana, 44.031-460, Feira de Santana, BA, [email protected] 2Depto. Fitotecnia, Centro de Ciências Agrárias e Ambientais - UFBA, 44380-000, Cruz das Almas, BA Neotropical Entomology 36(2):180-185 (2007) Diversidade e Estrutura de Comunidade de Vespas Sociais (Hymenoptera: Vespidae) em Três Ecossistemas da Ilha de Itaparica, BA RESUMO - A estrutura e a composição de comunidades de vespas sociais associadas a três ecossistemas insulares com fisionomias distintas: Manguezal, Mata Atlântica e Restinga foram analisadas. Foram coletados 391 ninhos de 21 espécies de vespas sociais. A diversidade de vespas encontrada em cada ecossistema está significativamente correlacionada à diversidade de formas de vida vegetal encontrada em cada ambiente estudado (r2 = 0,85; F(1.16) = 93,85; P < 0, 01). A floresta tropical Atlântica foi o ecossistema com maior riqueza de vespas (18 espécies), seguida pela Restinga (16 espécies) e pelo Manguezal (8 espécies). PALAVRAS-CHAVE: Ecologia, Polistinae, manguezal, restinga, Mata Atlântica ABSTRACT - We studied the structure and composition of communities of social wasps associated with the three insular ecosystems: mangrove swamp, the Atlantic Rain Forest and the ´restinga´- lowland sandy ecosystems located between the mountain range and the sea. Three hundred and ninety-one nests of 21 social wasp species were collected.
    [Show full text]
  • Social Dominance and Reproductive Differentiation Mediated By
    © 2015. Published by The Company of Biologists Ltd | The Journal of Experimental Biology (2015) 218, 1091-1098 doi:10.1242/jeb.118414 RESEARCH ARTICLE Social dominance and reproductive differentiation mediated by dopaminergic signaling in a queenless ant Yasukazu Okada1,2,*, Ken Sasaki3, Satoshi Miyazaki2,4, Hiroyuki Shimoji2, Kazuki Tsuji5 and Toru Miura2 ABSTRACT (i.e. the unequal sharing of reproductive opportunity) is widespread In social Hymenoptera with no morphological caste, a dominant female in various animal taxa (Sherman et al., 1995; birds, Emlen and becomes an egg layer, whereas subordinates become sterile helpers. Wrege, 1992; mammals, Jarvis, 1981; Keane et al., 1994; Nievergelt The physiological mechanism that links dominance rank and fecundity et al., 2000). In extreme cases, it can result in the reproductive is an essential part of the emergence of sterile females, which reflects division of labor, such as in social insects and naked mole rats the primitive phase of eusociality. Recent studies suggest that (Wilson, 1971; Sherman et al., 1995; Reeve and Keller, 2001). brain biogenic amines are correlated with the ranks in dominance In highly eusocial insects (honeybees, most ants and termites), hierarchy. However, the actual causality between aminergic systems developmental differentiation of morphological caste is the basis of and phenotype (i.e. fecundity and aggressiveness) is largely unknown social organization (Wilson, 1971). By contrast, there are due to the pleiotropic functions of amines (e.g. age-dependent morphologically casteless social insects (some wasps, bumblebees polyethism) and the scarcity of manipulation experiments. To clarify and queenless ants) in which the dominance hierarchy plays a central the causality among dominance ranks, amine levels and phenotypes, role in division of labor.
    [Show full text]
  • Life History and Chemical Ecology of the Warrior
    Life history and chemical ecology of the Warrior wasp Synoeca septentrionalis (Hymenoptera : Vespidae, Epiponini) Santos, EB, Shemilt, S, de Carvalho, CAL and Martin, SJ http://dx.doi.org/10.1371/journal.pone.0194689 Title Life history and chemical ecology of the Warrior wasp Synoeca septentrionalis (Hymenoptera : Vespidae, Epiponini) Authors Santos, EB, Shemilt, S, de Carvalho, CAL and Martin, SJ Type Article URL This version is available at: http://usir.salford.ac.uk/46322/ Published Date 2018 USIR is a digital collection of the research output of the University of Salford. Where copyright permits, full text material held in the repository is made freely available online and can be read, downloaded and copied for non-commercial private study or research purposes. Please check the manuscript for any further copyright restrictions. For more information, including our policy and submission procedure, please contact the Repository Team at: [email protected]. RESEARCH ARTICLE Life history and chemical ecology of the Warrior wasp Synoeca septentrionalis (Hymenoptera: Vespidae, Epiponini) Eliaber B. Santos1, Sue Shemilt2, Carlos A. L. de Carvalho1, Stephen J. Martin3* 1 Universidade Federal do RecoÃncavo da Bahia, Rua RuõÂBarbosa, 710Ð Centro, Cruz das AlmasÐBA, Brazil, 2 Chemical Ecology Group, School of Physical and Geographical Sciences, Lennard-Jones Laboratory, Keele University, Keele, United Kingdom, 3 School of Environment and Life Sciences, The University of Salford, Manchester, United Kingdom a1111111111 * a1111111111 [email protected] a1111111111 a1111111111 a1111111111 Abstract Swarm-founding `Warriorwasps' (Synoeca spp.) are found throughout the tropical regions of South America, are much feared due to their aggressive nest defence and painful sting.
    [Show full text]