Materials in Sustainability US Energy ConsumpOn by Energy Source, 2009

Total Page:16

File Type:pdf, Size:1020Kb

Materials in Sustainability US Energy Consump�On by Energy Source, 2009 TSC 220 Making Stuff the role of materials in sustainability US Energy consump0on by Energy source, 2009 The challenge is to change the percentages in the three largest wedges, increase the smallest wedge dramacally, and to do so in a relavely short 0me span. Primary Energy Flow by Source and Sector, 2009 The 0meframe for the needed change in energy source and usage is perhaps on the order of few decades, which means we will need to accelerate the design, processing, property determinaon as well as shorten the 0me to move from a small scale laboratory test to a commercially viable product. energy usage in 2009, US total energy use: 94.758 quadrillion BTU (= 1 x 1020 J) average power use per US resident: 1 x 1020 J/year ÷ 3.05 x 108 people ÷ 3.1536 x 107 seconds/year = 10381 J/(second person) = 10381 W/person where do we stand (power per person)? country usage (W/person) Canada 11055 US 10381 US has 6th largest Finland 9613 power usage per Sweden 7678 person France 6018 world average United Kingdom 5218 ~2000 W Switzerland 5100 China 1516 Senegal 310 http://en.wikipedia.org/wiki/List_of_countries_by_energy_consumption_per_capita how well do we use our energy? Japan US Finland UK Germany France from www.gapminder.org/world economic energy efficiency = GDP/energy GDP/energy in PPP 2000$/kg oil country 2004 equivalent Switzerland 8.27 United Kingdom 7.25 US: EEO in 2007 Senegal 6.46 was about 2 times its France 5.92 1960 value; US 4.60 Switzerland’s EEO dropped to 80% of Sweden 4.53 its 1960 value China 4.36 Finland 3.78 to compete in future Canada 3.42 will likely require a large EEO http://www.nationmaster.com/graph/eco_gdp_per_uni_of_ene_use-gdp-per-unit-energy-use we have made some progress energy use by using recycled materials. In the paper and pulp industry, it is not cheaper to use recycled paper because it costs REDUCTION IN ENERGY USE, 1975 ! TODAY money to collect, sort, and process the waste paper. Recycling has other bene!ts, though. It reduces the amount of paper in land!lls and means fewer trees must be cut. 25% 3HWUROHXP5HILQHULHV Chemical Manufacturing Chemicals are an important part of our lives. We use chemicals in 41% &KHPLFDOV our medicines, cleaning products, fertilizers and plastics, as well as in many of our foods. 45% 6WHHO The chemical industry uses energy in two ways. It uses coal, oil, and $OXPLQXP natural gas to power the machinery to make the chemicals. It also 23% uses petroleum and natural gas as major sources of hydrocarbons from which the chemicals are made. 42% 3DSHU 3XOS New technology has made the chemical industry 60 percent more 33% &HPHQW energy e"cient than it was 30 years ago. Cement Manufacturing Source: U.S. Department of Energy Some people think the United States is becoming a nation of concrete. New roads and buildings are being built everywhere, every day. We use lots of concrete. PAPER RECYCLING Concrete is made from cement, water, and crushed stone. A lot of energy is used in making cement. The process requires extremely high temperatures—up to 3,500 degrees Fahrenheit. Cement plants have reduced their energy consumption by one- third using innovative waste-to-energy programs. More than half of the cement plants in the U.S. now use some type of waste for fuel. These wastes, such as printing inks, dry cleaning #uids and used tires, have high energy content. For example, the energy content of one tire equals that of two gallons of gasoline. This industry is using energy that would otherwise be wasted in a land!ll. Image courtesy of National Renewable Energy Laboratory The NEED Project P.O. Box 10101, Manassas, VA 20108 1.800.875.5029 www.NEED.org 47 suppose: reducing US energy usage by 1/4 would save 23.6 quad per year (use would be 7800 W per person) if GDP were unchanged, the US EEO would be 6.33, a more competitive value a primary goal should be to reduce US usage of energy: will require new technologies and changes in behavior new materials are essential for sustainable technologies reduced energy use energy generation and storage for more information: see NOVA program entitled “Making Stuff” videos of 4 programs at http://video.pbs.org/program/979359664/ almost everybody worries about materials our palette GROUP 1 IA PERIODIC TABLE OF THE ELEMENTS 18 VIIIA 1 1.0079 http://www.ktf-split.hr/periodni/en/ 2 4.0026 1 H GROUP NUMBERS GROUP NUMBERS He PERIOD IUPAC RECOMMENDATION CHEMICAL ABSTRACT SERVICE HYDROGENefficiency2 IIA of (1985)electrical(1986) generation13 IIIA tied14 IVA 15 toVA 16 VIAmagnets 17 VIIA HELIUM 3 6.941 4 9.0122 13 IIIA 5 10.811 6 12.011 7 14.007 8 15.999 9 18.998 10 20.180 2 Li Be ATOMIC NUMBER 5 10.811 RELATIVE ATOMIC MASS (1) B C N O F Ne LITHIUM BERYLLIUM SYMBOL B BORON CARBON NITROGEN OXYGEN FLUORINE NEON 11 22.990 12 24.305 BORON ELEMENT NAME 13 26.982 14 28.086 15 30.974 16 32.065 17 35.453 18 39.948 3 Na Mg VIIIB Al Si P S Cl Ar SODIUM MAGNESIUM 3 IIIB 4 IVB want5 VB 6 VIB 7veryVIIB 8 9high10 magnetic11IB 12 IIB ALUMINIUM SILICON fieldPHOSPHORUS SULPHUR perCHLORINE massARGON 19 39.098 20 40.078 21 44.956 22 47.867 23 50.942 24 51.996 25 54.938 26 55.845 27 58.933 28 58.693 29 63.546 30 65.39 31 69.723 32 72.64 33 74.922 34 78.96 35 79.904 36 83.80 4 K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr POTASSIUM CALCIUM SCANDIUM TITANIUM VANADIUM CHROMIUM MANGANESEIRON COBALT NICKEL COPPER ZINC GALLIUM GERMANIUM ARSENIC SELENIUM BROMINE KRYPTON 37 85.468 38 87.62 39 88.906 40 91.224 41 92.906 42 95.94 43 (98) 44 101.07 45 102.91 46 106.42 47 107.87 48 112.41 49 114.82 50 118.71 51 121.76 52 127.60 53 126.90 54 131.29 5 Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I Xe RUBIDIUMbest STRONTIUM YTTRIUM magnets ZIRCONIUM NIOBIUM MOLYBDENUM TECHNETIUMmadeRUTHENIUM RHODIUM out PALLADIUM SILVERof CADMIUMrareINDIUM earth TIN ANTIMONY TELLURIUM elementsIODINE XENON 55 132.91 56 137.33 57-71 72 178.49 73 180.95 74 183.84 75 186.21 76 190.23 77 192.22 78 195.08 79 196.97 80 200.59 81 204.38 82 207.2 83 208.98 84 (209) 85 (210) 86 (222) 6 Cs Ba La-Lu Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At Rn Lanthanide CAESIUM BARIUM HAFNIUM TANTALUM TUNGSTEN RHENIUM OSMIUM IRIDIUM PLATINUM GOLDMERCURY THALLIUM LEAD BISMUTH POLONIUM ASTATINE RADON 87 (223) 88 (226) 89-103 104 (261) 105 (262) 106 (266) 107 (264) 108 (277) 109 (268) 110 (281) 111 (272) 112 (285) 114 (289) 7 Fr Ra Ac-Lr Rf Db Sg Bh Hs Mt Uun Uuu Uub Uuq Actinide FRANCIUM RADIUM RUTHERFORDIUM DUBNIUM SEABORGIUM BOHRIUM HASSIUM MEITNERIUM UNUNNILIUM UNUNUNIUM UNUNBIUM UNUNQUADIUM LANTHANIDE Copyright© 1998-2002 EniG. ([email protected]) 57 138.91 58 140.12 59 140.91 60 144.24 61 (145) 62 150.36 63 151.96 64 157.25 65 158.93 66 162.50 67 164.93 68 167.26 69 168.93 70 173.04 71 174.97 (1) Pure Appl. Chem.,73 , No. 4, 667-683 (2001) Relative atomic mass is shown with five 6 significant figures. For elements have no stable La Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu nuclides, the value enclosed in brackets indicates the mass number of the longest-lived LANTHANUM CERIUM PRASEODYMIUM NEODYMIUM PROMETHIUM SAMARIUM EUROPIUM GADOLINIUM TERBIUM DYSPROSIUM HOLMIUM ERBIUM THULIUM YTTERBIUM LUTETIUM isotope of the element. However three such elements (Th, Pa, and U) ACTINIDE do have a characteristic terrestrial isotopic composition, and for these an atomic weight is 89 (227) 90 232.04 91 231.04 92 238.03 93 (237) 94 (244) 95 (243) 96 (247) 97 (247) 98 (251) 99 (252) 100 (257) 101 (258) 102 (259) 103 (262) tabulated. 7 Ac Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr Editor: Aditya Vardhan ([email protected]) ACTINIUM THORIUM PROTACTINIUM URANIUM NEPTUNIUM PLUTONIUM AMERICIUM CURIUM BERKELIUM CALIFORNIUM EINSTEINIUM FERMIUM MENDELEVIUM NOBELIUM LAWRENCIUM reduced energy use $ EFFICIENCY CONSERVATION Energy Consumption Transportation Sector The United States is a big country. The transportation sector uses Trucks use more fuel than any other commercial vehicle. Almost twenty-seven percent of the energy supply to moving people and all products are at some point transported by truck. Trucks are big goods from one place to another. and don’t get good gas mileage. They have diesel engines and can travel farther on a gallon of diesel fuel than they could on a gallon The Automobile of gasoline. In the last thirty years, trucks have improved their gas Americans love automobiles. We love to drive them. We don’t want mileage from 4.8 miles per gallon to about seven miles per gallon. anyone telling us what kind of car to buy or how much to drive it. Trains carry most of the freight between cities. In the last 30 years, Thirty years ago, most Americans drove big cars that used a lot of trains have improved their fuel e!ciency by 60 percent.
Recommended publications
  • Present Status of Installed Solar Energy for Generation of Electricity in Bangladesh Nusrat Jahan, Md
    International Journal of Scientific & Engineering Research, Volume 4, Issue 10, October-2013 604 ISSN 2229-5518 Present Status of Installed Solar Energy for Generation of Electricity in Bangladesh Nusrat Jahan, Md. Abir Hasan, Mohammad Tanvir Hossain, Nwomey Subayer Abstract— Electricity is a basic need of our daily life. Our daily life depends on the amount of electricity usage. But in our country only 40 percent peo- ple has the access of the electricity. Moreover fossil fuel is non-renewable, so it is diminishing day-by-day. As a result we need different solution of elec- tricity generation. In our country, so renewable energy is becoming more popular day by day along with the world. Solar Energy is one of that kind re- newable energy. Its application is increasing day by day. Bangladesh has good availability of solar energy to generate electricity. In this study production of electricity using solar energy in Bangladesh along with the world has been shown in details. Index Terms— Electricity, Solar Energy, Bangladesh, PV installation, Renewable Energy, fossil fuels. —————————— —————————— 1 INTRODUCTION Low-income developing countries like Bangladesh are very 4.7, Spain 4.2, the USA 4.2, and China 2.9.Many solar photo- much susceptible to the setbacks arising from the ongoing en- voltaic power stations have been built, mainly in Europe. As ergy crisis. Natural gas lies at the heart of the country's energy of December 2011, the largest photovoltaic (PV) power plants usage, accounting for around 72% of the total commercial en- in the world are the Golmud Solar Park (China, 200 MW), Sar- ergy consumption and 81.72% of the total electricity generated nia Photovoltaic Power Plant (Canada, 97 MW), Montalto di [1, 2].
    [Show full text]
  • 16-Riaz Ahsan Baig.Pdf
    313 Paper No. 723 SOLAR ENERGY – TODAY AND TOMORROW ENGR. RIAZ AHSAN BAIG 314 Engr. Riaz Ahsan Baig Centenary Celebration (1912 – 2012) 315 SOLAR ENERGY – TODAY AND TOMORROW By Engr. Riaz Ahsan Baig 1. GENERAL Today no one can deny that our country is suffering from shortage of power, so badly needed for economic growth of the country, halting agriculture and industrial development. To meet the shortage of power demand, we need to utilize all the available indigenous resources in Pakistan particularly Wind Mills, Hydel Potential, Thar Coal and Solar Energy, which has a great potential to meet our power demand and is emerging as the most potent source of renewal energy. Solar energy if sincerely exploited can bring a revolution in the very near future, and GoP must give due priority for its development in Pakistan to meet shortage of power. 2. SOLAR POWER Solar Power is the conversion of sunlight electricity, either directly using photovoltaic (PV) or indirectly using concentrated solar power (CSP), so there are two major sources of solar power which will be discussed with respect to type of technology, application, economy, cost, their present and the future status. i. Photovoltaic Cell (PV) ii. Solar Thermal Power (CSP) 3. PHOTOVOLTAIC CELL Broadly speaking photovoltaic cell technology can be classified into – Traditional Crystalline Silicon Technology (SC) – Thin Film Solar Cells (TFSC) technology There are currently three different generations of solar cell. The first Generation (those in the market today) are made with crystalline semi conductor wafers, typically silicon. These are the SC’s everybody think of when they hear “Solar Cell”.
    [Show full text]
  • Principles of Solar Cells, Leds, and Diodes : the Role of the PN Junction / Adrian Kitai
    RED BOX RULES ARE FOR PROOF STAGE ONLY. DELETE BEFORE FINAL PRINTING. Principles KITAI Principles of Solar Cells, Solar Diodes and LEDs of Principles of Solar Cells, junction the PN of e role LEDs and Diodes e role of the PN junction ADRIAN KITAI, Departments of Engineering Physics and Materials Science and Engineering, McMaster University, Hamilton, Ontario, Canada A textbook introducing the physical concepts required for a comprehensive understanding of p-n junction devices, light emitting diodes and solar cells. Semiconductor devices have made a major impact on the way we work and live. Today semiconductor p-n junction diode devices are experiencing substantial growth: solar cells are used on an unprecedented scale in the renewable energy industry; and light emitting diodes (LEDs) are revolutionizing energy e cient lighting. ese two emerging industries based on p-n junctions make a signi cant contribution to the reduction in fossil fuel consumption. Principles of Solar Cells, LEDs and Diodes covers the two most important applications of semiconductor diodes - solar cells and LEDs - together with quantitative coverage of the physics of the p-n junction. e reader will gain a thorough understanding of p-n junctions as the text begins with semiconductor and junction device fundamentals and extends to the practical implementation of semiconductors in both Principles photovoltaic and LED devices. e treatment of a range of important semiconductor materials and device structures is also presented in a readable manner. Topics are divided into the following six chapters; of Solar Cells, • Semiconductor Physics • Th e PN Junction Diode • Photon Emission and Absorption • Th e Solar Cell LEDs and Diodes • Light Emitting Diodes • Organic Semiconductors, OLEDs and Solar Cells Containing student problems at the end of each chapter and worked example problems throughout, this e role of the PN junction textbook is intended for senior level undergraduate students doing courses in electrical engineering, physics and materials science.
    [Show full text]
  • For PV (C-Si Solar Cells)
    Electricity from the Sun: A Bright Future Shines on PV Dr. sc. Uroš Desnica, dipl. ing. “ R. Bošković” Institute, Bijenička c. 54, Zagreb, Croatia and “CERES” – Center for renewable Energy Sources Also: WP4 leader in FP6 EU project RISE (Renewables for Isolated Systems. and : HSK – Croatian Solar House - A national Project Background Development of solar PV cells&modules Crystalline Si solar cells – (A very short history of PV) Development of science&technology in 21st century Thin Film Solar Cells (CdTe, CiS, CIGS, a-Si:H ...) Solar Materials Aspects, Technological Aspects Social Aspects, Market & Price Aspects.... y. 2009 development in PV y. 2010 development in PV: Present state of the art Emerging new solar cells technologies Outlook for the Future (in EU and the world) Conclusion 1) Background: Photovoltaics (PV, as well as other RES) address several broad groups of problems: a) Energy Aspect ( Oil as an energy source is nearing to its end) b) Ecological and Social Aspects - Oil and Coal-based energy sources are very bad pollutants, up to the point to cause climatic changes and peril our civilization c) Political Aspect – insecurity of energy supply a) Energy problem – Energy from where? ( Oil as an energy source is nearing to its end) Billions of barrels New oil fields Total oil world GiantGiant oil drills fields production Year “HUBERT‟S PEAK” – the predicted maximum of oil production after what the decline of the oil production is unavoidable Importance of energy, and electricity in particular Source: Cornell University Unfortunately,
    [Show full text]
  • FIRST SOLAR First Sofar (Vt) Ltd"
    FIRST SOLAR First Sofar (vt) Ltd" Ref: FS/Correspondence/101/01 The Registrar National Electric Power Regulatory Authority NEPRA Tower Attaturk Avenue (East) Sector G-5/1 Islamabad Subject: Application for a Generation License of 02 MW Solar Power Project I, Mirza Nadeem Hafeez, being the duly Authorized representative First Solar Private Limited by virtue of BOARD RESOLUTION dated 13th May, 2014, hereby apply to the National Electric Power Regulatory Authority (NEPRA) and for the Grant of a Generation License of 02 MW Solar Power Project to First Solar Pvt. Ltd pursuant to the section 15 of the Regulation of Generation, Transmission and Distribution of Electric Power Act, 1997. I certify that the documents-in-support attached with this application are prepared and submitted in conformity with the provision of National Electric Power Regulatory Authority Licensing (Application and Modification Procedure) Regulations, 1999, and undertake to abide by the terms and provisions of above-said regulations. I further undertake and confirm that the information provided in the attached documents-in-support is true and correct to the best of my knowledge and belief. A [Pay Order]bearing number P0.0302.0015533 in the sum of Rupees 134,728 (One Lakh Thirty Four Thousand Seven Hundred and Forty Eight only) being the non-refundable License application fee calculated in accordance with Schedule-II to National Electric Power Regulatory Authority Licensing (Application and Modification Procedure) Regulations, 1999, is also attached herewith. Date: 30th ay, 2014 Signature: Name: Mirza Nadeem Designation: Director 040' .c04c Company Seal 10-B, Street 26, F-8/1 Ph: 051-2255892, 2255052 Fax: 051-2256493 • a 0 • • • lb EXECUTIVE SUMMARY • This application is for Grant of Generation License filed by First Solar Private Limited(the • "Project Company") for its 02 MW Solar PV Power Project (the "Project") in Kalar Kahar Punjab Pakistan.
    [Show full text]
  • Solar Power - Wikipedia, the Free Encyclopedia Solar Power from Wikipedia, the Free Encyclopedia
    14/12/2013 Solar power - Wikipedia, the free encyclopedia Solar power From Wikipedia, the free encyclopedia Solar power is the conversion of sunlight into electricity, either directly using photovoltaics (PV), or indirectly using concentrated solar power (CSP). Concentrated solar power systems use lenses or mirrors and tracking systems to focus a large area of sunlight into a small beam. Photovoltaics convert light into electric current using the photoelectric effect.[2] Photovoltaics were initially, and still are, used to power small and medium-sized applications, from the calculator powered by a single solar cell to off-grid homes powered by a photovoltaic array. They The 150 MW Andasol solar power are an important and relatively inexpensive source of electrical energy station is a commercial parabolic where grid power is inconvenient, unreasonably expensive to connect, trough solar thermal power plant, or simply unavailable. However, as the cost of solar electricity is located in Spain. The Andasol plant falling, solar power is also increasingly being used even in grid- uses tanks of molten salt to store connected situations as a way to feed low-carbon energy into the solar energy so that it can continue grid. generating electricity even when the sun isn't shining.[1] Commercial concentrated solar power plants were first developed in the 1980s. The 354 MW SEGS CSP installation is the largest solar power plant in the world, located in the Mojave Desert of California. Other large CSP plants include the Solnova Solar Power Station (150 MW) and the Andasol solar power station (150 MW), both in Spain. The 250+ MW Agua Caliente Solar Project in the United States, and the 221 MW Charanka Solar Park in India, are the world’s largest photovoltaic power stations.
    [Show full text]
  • Photovoltaics from Wikipedia
    Photovoltaics from Wikipedia PDF generated using the open source mwlib toolkit. See http://code.pediapress.com/ for more information. PDF generated at: Mon, 15 Jul 2013 14:32:21 UTC Contents Articles Photovoltaics 1 Solar cell 13 List of photovoltaic power stations 29 References Article Sources and Contributors 45 Image Sources, Licenses and Contributors 47 Article Licenses License 48 Photovoltaics 1 Photovoltaics Photovoltaics (PV) is a method of generating electrical power by converting solar radiation into direct current electricity using semiconductors that exhibit the photovoltaic effect. Photovoltaic power generation employs solar panels composed of a number of solar cells containing a photovoltaic material. Materials presently used for photovoltaics include monocrystalline silicon, polycrystalline silicon, amorphous silicon, cadmium telluride, and copper indium gallium selenide/sulfide. Due to the increased demand for renewable energy sources, the manufacturing of solar cells and photovoltaic arrays has Nellis Solar Power Plant at Nellis Air Force Base advanced considerably in recent years. in the USA. These panels track the sun in one axis. Solar photovoltaics is a sustainable energy source.[1] By the end of 2011, a total of 71.1 GW[2] had been installed, sufficient to generate 85 TWh/year.[] And by end of 2012, the 100 GW installed capacity milestone was achieved.[3] Solar photovoltaics is now, after hydro and wind power, the third most important renewable energy source in terms of globally installed capacity. More than 100 countries use solar PV. Installations may be ground-mounted (and sometimes integrated with farming and grazing) or built into the roof or walls of a building (either building-integrated photovoltaics or simply rooftop).
    [Show full text]
  • Journal Volume 77-78
    Comments on the not. As roughly 20,000 MW of additional generating capacity is to be added to the system (and about 30,000 MW National Power Policy 2013 if the NTDC planners are to be believed) in the next five years, there is a requirement to tap all resources for it- By including the manufacturing and production facilities in Engr. Tahir Basharat Cheema, President, IEEEP Pakistan and so on. On the other hand, it would be extremely sad to see all the generating equipment being simply imported, while in-country contribution remains The very fact that the present government has crafted a restricted to bricks and mortar only. Besides, the local national power policy after it assumed charge of the industry and business should also benefit from the activity country, speaks well about its intentions. Moreover, even if and this all has to be built in a viable policy. Energy the detractors of the policy poke holes in the document, still autarchy is another issue that merits consideration. the issuance of the policy is welcome. In view of the above, I would ask all members to read A study of the document reveals that much is there, but through the power policy and then offer comments, which much needs to be included in the same. As very well could thereafter be formulated into concrete proposals and paraphrased recently by the Supreme Court of Pakistan, the recommendations to be sent to the government. policy is indeed deficient as regards the treatment of current receivables of the system and nor does it tackle or talk **** about the imperative pillars of a sustainable policy viz.
    [Show full text]
  • A Comprehensive Study of Solar Power in India and World
    Renewable and Sustainable Energy Reviews 15 (2011) 1767–1776 Contents lists available at ScienceDirect Renewable and Sustainable Energy Reviews journal homepage: www.elsevier.com/locate/rser A comprehensive study of solar power in India and World Atul Sharma Rajiv Gandhi Institute of Petroleum Technology (RGIPT), Rae Bareli 229316 U.P., India article info abstract Article history: Energy is considered a prime agent in the generation of wealth and a significant factor in economic devel- Received 7 December 2010 opment. Energy is also essential for improving the quality of life. Development of conventional forms of Accepted 28 December 2010 energy for meeting the growing energy needs of society at a reasonable cost is the responsibility of the Government. Limited fossil resources and environmental problems associated with them have empha- sized the need for new sustainable energy supply options that use renewable energies. Development and promotion of non-conventional/alternate/new and renewable sources of energy such as solar, wind and bio-energy, etc., are also getting sustained attention. Alternative energy news source has long asserted that there are fortunes to be made from smart investments in renewable energy. Solar power is one of the hottest areas in energy investment right now, but there is much debate about the future of solar tech- nology and solar energy markets. This report examines various ways in which solar power is precisely such an opportunity. © 2011 Elsevier Ltd. All rights reserved. Contents 1. Introduction .......................................................................................................................................
    [Show full text]
  • The Survival of the Power-Tech Dinosaurs
    MSc Program Die approbierteRenewable Originalversion Energy dieser Diplom in-/Master Centralarbeit ist and an der Eastern Europe Hauptbibliothek der Technischen Universität Wien aufgestellt (http://www.ub.tuwien.ac.at). The approved original version of this diploma or master thesis is available at the main library of the Vienna University of Technology (http://www.ub.tuwien.ac.at/englweb/). The Survival of the Power-Tech Dinosaurs A Master’s Thesis submitted for the degree of “Master of Science” supervised by DI Lukas Weißensteiner Mag. Stefan Starnberger, MIM 0151270 November 2011, Vienna Affidavit I, Stefan STARNBERGER, hereby declare 1. that I am the sole author of the present Master Thesis, "The Survival of the Power-Tech Dinosaurs – an analysis how Siemens, GE, Alstom and MHI are performing in the Renewable Energy Market", 137 pages, bound, and that I have not used any source or tool other than those referenced or any other illicit aid or tool, and 2. that I have not prior to this date submitted this Master Thesis as an examination paper in any form in Austria or abroad. Vienna, _______________ ___________________________ Date Signature -- ii-- Für Elisabeth & unsere Kinder Master Thesis MSc Program ‘The Survival of the Power-Tech Dinosaurs’ Renewable Energy in Central & Eastern Europe Mag. Stefan Starnberger, MIM Abstract This paper is dedicated to examining the performance in the renewable electricity generation market of the four most important power technology companies - Siemens, GE, Alstom, and MHI. The key questions that will
    [Show full text]
  • A Comparative Discussion of Utility Scale Solar Versus Distributed Solar
    A Comparative Discussion of Utility Scale Solar versus Distributed Solar Characteristic Utility Scale - Solar Electrical Facility Distributed Model Definition: Medium- to large-scale solar energy installations, either using Very small- to medium-scale solar energy installations, most thermal energy collection or photovoltaic cells (PV), often commonly PV, designed to generate moderate amounts of placed on large expanses of gently- or non-sloping vacant land electricity to be placed onto the local electrical distribution and designed to generate large amounts of electricity to be system at the point of both generation and use. Designed as place directly onto the large-scale regional grid at a specific stand-alone facilities or could be used to generate greater point. Designed as stand-alone facilities. Tried-and-true electrical energy in conjunction with other similar nearby thermal solar technology has been the most commonly used installations. method to date, but improvements in PV cell efficiency are making them more economically attractive. Common Large flat expanses of open land in rural or semi-wild areas, Can be anywhere developed infrastructure exists, but most Locations: such as farmland, desert, prairies, gentle hills. Preferred sites commonly in urban or suburban areas where utility scale cannot are nearer existing infrastructure such as substations and power be easily constructed. These are or could be placed on building line corridors. Lands used can be naturally pristine, in rooftops, parking lots, roadways, corporate yards and smaller agriculture or otherwise disturbed. Physically possible to private or public areas, or any location where local requirements construct in urbanized settings, but the difficulty of of space, need for sunlight and visual sensitivity will permit.
    [Show full text]
  • LIST of CONTENTS Subject Page Declaration of Authorship/Originality ...………………………………………………
    Technical University of Crete Department of Electronic and Computer Engineering This Thesis was submitted in Partial Fulfillment of the Requirements for the Diploma Degree in Electronic and Computer Engineering A FUZZY SET METHODOLOGY TO COMPARE BETWEEN DIFFERENT AUTONOMOUS PV-RO DESALAINATION PLANTS Fanos O. Josephides Supervisor Prof. George Stavrakakis Committee Prof. Kostas Kalaitzakis Ass. Prof. Denia Kolokotsa December, 2009 i DECLARATION OF AUTHORSHIP/ORIGINALITY I certify that the work in this thesis has not previously been submitted for a degree nor has it been submitted as part of requirements for a degree except as fully acknowledged within the text. I also certify that the thesis has been written by me. Any help that I have received in my research work and in the preparation of the thesis itself has been acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis. Signature of Candidate ………………………………. ii DEDICATION This thesis is dedicated to my parents, Onoufrios and Paraskevi. iii ACKNOWLEDGEMENTS This thesis is written and submitted straight in English language in the scope of mutual cooperation through a research exchange program (“Research visits of academic researchers program, between Jordan and Greece”), that Greek government as well as Technical University of Crete (TUC) participated and accepted. Further, the bibliography used in this thesis is mainly referred to international publications, submitted by Greek and foreign researchers. I would like to express my deepest gratitude to all people that helped me in my research. I am indebted to my research advisor Dr. George Stavrakakis and Dr. Omar Badran (Al- Balqa`Applied University, Amman, Jordan).
    [Show full text]