Optimal Performance Analysis of a Solar Thermal Energy Storage Plant Based on Liquid Ammonia

Total Page:16

File Type:pdf, Size:1020Kb

Optimal Performance Analysis of a Solar Thermal Energy Storage Plant Based on Liquid Ammonia PhD Thesis OPTIMAL PERFORMANCE ANALYSIS OF A SOLAR THERMAL ENERGY STORAGE PLANT BASED ON LIQUID AMMONIA Submitted by Engr. Sadaf Siddiq (08F-UET/PhD-ME-47) Supervised by Prof. Dr. Shahab Khushnood Department of Mechanical Engineering Faculty of Mechanical and Aeronautical Engineering University of Engineering and Technology Taxila, Pakistan July 2013 OPTIMAL PERFORMANCE ANALYSIS OF A SOLAR THERMAL ENERGY STORAGE PLANT BASED ON LIQUID AMMONIA by Engr. Sadaf Siddiq (08F-UET/PhD-ME-47) A proposal submitted for research leading to the degree of Doctor of Philosophy in MECHANICAL ENGINEERING Approved by External Examiners ________________________________ ________________________________ (Engr. Dr. M. Javed Hyder) (Engr. Dr. Ejaz M. Shahid) Dean of Engineering, Associate Professor, Pakistan Institute of Engineering & Applied Sciences Department of Mechanical Engineering, Nilore, Islamabad. University of Engineering & Technology, Lahore. Internal Examiner (Research Supervisor) ________________________________ (Engr. Dr. Shahab Khushnood) Professor, Department of Mechanical Engineering, University of Engineering & Technology, Taxila. Department of Mechanical Engineering Faculty of Mechanical and Aeronautical Engineering University of Engineering & Technology Taxila, Pakistan. ii DECLARATION I declare that all material in this thesis is my own work and that which is not, has been identified and appropriately referenced. No material in this work has been submitted or approved for the award of a degree by this or any other university. Signature: _____________________________ Author’s Name: ________________________ It is certified that the work in this thesis is carried out and completed under my supervision. Supervisor: Prof. Dr. Shahab Khushnood Department of Mechanical Engineering Faculty of Mechanical and Aeronautical Engineering University of Engineering and Technology Taxila, Pakistan. iii ABSTRACT This work focuses on extending the use of a solar thermal energy plant from an intermittent energy source to a base load power plant by incorporating an efficient thermal storage feature. A reference 10 MWe solar thermal plant design is considered with liquid ammonia as a working fluid for energy production, in a Rankine Cycle, as well as a thermal storage medium. During periods of no solar insolence, the recovery system, based on an industrial ammonia synthesis system, is used to drive the power conversion unit and enable continuous operation. A thermofluid model, based on the continuity, momentum and energy conservation equations, is used to carry out a numerical simulation of the plant, to determine the process variables and subsequently carry out an integrated plant energy recovery analysis. The objective of this work is to maximize the efficiency of the plant by a detailed consideration of the most critical process in the plant: the energy recovery unit. This is carried out by (i) estimating the sensitivity of non-uniform catalyst concentration in a synthesis reactor, and (ii) obtaining an optimal configuration from a variational Lagrangian cost functional and applying Pontryagin’s Maximum Principle. The optimal configuration is used to recommend a re- design of the synthesis reactor and to quantify the energy recovery benefits emanating from such a recommendation. Industrial optimal configurations are achieved by carrying out the analysis with the simulation code, Aspen Plus™, to design a heat removal system surrounding the catalyst beds, and incorporating the effect of standard industrial processes iv such as purge gas removal, quench gas recycling, and recycle ratio to achieve the optimal temperature profile obtained for the synthesis reactor considered in this work. This work quantifies the maximum energy recovery in a base-load solar thermal plant utilizing the existing environment of chemical process industry. It is concluded that a one- dimensional model, with mass and energy conservation equations using the Temkin-Pyzhev activity and pressure-based kinetics rate expressions, predicted an optimal ammonia conversion of 0.2137 with a thermal energy availability of 20 MWth. A comprehensive process simulation using Aspen Plus™ predicts an optimal ammonia conversion of 0.2762 mole fraction at exit, with two inter-bed heat exchangers having optimal temperature drops of 205K and 95K respectively, and yielding a thermal availability of 45.6 MWth. The thermal energy availability of a base-load solar thermal plant can be increased by 15% in the ammonia conversion and over 25% in thermal energy availability for energy recovery. v To my family . vi ACKNOWLEDGEMENTS During the development of my PhD studies at University of Engineering & Technology Taxila, several persons and institutions collaborated directly and indirectly with my research. Without their support it would be impossible for me to finish my work. That is why I wish to dedicate this section to recognize their support. I want to start expressing a sincere acknowledgement to my advisor, Prof. Dr. Shahab Khushnood because he gave me the opportunity to research under his kind guidance and supervision. I received motivation; encouragement and support from him during all my studies. I owe Special thanks to Dr. Zafar Ullah Koreshi for the his support, guidance, and transmitted knowledge for the completion of my work. With him, I have learned writing papers for conferences and journals and sharing my ideas with the scientific community. I also want to thank the example, motivation, inspiration and support I received from Dr. Tasneem M. Shah, Dr. Arshad H. Qureshi and Dr. M. Bilal Khan. The Grant from University of Engineering & Technology Taxila provided the funding and resources for the development of this research and validation of my work. At last, but the most important I would like to thank my family, for their unconditional support, inspiration, love and prayers. vii NOMENCLATURE A Cross-sectional area (m 2) ANU Austrailian National University -1 -1 C p Specific heat at constant pressure (kJ kmol K ) C r Compression Ratio CSP Concentrating Solar Power E Activation energy (kJ kmol -1) F →sf Force (external, fluid to solid) 0 -1 FN Initial nitrogen molar flow rate (kmol h ) Gt Giga-ton (10 9 ton) Η Hamiltonian Ηˆ Enthalpy per unit mass J Functional * J i , J i Molar Fluxes K Kinetic Energy Ka Equilibrium constant KBR Kellogg Brown and Root™ L Length of synthesis reactor (m) MTD Metric tonnes per day Mtoe Million ton of oil equivalent MWe Megawatt electric MWth Megawatt thermal OEM One Equation Model P Pressure (MPa) Ρ Linear Momentum PMP Pontryagin’s Maximum Principle PV PhotoVoltaic Q Heat viii R Universal gas constant 8.3144 kJ kmol -1 K-1 -1 -3 R A Reaction rate (kmol NH 3 h m catalyst) RK-4 4th order Runge-Kutta S Surface Area (m 2) T Temperature (K) TEM Two Equation Model TSP Thermal Storage Plant TWh Terawatt-hours (10 12 Watt-hrs) U Internal Energy (kJ) Uˆ Internal Energy per unit mass W Watts ai Activity for specie i c Total Molar Concentration ci Molar Concentration of Specie i dp Particle Diameter g Gravitational acceleration (9.81 ms -2) * ji , ji Mass Fluxes kWe kilowatt Electric kW chem. kilowatt chemical kW th kilowatt thermal m Mass (kg) 0 -1 ni Initial mole flow rate of specie i (kmol h ) ppm Parts per million r Molar Production t Time u Control variable v Velocity (m s -1) w Work x Distance along catalyst bed (m) ix x′ Normalized Distance along catalyst bed (m) yi Mole fraction for specie i o yi Initial Mole fraction for specie i , zz N Fractional conversion of Nitrogen Greek ∆ -1 H r Heat of reaction (kJ kmol NH 3) ε Extent of reaction Φ Potential Energy φ i Fugacity coefficient for specie i ω Mass Flow Rate (kghr -1) τ Shear Stress η Catalyst effectiveness factor ψ The void space of the bed λ Lagrange multiplier ξ x)( Catalyst spatial factor θ (x′) Optimal Temperature ρ Density (kg m -3) r σ Vector containing state variables Subscripts eqm Equilibrium i Species in a multi component system, i = 4,3,2,1 ,.... N opt Optimal s Isentropic tot Total amount of entity in a macroscopic system 0 Evaluated at a surface 2,1 Evaluated at cross sections 1 and 2 x Table of Contents ABSTRACT ....................................................................................................................................................... IV ACKNOWLEDGEMENTS ............................................................................................................................ VII NOMENCLATURE ...................................................................................................................................... VIII TABLE OF CONTENTS .................................................................................................................................. XI TABLE LIST ................................................................................................................................................... XIII FIGURE LIST ................................................................................................................................................ XIV 1 INTRODUCTION ..................................................................................................................................... 1 1.1 SOLAR ENERGY : POTENTIAL AS A RENEWABLE ENERGY SOURCE ............................................................ 2 1.2 SOLAR POWER PLANTS IN OPERATION ...................................................................................................... 5 1.2.1 PV Plants .......................................................................................................................................
Recommended publications
  • TRENDS in PHOTOVOLTAIC APPLICATIONS Survey Report of Selected IEA Countries Between 1992 and 2011
    TRENDS IN PHOTOVOLTAIC APPLICATIONS Survey report of selected IEA countries between 1992 and 2011 Report IEA-PVPS T1-21:2012 TRENDS IN PHOTOVOLTAIC APPLICATIONS Survey report of selected IEA countries between 1992 and 2011 Contents Introduction 2 1 Implementation of PV systems 3 2 The PV industry 24 3 Policy, regulatory and business framework for deployment 32 4 Summary of trends 39 PV technology note 44 Foreword This year’s 17th edition of the IEA PVPS international survey report on Trends in Photovoltaic (PV) Applications falls together with almost 20 years of global cooperation within the IEA PVPS The International Energy Agency (IEA), founded in 1974, Programme. The history of PV market deployment over this is an autonomous body within the framework of the decisive period for PV from its very first market developments to Organization for Economic Cooperation and the present large scale deployment, meanwhile accounting for Development (OECD). The IEA carries out a important shares of the newly installed capacity for electricity comprehensive programme of energy cooperation production, can uniquely be followed year by year in the series among its 28 member countries and with the of IEA PVPS trends reports. 2011 has been yet another year of unprecedented further market growth, continued massive participation of the European Commission. cost reduction and ongoing signs of industry and market consolidation. In total, about 28 GW of PV capacity were The IEA Photovoltaic Power Systems Programme installed in the IEA PVPS countries during 2011 (2010: 14,2 GW), (IEA PVPS) is one of the collaborative research and thus again doubling the installed capacity of the year before; this development agreements within the IEA and was raised the total installed capacity in IEA PVPS countries close to established in 1993.
    [Show full text]
  • Renewable Energy Report APCTT-UNESCAP
    Iran Renewable Energy Report APCTT-UNESCAP Asian and Pacific Centre for Transfer of Technology Of the United Nations – Economic and Social Commission for Asia and the Pacific (ESCAP) This report was prepared by E.Azad Ph.D., CEng., FInst.E Head of Advanced Materials and Renewable Energy Dept. ([email protected]) Iranian Research Organization for Science & Technology (IROST) Tehran-Iran under a consultancy assignment given by the Asian and Pacific Centre for Transfer of Technology (APCTT). Disclaimer The views expressed in this report are those of the author and do not necessarily reflect the views of the Secretariat of the United Nations Economic and Social Commission for Asia and the Pacific. The report is currently being updated and revised. The information presented in this report has not been formally edited. The description and classification of countries and territories used, and the arrangements of the material, do not imply the expression of any opinion whatsoever on the part of the Secretariat concerning the legal status of any country, territory, city or area, of its authorities, concerning the delineation of its frontiers or boundaries, or regarding its economic system or degree of development. Designations such as ‘developed’, ‘industrialised’ and ‘developing’ are intended for convenience and do not necessarily express a judgement about the stage reached by a particular country or area in the development process. Mention of firm names, commercial products and/or technologies does not imply the endorsement of the United Nations
    [Show full text]
  • 004 28537Ns130715 34
    Nature and Science 2015;13(7) http://www.sciencepub.net/nature Renewable Energy Development in Tehran Municipality; Case Study Comparison with IEA Report Zohreh Hesami1, Ali Mohamad Shaeri2, Farshad Kordani3 1. Ph.D., Head of air pollution and energy committee, Environment and sustainable development Staff, Tehran municipality 2. Ph.D., Head of Environment and sustainable development Staff, Tehran municipality 3. M.S, Energy Engineer of Environment and sustainable development Staff, Tehran Municipality [email protected] Abstract: In recent years, most of the municipalities have focused on renewable energy as a straight way toward sustainability, lowering energy demand, protecting environment and society. Policies to promote renewable energy have become increasingly popular among municipalities in different parts of the world, especially somewhere role of municipalities is integrated city management. In this way, there are certain strategies to meet the targets which have been already set. Specifying certain green building standards for new construction and major renovation for any projects using public funds, creating inspiring demonstration projects that meet high green building standards, developing systems where certified green buildings can cut through the red tape in the approval process, tax credits which offset some of the cost for energy conserving projects, are some of proceeds of municipalities to develop renewable energies in action. Tehran municipality has tried a lot to set goals and action plans to promote renewable energy in the city in spite of lack of integrated management in Tehran. According to the guidance of the International Energy Agency report two municipalities with most similarity to Tehran were selected from the report to identify and compare some concepts and policies in this paper.
    [Show full text]
  • CSP Technologies
    CSP Technologies Solar Solar Power Generation Radiation fuel Concentrating the solar radiation in Concentrating Absorbing Storage Generation high magnification and using this thermal energy for power generation Absorbing/ fuel Reaction Features of Each Types of Solar Power PTC Type CRS Type Dish type 1Axis Sun tracking controller 2 Axis Sun tracking controller 2 Axis Sun tracking controller Concentrating rate : 30 ~ 100, ~400 oC Concentrating rate: 500 ~ 1,000, Concentrating rate: 1,000 ~ 10,000 ~1,500 oC Parabolic Trough Concentrator Parabolic Dish Concentrator Central Receiver System CSP Technologies PTC CRS Dish commercialized in large scale various types (from 1 to 20MW ) Stirling type in ~25kW size (more than 50MW ) developing the technology, partially completing the development technology development is already commercialized efficiency ~30% reached proper level, diffusion level efficiency ~16% efficiency ~12% CSP Test Facilities Worldwide Parabolic Trough Concentrator In 1994, the first research on high temperature solar technology started PTC technology for steam generation and solar detoxification Parabolic reflector and solar tracking system were developed <The First PTC System Installed in KIER(left) and Second PTC developed by KIER(right)> Dish Concentrator 1st Prototype: 15 circular mirror facets/ 2.2m focal length/ 11.7㎡ reflection area 2nd Prototype: 8.2m diameter/ 4.8m focal length/ 36㎡ reflection area <The First(left) and Second(right) KIER’s Prototype Dish Concentrator> Dish Concentrator Two demonstration projects for 10kW dish-stirling solar power system Increased reflection area(9m dia. 42㎡) and newly designed mirror facets Running with Solo V161 Stirling engine, 19.2% efficiency (solar to electricity) <KIER’s 10kW Dish-Stirling System in Jinhae City> Dish Concentrator 25 20 15 (%) 10 발전 효율 5 Peak.
    [Show full text]
  • Present Status of Installed Solar Energy for Generation of Electricity in Bangladesh Nusrat Jahan, Md
    International Journal of Scientific & Engineering Research, Volume 4, Issue 10, October-2013 604 ISSN 2229-5518 Present Status of Installed Solar Energy for Generation of Electricity in Bangladesh Nusrat Jahan, Md. Abir Hasan, Mohammad Tanvir Hossain, Nwomey Subayer Abstract— Electricity is a basic need of our daily life. Our daily life depends on the amount of electricity usage. But in our country only 40 percent peo- ple has the access of the electricity. Moreover fossil fuel is non-renewable, so it is diminishing day-by-day. As a result we need different solution of elec- tricity generation. In our country, so renewable energy is becoming more popular day by day along with the world. Solar Energy is one of that kind re- newable energy. Its application is increasing day by day. Bangladesh has good availability of solar energy to generate electricity. In this study production of electricity using solar energy in Bangladesh along with the world has been shown in details. Index Terms— Electricity, Solar Energy, Bangladesh, PV installation, Renewable Energy, fossil fuels. —————————— —————————— 1 INTRODUCTION Low-income developing countries like Bangladesh are very 4.7, Spain 4.2, the USA 4.2, and China 2.9.Many solar photo- much susceptible to the setbacks arising from the ongoing en- voltaic power stations have been built, mainly in Europe. As ergy crisis. Natural gas lies at the heart of the country's energy of December 2011, the largest photovoltaic (PV) power plants usage, accounting for around 72% of the total commercial en- in the world are the Golmud Solar Park (China, 200 MW), Sar- ergy consumption and 81.72% of the total electricity generated nia Photovoltaic Power Plant (Canada, 97 MW), Montalto di [1, 2].
    [Show full text]
  • Electrical Hints and Tips for Solar Car Challenge Race Teams
    Electrical Hints and Tips for Solar Car Challenge Race Teams Revision 1.0 - August 28, 2013. By Dan Lepinski, Solar Engineer In the Public Domain To: All Teams Participating in the Solar Car Challenge .. Past, Present, and Future... Purpose: Suggestions and Comments for Improved Design and Assembly of Solar Cars Introduction By way of introduction, my name is Dan Lepinski. I’m a professional solar energy engineer. 2013 is my 41 st year of involvement in the solar energy industry where I continue to serve as a design engineer, consultant, and advisor. I had the pleasure and frustration of accompanying the 2013 race from Fort Worth, Texas to Los Angeles, California. My role was that of a volunteer. I provided solar-generated 120 volt AC electrical power for any team that needed it for repairs or other purposes along the way. I accomplished this with a large “solar” trailer, which was capable of powering the largest welders and compressors used by any team. 11 of the 14 teams participating in the 2013 Solar Car Challenge used power from my equipment along the race route for their welders, grinders, compressors, drills, saws, and more. They did whatever was necessary to make their cars roadworthy again. Some teams worked for up to an hour or more at a time to effect changes and repairs. It’s not important they used my equipment for this purpose. The important thing to remember ... every 2013 team succeeded in finishing the race. While repairs were underway by various teams, I had an opportunity to view their solar car wiring and construction in detail.
    [Show full text]
  • Next-Generation Solar Power Dutch Technology for the Solar Energy Revolution Next-Generation High-Tech Excellence
    Next-generation solar power Dutch technology for the solar energy revolution Next-generation high-tech excellence Harnessing the potential of solar energy calls for creativity and innovative strength. The Dutch solar sector has been enabling breakthrough innovations for decades, thanks in part to close collaboration with world-class research institutes and by fostering the next generation of high-tech talent. For example, Dutch student teams have won a record ten titles in the World Solar Challenge, a biennial solar-powered car race in Australia, with students from Delft University of Technology claiming the title seven out of nine times. 2 Solar Energy Guide 3 Index The sunny side of the Netherlands 6 Breeding ground of PV technology 10 Integrating solar into our environment 16 Solar in the built environment 18 Solar landscapes 20 Solar infrastructure 22 Floating solar 24 Five benefits of doing business with the Dutch 26 Dutch solar expertise in brief 28 Company profiles 30 4 Solar Energy Guide The Netherlands, a true solar country If there’s one thing the Dutch are remarkably good at, it’s making the most of their natural circumstances. That explains how a country with a relatively modest amount of sunshine has built a global reputation as a leading innovator in solar energy. For decades, Dutch companies and research institutes have been among the international leaders in the worldwide solar PV sector. Not only with high-level fundamental research, but also with converting this research into practical applications. Both by designing and refining industrial production processes, and by developing and commercialising innovative solutions that enable the integration of solar PV into a product or environment with another function.
    [Show full text]
  • M.A. Previous Economics
    M.A. PREVIOUS ECONOMICS PAPER IV (A) ECONOMICS OF SOCIAL SECTOR AND ENVIRONMENT WRITTEN BY SEHBA HUSSAIN EDITED BY PROF.SHAKOOR KHAN M.A. PREVIOUS ECONOMICS PAPER IV (A) ECONOMICS OF SOCIAL SECTOR AND ENVIRONMENT BLOCK 1 WELFARE ECONOMICS, SOCIAL SECTORS AND MEASUREMENT OF ENVIRONMENTAL VALUES 2 PAPER IV (A) ECONOMICS OF SOCIAL SECTOR AND ENVIRONMENT BLOCK 1 WELFARE ECONOMICS, SOCIAL SECTORS AND MEASUREMENT OF ENVIRONMENTAL VALUES CONTENTS Page number Unit 1 Elements of Economics of social sector and environment 4 Unit 2 Measurement of Environmental values 33 Unit 3 Environmental Policy and Regulations 47 3 BLOCK 1 WELFARE ECONOMICS, SOCIAL SECTORS AND MEASUREMENT OF ENVIRONMENTAL VALUES In block 1 we will familiarize you with some elementary concepts of welfare economics and social sector. The block also deals with measurement of environmental values using appropriate measures that are being used across the globe. This block has three units. Unit 1 presents the elements of economics of social sector and environment. First we discussed Pareto optimality and competitive equilibrium followed by Fundamental theorems of welfare economics. Other areas of discussion were Externalities and market inefficiency; Externalities and missing markets; the property rights and Externalities; Non convexities and Externality. Pareto optimal provision for public goods will be discussed in later sections. Unit 2 deals with measurement of environmental values. It throws light the theory of environmental valuation including the total economic value. Unit also discusses different values like direct and indirect values that have the great relevance in economics of environment further the unit reveal various Environment valuation techniques to help readers have the clear understanding of these techniques.
    [Show full text]
  • A Photovoltaic Greenhouse with Variable Shading for the Optimization of Agricultural and Energy Production
    energies Article A Photovoltaic Greenhouse with Variable Shading for the Optimization of Agricultural and Energy Production Simona Moretti and Alvaro Marucci * Department of Agricultural and Forest Sciences, University of Tuscia, Via San Camillo de Lellis, s.n.c., 01100 Viterbo, Italy * Correspondence: [email protected]; Tel.: +39-0761-357-365 Received: 11 June 2019; Accepted: 3 July 2019; Published: 5 July 2019 Abstract: The cultivation of plants in greenhouses currently plays a role of primary importance in modern agriculture, both for the value obtained with the products made and because it favors the development of highly innovative technologies and production techniques. An intense research effort in the field of energy production from renewable sources has increasingly led to the development of greenhouses which are partially covered by photovoltaic elements. The purpose of this study is to present the potentiality of an innovative prototype photovoltaic greenhouse with variable shading to optimize energy production by photovoltaic panels and agricultural production. With this prototype, it is possible to vary the shading inside the greenhouse by panel rotation, in relation to the climatic conditions external to the greenhouse. An analysis was made for the solar radiation available during the year, for cases of completely clear sky and partial cloud, by considering the 15th day of each month. In this paper, the results show how the shading variation enabled regulation of the internal radiation, choosing the minimum value of necessary radiation, because the internal microclimatic parameters must be compatible with the needs of the plant species grown in the greenhouses. Keywords: dynamic photovoltaic greenhouse; variable shading; renewable source; passive cooling system 1.
    [Show full text]
  • Concentrated Solar Power Plants
    ECE 333 – GREEN ELECTRIC ENERGY 17. Concentrated Solar Power Plants George Gross Department of Electrical and Computer Engineering University of Illinois at Urbana-Champaign ECE 333 © 2002 – 2018 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved. 1 CONCENTRATED SOLAR POWER (CSP) Many conventional power plants use heat to boil water to produce high–pressure steam, which expands through the turbine to spin the generator rotor and results in the production of electricity CSP technology extracts the heat from the solar irradiation and its operation resembles the steam generation plants that burn fossil fuels or use uranium to produce electricity ECE 333 © 2002 – 2018 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved. 2 Page 1 REVIEW OF INSOLATION COMPONENTS reflected radiation diffused radiation direct beam radiation http://www.inforse.org/europe/dieret/Solar/solar.html Source: ECE 333 © 2002 – 2018 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved. 3 CSP PV technology is able to collect all the 3 insolation components for electricity production Unlike PV, CSP can concentrate only the direct beam radiation – also referred to as direct normal irradiation (DNI) – to generate electricity ECE 333 © 2002 – 2018 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved. 4 Page 2 CSP Specifically, CSP plant uses mirrors with tracking systems to focus DNI to collect the solar energy The solar energy is used to heat up the heat transfer fluid (HTF) and to convert HTF into thermal energy Subsequently, the absorbed thermal energy is utilized to generate steam which drives a steam turbine to produce electricity Some CSP plants incorporate thermal storage devices ECE 333 © 2002 – 2018 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.
    [Show full text]
  • Global Journal of Research in Engineering
    Online ISSN : 2249-4596 Print ISSN : 0975-5861 Photovoltaic Power Stations Kinetic Induktance Charges Evaluation of Residual Stress Design and Simulation Patterns VOLUME 14 ISSUE 5 VERSION 1.0 Global Journal of Researches in Engineering: J General Engineering Global Journal of Researches in Engineering: J General Engineering Volume 14 Issue 5 (Ver. 1.0) Open Association of Research Society © Global Journal of Global Journals Inc. Researches in Engineering. (A Delaware USA Incorporation with “Good Standing”; Reg. Number: 0423089) Sponsors: Open Association of Research Society 2014. Open Scientific Standards All rights reserved. Publisher’s Headquarters office This is a special issue published in version 1.0 of “Global Journal of Researches in Global Journals Headquarters Engineering.” By Global Journals Inc. All articles are open access articles distributed 301st Edgewater Place Suite, 100 Edgewater Dr.-Pl, under “Global Journal of Researches in Wakefield MASSACHUSETTS, Pin: 01880, Engineering” United States of America Reading License, which permits restricted use. Entire contents are copyright by of “Global USA Toll Free: +001-888-839-7392 Journal of Researches in Engineering” unless USA Toll Free Fax: +001-888-839-7392 otherwise noted on specific articles. No part of this publication may be reproduced Offset Typesetting or transmitted in any form or by any means, electronic or mechanical, including Global Journals Incorporated photocopy, recording, or any information storage and retrieval system, without written 2nd, Lansdowne, Lansdowne Rd., Croydon-Surrey, permission. Pin: CR9 2ER, United Kingdom The opinions and statements made in this book are those of the authors concerned. Packaging & Continental Dispatching Ultraculture has not verified and neither confirms nor denies any of the foregoing and Global Journals no warranty or fitness is implied.
    [Show full text]
  • 16-Riaz Ahsan Baig.Pdf
    313 Paper No. 723 SOLAR ENERGY – TODAY AND TOMORROW ENGR. RIAZ AHSAN BAIG 314 Engr. Riaz Ahsan Baig Centenary Celebration (1912 – 2012) 315 SOLAR ENERGY – TODAY AND TOMORROW By Engr. Riaz Ahsan Baig 1. GENERAL Today no one can deny that our country is suffering from shortage of power, so badly needed for economic growth of the country, halting agriculture and industrial development. To meet the shortage of power demand, we need to utilize all the available indigenous resources in Pakistan particularly Wind Mills, Hydel Potential, Thar Coal and Solar Energy, which has a great potential to meet our power demand and is emerging as the most potent source of renewal energy. Solar energy if sincerely exploited can bring a revolution in the very near future, and GoP must give due priority for its development in Pakistan to meet shortage of power. 2. SOLAR POWER Solar Power is the conversion of sunlight electricity, either directly using photovoltaic (PV) or indirectly using concentrated solar power (CSP), so there are two major sources of solar power which will be discussed with respect to type of technology, application, economy, cost, their present and the future status. i. Photovoltaic Cell (PV) ii. Solar Thermal Power (CSP) 3. PHOTOVOLTAIC CELL Broadly speaking photovoltaic cell technology can be classified into – Traditional Crystalline Silicon Technology (SC) – Thin Film Solar Cells (TFSC) technology There are currently three different generations of solar cell. The first Generation (those in the market today) are made with crystalline semi conductor wafers, typically silicon. These are the SC’s everybody think of when they hear “Solar Cell”.
    [Show full text]