Gas Composition of Developing Pneumatocysts in Bull Kelp Nereocystis Luetkeana (Phaeophyceae)1

Total Page:16

File Type:pdf, Size:1020Kb

Gas Composition of Developing Pneumatocysts in Bull Kelp Nereocystis Luetkeana (Phaeophyceae)1 J. Phycol. 56, 1367–1372 (2020) © 2020 Phycological Society of America DOI: 10.1111/jpy.13037-19-219 NOTE GAS COMPOSITION OF DEVELOPING PNEUMATOCYSTS IN BULL KELP NEREOCYSTIS LUETKEANA (PHAEOPHYCEAE)1 Lauran M. Liggan ,2 and Patrick T. Martone Department of Botany and Biodiversity Research Centre, University of British Columbia, 3529-6270 University Blvd, Vancouver, BC V6T 1Z4, Canada The subtidal kelp Nereocystis luetkeana (hereafter The bull kelp Nereocystis luetkeana (hereafter Nereo- Nereocystis) maintains an upright stature by producing a cystis) builds unique subtidal forests in the Northeast single gas-filled float (pneumatocyst) that provides Pacific by having a singular gas-filled float called a buoyancy. The ability of Nereocystis pneumatocysts to pneumatocyst, which enables the kelp’s flexible thal- inflate with gas underwater is peculiar, and the gas lus to remain upright and vertical in the water col- composition of pneumatocysts has been the topic of umn (Arzee et al. 1985). The ability of this seaweed several studies over the last 100 years. Past studies of to create an air-tight reservoir and inflate underwa- pneumatocyst gases only examined large sporophytes, ter is remarkable, and the gas composition of Nereo- leaving open questions about the origins of these gases cystis pneumatocysts has been the topic of several and how gas composition may change during studies during the first half of the 20th century (Frye development. In this study, we use developmental time et al. 1915, Langdon 1917, Langdon and Gailey as a means to understand the origin and physiological 1920, Rigg and Henry 1935, Rigg and Swain 1941). mechanisms that give rise to different gases within Past studies found that 20–25% of gas sampled from ~ Nereocystis pneumatocysts. Total gas composition was pneumatocysts was oxygen (O2) and 70% or more measured across a range of pneumatocyst sizes (5– was nitrogen (N2), with both gases present in con- 725 mL). Contrary to previous studies that centrations similar to air (Rigg and Henry 1935, Rigg documented pneumatocyst gas concentrations to be and Swain 1941). In addition, up to 13% of the gas similar to air, this study found internal gas levels of CO, was CO, thought to be a product of cell degradation Æ Æ CO2,andO2 to be 1.2 0.8%, 0.6 0.2%, and (autolysis) from the rapidly expanding pneumatocyst 59.9 Æ 13.6%, respectively. Our data suggest that the during early development (Foreman 1976), and 2– composition of gases does not change as 7% of the gas was carbon dioxide (CO2), shown to pneumatocysts grow and that the rate of each gas be a product of cellular respiration (Langdon and added is approximately proportional to changes in Gailey 1920, Rigg and Swain 1941). pneumatocyst volume. Therefore, cells constituting the Gas-filled structures are commonly found in Lami- pneumatocyst wall are likely producing more gas (per nariales and Fucales, where the structure provides surface area) to fill pneumatocysts as they expand, mechanical support to flexible thalli, allowing maintaining proportional gas composition and blades to efficiently access sunlight near the waters’ corresponding internal pressure. surface (Dromgoole 1981a, Stevens et al. 2002, Ste- Key index words: wart 2006, Burnett and Koehl 2017). Most macroal- buoyancy; carbon dioxide; carbon gal pneumatocysts develop from meristematic blade monoxide; development; gas bladder; macroalgae; tissue, forming an organ that generally subtends the oxygen; photosynthesis; physiology; respiration blades (Dromgoole 1981a). However, some genera Abbreviations C C : 1, measured gas concentration; 2, such as Durvillaea, Turbinaria, and Eualaria modify C unknown pneumatocyst gas concentration; gas, gas their blades, by having tissue that separates to form concentration; ggas, grams of gas; kPa, kilopascals; hollow spaces with in the blade itself (Smith 2002, M P gas, molar mass of gas; gas, gas partial pressure; Stevens et al. 2002, Stewart 2004, Stewart et al. V V R, gas constant; 1, volume of the flask; 2, volume 2007). Though pneumatocyst morphology and posi- V of gas sample; p, pneumatocyst volume; ggas, mols tion varies greatly between species and groups, the of gas same buoyant function is achieved. Nereocystis thalli, like most other kelps, initially develop a simple holdfast, stipe, and blade. Pneumatocysts begin to form at the transition zone between the stipe and the blade when sporophytes are no less than 15 cm, 1Received 10 October 2019. Accepted 17 May 2020. Published Online 22 May 2020, Wiley Online Library (wileyonlinelibrary.com). in length, about 2 weeks after germination (Nichol- 2Author for correspondence: e-mail [email protected]. son 1970, Dromgoole 1981a, Liggan and Martone Editorial Responsibility: C. Pfister (Associate Editor) 2018). Medullary cells along the transition zone 1367 1368 LAURAN M. LIGGAN ET AL. begin tearing, releasing gas into the newly opened mechanisms that give rise to different gases within space (Dromgoole 1981a). pneumatocysts and determined if gas composition Pneumatocyst walls are thick and composed of changed throughout sporophyte development. We tissues that are specialized in resisting compres- hypothesized that O2 and CO2 concentrations were sion, preventing pneumatocysts from buckling influenced by pneumatocyst SA:V such that gas con- under hydrostatic pressure (Liggan and Martone centrations (% or ppm) and the amount of gas pro- 2018). In addition, pneumatocysts have internal duced (mmol) would decrease (relative to increases pressures that are always less than atmospheric in volume) as pneumatocysts grow. We assumed that pressure, which maintains a positive pressure gra- CO is purely a product of early pneumatocyst devel- dient and keeps the walls under compression as opment, and hypothesized that concentrations of they rise toward the surface (Liggan and Martone CO would initially increase as medulla tissue tears 2018). As pneumatocysts continue to grow and (roughly proportional to pneumatocyst length), but enlarge more than two orders of magnitude in ultimately decrease when cellular division primarily volume, internal pressure stays remarkably con- expands the growing pneumatocyst. stant (Liggan and Martone 2018). Because pneu- Nereocystis thalli (n = 29) of varying pneumatocyst matocyst development involves the active growth volume (5–725 mL) were haphazardly collected of some cells and the degradation of others between April and August 2015 at four sites off the (Dromgoole 1981a), it is unknown which gases fill coast of British Columbia, Canada: Scott’s Bay this newly opened space and which cells con- (48°50004.9″ N 125°08050.0″ W), Aguilar Point tribute to gas composition. In addition, it is (48°50022.0″ N 125°08027.2″ W), Stanley Park unclear whether changes in pneumatocyst size and (49°18003.5″ N 123°07000.0″ W), and Helby Island corresponding physiological processes influence (48°51019.6″ N 125°10007.4″ W). Kelp were collected internal gas composition and concentration. no deeper than 2 m below chart datum and all sam- Because past studies of Nereocystis pneumatocyst ples were detached from the substratum at the hold- gas composition have limited their examination to fast so that pneumatocysts were fully intact. 12 mL large, mature sporophytes, this study aims to inves- of gas was extracted with a 26-gauge (0.45 mm) nee- tigate ontogenetic changes in gas composition by dle and syringe from each pneumatocyst and stored examining pneumatocysts of varying size. in an Exetainer (Labco Limited 12 mL, Lampeter, There are three main processes that likely con- UK). All Exetainers were vacuum sealed and con- tribute to gas composition as pneumatocysts tained a septum to allow gas to be stored without increase in size. One is cellular physiology, (i.e., air contamination. Exetainers were punctured no photosynthesis and respiration) where every living more than three times to avoid air contamination cell that releases gases into or absorbs gases from and were stored upside down in distilled water to the pneumatocyst contributes to gas concentration further prevent air contamination (Glatzel and Well (Rigg and Swain 1941). If gas composition is 2008, Sturm et al. 2015). Samples were cooled to entirely dependent on the by-products of photosyn- 5°C during transit and in the laboratory prior to gas thesis and respiration, the combined concentration analyses. (% or ppm) of biologically produced gases such as CO2 and CO concentrations were analyzed at O2 and CO2 would be proportional to tissue surface room temperature (in ppm) using a Q-trak indoor area and volume of the pneumatocyst (SA:V). The air quality monitor 7565 (TSI Inc. Shoreview, MN, second process that may influence pneumatocyst USA). Q-trak sensors were calibrated to 50 ppm of gases is cellular degradation, tearing of medulla tis- CO and 447 ppm of CO2 (CO2 in air). Pneumato- sue and the subsequent release of CO, when the cyst samples were analyzed by injecting 0.5 mL of stipe opens during pneumatocyst development gas through the sensor where CO2 and CO concen- (Foreman 1976). Foreman (1976) developed trations were electronically read after the gas sensor hypotheses regarding the biological processes that ran for 45 s, recording a peak concentration. Nitro- influence CO production, suggesting that CO is a gen (N2) was used to flush out any excess air in the by-product of autolytic cell metabolism, which is sensor that would alter measurements. active during pneumatocyst formation, and inher- Neofox probes (Ocean Optics Inc., FL, USA) ently linked to respiration by a requirement of were used to measure O2 concentrations (in %) in energy in the form of ATP (Nicholson 1970, Dun- gas samples extracted from pneumatocysts. Before can 1973, Foreman 1976). If true, then we would each measurement, a 30 mL flask was flushed with expect CO concentrations to decrease post-develop- 100% N2 to evacuate any residual air. 1 mL of gas ment as tearing subsides and pneumatocysts expand was extracted from the Exetainers and was injected from cellular division (Nicholson 1970, Duncan into the flask. Each sample was mixed with the 1973) and we would expect mature pneumatocysts residual N2 using a magnetic stir bar during the to have lower CO concentrations than young, devel- reading.
Recommended publications
  • Riot and Dance ANSWER KEY2.Indd
    REVIEW QUESTIONS ANSWER KEY 2 the riot and the dance teacher’s guide • answer key Chapter 1 10. Draw a water molecule (H2O) showing orbitals and shared electrons (atomic 1. A substance that has distinct chemical number of hydrogen: 1). properties and cannot be broken down into simpler substances by normal chemical means is a(n) element. 2. The smallest unit of an element is a(n) atom. 3. Two or more atoms bonded together is a(n) molecule. 4. A molecule containing two or more elements is a(n) compound. 5. The two subatomic particles contained in the nucleus of an atom are neutrons and protons. What are their charges? Neutral and positive. 6. The subatomic particles contained in the shells orbiting the nucleus are the electrons. Charge? Negative. 7. Atomic number is the number of protons in an atom. 11. A complete transfer of electrons from one 8. Atomic weight or mass number is the sum atom to another resulting in oppositely of protons and neutrons. charged atoms sticking together is called 9. Draw an oxygen atom (atomic number: 8). a(n) ionic bond. 12. When atoms are joined together because they are sharing electrons it is called a(n) covalent bond. 13. In a polar covalent bond how are the electrons being distributed in the molecule? The atoms with the greatest pull on the shared electrons will cause the electrons to swarm around them more than the weaker atoms. 14. In a non-polar covalent bond how are the electrons being distributed in the molecule? The atoms involved have an equal pull on the shared electrons and consequently the electrons are equally distributed between the two or more atoms.
    [Show full text]
  • Akatore Study Published in Earth and Planetary
    Earth and Planetary Science Letters 520 (2019) 18–25 Contents lists available at ScienceDirect Earth and Planetary Science Letters www.elsevier.com/locate/epsl Kelp DNA records late Holocene paleoseismic uplift of coastline, southeastern New Zealand ∗ Elahe Parvizi a, Dave Craw b, , Jonathan M. Waters a a Zoology Department, University of Otago, PO Box 56, Dunedin 9054, New Zealand b Geology Department, University of Otago, PO Box 56, Dunedin 9054, New Zealand a r t i c l e i n f o a b s t r a c t Article history: Holocene paleoseismic activity on the Akatore Fault zone, southeastern New Zealand, has caused uplift Received 20 January 2019 of a 23 km section of coastline by several metres. Prominent relict shoreline terraces are preserved at Received in revised form 4 May 2019 6 m and 3 m above the present sea level, and the latter terrace was formed 1000-1400 yrs BP. The Accepted 22 May 2019 main fault strand farther inland has 6 mof late Holocene vertical offset, but the relationships between Available online xxxx coastal offsets and fault offsets are not understood. There is no preserved geological evidence on the Editor: J.-P. Avouac coastline to distinguish between incremental uplift (e.g., numerous centimetre-scale events) and major, Keywords: metre-scale, uplift events: a distinction that is important for evaluating regional paleoseismicity. We have paleoseismology used genetic characterisation of populations of live kelp, Durvillaea antarctica growing along the shoreline neotectonics to investigate whether or not there has been a catastrophic uplift event, greater than the two metre tidal fault range, that was sufficient to extirpate intertidal kelp populations.
    [Show full text]
  • A Comprehensive Kelp Phylogeny Sheds Light on the Evolution of an T Ecosystem ⁎ Samuel Starkoa,B,C, , Marybel Soto Gomeza, Hayley Darbya, Kyle W
    Molecular Phylogenetics and Evolution 136 (2019) 138–150 Contents lists available at ScienceDirect Molecular Phylogenetics and Evolution journal homepage: www.elsevier.com/locate/ympev A comprehensive kelp phylogeny sheds light on the evolution of an T ecosystem ⁎ Samuel Starkoa,b,c, , Marybel Soto Gomeza, Hayley Darbya, Kyle W. Demesd, Hiroshi Kawaie, Norishige Yotsukuraf, Sandra C. Lindstroma, Patrick J. Keelinga,d, Sean W. Grahama, Patrick T. Martonea,b,c a Department of Botany & Biodiversity Research Centre, The University of British Columbia, 6270 University Blvd., Vancouver V6T 1Z4, Canada b Bamfield Marine Sciences Centre, 100 Pachena Rd., Bamfield V0R 1B0, Canada c Hakai Institute, Heriot Bay, Quadra Island, Canada d Department of Zoology, The University of British Columbia, 6270 University Blvd., Vancouver V6T 1Z4, Canada e Department of Biology, Kobe University, Rokkodaicho 657-8501, Japan f Field Science Center for Northern Biosphere, Hokkaido University, Sapporo 060-0809, Japan ARTICLE INFO ABSTRACT Keywords: Reconstructing phylogenetic topologies and divergence times is essential for inferring the timing of radiations, Adaptive radiation the appearance of adaptations, and the historical biogeography of key lineages. In temperate marine ecosystems, Speciation kelps (Laminariales) drive productivity and form essential habitat but an incomplete understanding of their Kelp phylogeny has limited our ability to infer their evolutionary origins and the spatial and temporal patterns of their Laminariales diversification. Here, we
    [Show full text]
  • Safety Assessment of Brown Algae-Derived Ingredients As Used in Cosmetics
    Safety Assessment of Brown Algae-Derived Ingredients as Used in Cosmetics Status: Draft Report for Panel Review Release Date: August 29, 2018 Panel Meeting Date: September 24-25, 2018 The 2018 Cosmetic Ingredient Review Expert Panel members are: Chair, Wilma F. Bergfeld, M.D., F.A.C.P.; Donald V. Belsito, M.D.; Ronald A. Hill, Ph.D.; Curtis D. Klaassen, Ph.D.; Daniel C. Liebler, Ph.D.; James G. Marks, Jr., M.D.; Ronald C. Shank, Ph.D.; Thomas J. Slaga, Ph.D.; and Paul W. Snyder, D.V.M., Ph.D. The CIR Executive Director is Bart Heldreth, Ph.D. This report was prepared by Lillian C. Becker, former Scientific Analyst/Writer and Priya Cherian, Scientific Analyst/Writer. © Cosmetic Ingredient Review 1620 L Street, NW, Suite 1200 ♢ Washington, DC 20036-4702 ♢ ph 202.331.0651 ♢ fax 202.331.0088 [email protected] Distributed for Comment Only -- Do Not Cite or Quote Commitment & Credibility since 1976 Memorandum To: CIR Expert Panel Members and Liaisons From: Priya Cherian, Scientific Analyst/Writer Date: August 29, 2018 Subject: Safety Assessment of Brown Algae as Used in Cosmetics Enclosed is the Draft Report of 83 brown algae-derived ingredients as used in cosmetics. (It is identified as broalg092018rep in this pdf.) This is the first time the Panel is reviewing this document. The ingredients in this review are extracts, powders, juices, or waters derived from one or multiple species of brown algae. Information received from the Personal Care Products Council (Council) are attached: • use concentration data of brown algae and algae-derived ingredients (broalg092018data1, broalg092018data2, broalg092018data3); • Information regarding hydrolyzed fucoidan extracted from Laminaria digitata has been included in the report.
    [Show full text]
  • The Halogenated Metabolism of Brown Algae
    The Halogenated Metabolism of Brown Algae (Phaeophyta), Its Biological Importance and Its Environmental Significance Stéphane La Barre, Philippe Potin, Catherine Leblanc, Ludovic Delage To cite this version: Stéphane La Barre, Philippe Potin, Catherine Leblanc, Ludovic Delage. The Halogenated Metabolism of Brown Algae (Phaeophyta), Its Biological Importance and Its Environmental Significance. Marine drugs, MDPI, 2010, 8, pp.988. hal-00987044 HAL Id: hal-00987044 https://hal.archives-ouvertes.fr/hal-00987044 Submitted on 5 May 2014 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Mar. Drugs 2010, 8, 988-1010; doi:10.3390/md8040988 OPEN ACCESS Marine Drugs ISSN 1660-3397 www.mdpi.com/journal/marinedrugs Review The Halogenated Metabolism of Brown Algae (Phaeophyta), Its Biological Importance and Its Environmental Significance Stéphane La Barre 1,2,*, Philippe Potin 1,2, Catherine Leblanc 1,2 and Ludovic Delage 1,2 1 Université Pierre et Marie Curie-Paris 6, UMR 7139 Végétaux marins et Biomolécules, Station Biologique F-29682, Roscoff, France; E-Mails: [email protected] (P.P.); [email protected] (C.L.); [email protected] (L.D.) 2 CNRS, UMR 7139 Végétaux marins et Biomolécules, Station Biologique F-29682, Roscoff, France * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +33-298-292-361; Fax: +33-298-292-385.
    [Show full text]
  • The Ecology of Chemical Defence in a Filamentous
    THE ECOLOGY OF CHEMICAL DEFENCE IN A FILAMENTOUS MARINE RED ALGA NICHOLAS A. PAUL A thesis submitted to the University of New South Wales for the degree of Doctor of Philosophy July 2006 i ACKNOWLEDGEMENTS··························································································································· iii CHAPTER 1. GENERAL INTRODUCTION ..........................................................................1 NATURAL PRODUCTS CHEMISTRY OF MACROALGAE ...............................................................2 THE RED ALGAE ........................................................................................................................2 ECOLOGICAL ROLES OF SECONDARY METABOLITES ................................................................3 i) Chemical mediation of interactions with herbivores ........................................................3 ii) Chemical mediation of interactions with fouling organisms ............................................4 ULTRASTRUCTURE OF SPECIALISED CELLS AND STRUCTURES.................................................5 RESOURCE ALLOCATION TO SECONDARY METABOLITE PRODUCTION.....................................6 THESIS AIMS ..............................................................................................................................7 CHAPTER 2. CHEMICAL DEFENCE AGAINST BACTERIA IN ASPARAGOPSIS ARMATA: LINKING STRUCTURE WITH FUNCTION.......................................................9 INTRODUCTION ..........................................................................................................................9
    [Show full text]
  • ALGAE Algae Are Photosynthetic Eukaryotes with a Wide Variety of Shapes That Occur in Most Habitats, Ranging from Marine And
    ALGAE Algae are photosynthetic eukaryotes with a wide variety of shapes that occur in most habitats, ranging from marine and freshwater to desert sands and from hot boiling springs to snow and ice belonging to Kingdom Protista. Algae vary from small, single-celled forms (filamentous) to most complex multicellular forms. They are not plants, they are more plantlike than protozoa. Algae lack true roots, stems and leaves. They important role in balancing the environment. They reproduce sexually and asexually. They are photoautotrophic, as photosynthesizer, algae need light and air for food production and growth, but do not generally require organic compounds from the environment. As a result of photosynthesis, algae produce oxygen and carbohydrates which are utilized by other organisms. Depending on the type of photosynthetic pigments they possess, they are classified as green, golden, brown or red. Algae are important as primary producers of organic matter at the base of the food chain. They also provide oxygen for other aquatic life. Algae may contribute to mass mortality of other organisms, in cases of algal blooms, but they also contribute to economic well- being in the form of food, medicine and other products. In tropical regions, coralline algae can be as important as corals in the formation of reefs. Seaweeds are larger algae that live in the marine (salt or brackish water) environment. Kelps are large brown seaweeds in the genera Pelagophycus, Laminaria, Macrocystis, etc. In the Pacific, individual kelp plants may reach 65 meters in length. CHARACTERISTICS OF ALGAE Algae are simple eukaryotic photoautotrophs. Most are found in the ocean.
    [Show full text]
  • Macroalgae (Seaweeds)
    Published July 2008 Environmental Status: Macroalgae (Seaweeds) © Commonwealth of Australia 2008 ISBN 1 876945 34 6 Published July 2008 by the Great Barrier Reef Marine Park Authority This work is copyright. Apart from any use as permitted under the Copyright Act 1968, no part may be reproduced by any process without prior written permission from the Great Barrier Reef Marine Park Authority. Requests and inquiries concerning reproduction and rights should be addressed to the Director, Science, Technology and Information Group, Great Barrier Reef Marine Park Authority, PO Box 1379, Townsville, QLD 4810. The opinions expressed in this document are not necessarily those of the Great Barrier Reef Marine Park Authority. Accuracy in calculations, figures, tables, names, quotations, references etc. is the complete responsibility of the authors. National Library of Australia Cataloguing-in-Publication data: Bibliography. ISBN 1 876945 34 6 1. Conservation of natural resources – Queensland – Great Barrier Reef. 2. Marine parks and reserves – Queensland – Great Barrier Reef. 3. Environmental management – Queensland – Great Barrier Reef. 4. Great Barrier Reef (Qld). I. Great Barrier Reef Marine Park Authority 551.42409943 Chapter name: Macroalgae (Seaweeds) Section: Environmental Status Last updated: July 2008 Primary Author: Guillermo Diaz-Pulido and Laurence J. McCook This webpage should be referenced as: Diaz-Pulido, G. and McCook, L. July 2008, ‘Macroalgae (Seaweeds)’ in Chin. A, (ed) The State of the Great Barrier Reef On-line, Great Barrier Reef Marine Park Authority, Townsville. Viewed on (enter date viewed), http://www.gbrmpa.gov.au/corp_site/info_services/publications/sotr/downloads/SORR_Macr oalgae.pdf State of the Reef Report Environmental Status of the Great Barrier Reef: Macroalgae (Seaweeds) Report to the Great Barrier Reef Marine Park Authority by Guillermo Diaz-Pulido (1,2,5) and Laurence J.
    [Show full text]
  • A Abalone, 300, 480 Absolute Salinity, 87 Acanthophora Spicifera, 339
    Index A Alboran Sea (Mediterranean Sea), 315, 317 Abalone, 300, 480 Aldelphoparasitism, 210 Absolute salinity, 87 Aleutian Archipelago, 144 Acanthophora spicifera, 339, 346 Aleutian Islands, 162 Acanthurus Algal turfs, 334, 337 A. bahianus, 337 Alginate, 126, 486 A. chirurgus, 350 Allelopathy, 177, 184, 216 A. coeruleus, 337 Alloparasites, 210 Acclimation potential, 51 Altritol, 97 Acetabularia,96 Ammonium, 76 Acrochaete, 207 Ammonium uptake, 73 A. geniculata, 208 Amphi-epiphytes, 205 A. operculata, 124 Amphi-equatorial species, 390 Acrochaetium sp., 179, 205 Amphipod herbivory, 280 Acropora Amphipods, 369 A. cervicornis, 341 Amphiroa, 337 A. millepora, 342 A. fragillisima, 339 A. palmata, 341 Amylopectin, 34 Acrosiphonia, 90, 209, 277 Amylose, 34 A. arcta, 96, 97, 268, 269, 274, 435 Anoxia, 449 A. incurva, 267 Antarctic Circumpolar Current, 267, 293 A. pacifica, 302 Antarctic Peninsula, 268, 275, 281, 383, Activated defenses, 181, 182 393, 395 N-Acyl homoserine lactone (AHL), 179, Antarctic region, 393 183, 215 Antarctic seaweeds, 280 Adaptation through modulation, 50 Antarctic seaweeds, temperature demands, 390 Adaptation to low temperatures, 390 Antibacterial activities, 485 Adenocystis utricularis, 269, 274, 297, 302, Antifouling, 213, 222 307, 412 Antihelmintic properties, 485 Agar, 251, 486 Antioxidant, 57 Agaricia, 341 Antioxidative potential of phlorotannins, 440 Agarophyte, 251, 474 Anti-protozoan actibities, 252 Aglaothamnion,98 Antiviral activities, 485 Ahnfeltiopsis durvillaei, 297 Anvers Island, 275 Alaria esculenta, 12, 273, 276, 277, 436, Appressorium, 213 438, 486 Aquaculture, 78, 394, 471 Alaskan Beaufort Sea, 276, 280 Aquaporins, 94 C. Wiencke and K. Bischof (eds.), Seaweed Biology, Ecological Studies 219, 495 DOI 10.1007/978-3-642-28451-9, # Springer-Verlag Berlin Heidelberg 2012 496 Index Aragonite, 408, 412 Bloom formation, 449 Aragonite seas, 412 Bonnemaisonia hamifera, 183, 216 Archaea, 190 Bostrychia, 98, 214 Arctic region, 393 B.
    [Show full text]
  • Lab Report Oddities Gametic Life Cycle
    Lab 9- Algae Lab Report Oddities • Post lab 9, Question 4- – Only 2 kingdoms, not 3 • Pre Lab 10, Question 1 (255) – Answer for A in the blank for A below question Gametic Life Cycle Adult 2N- two copies of chromosomes Examples- Diatoms, Fucus 1 Zygotic Life Cycle Adult 1N- one copies of chromosomes 2N Zygote 1N Examples- Spirogyra, Chlamydomonas Sporic Life Cycle 2 Adults: 1N, 2N Examples- Laminaria, Ulva General Algae Characteristics • Autotrophic (mostly) – Chlorophyll a • Aquatic – Marine or Fresh Water • Phytoplankton or Microalgae- Unicellular • Macroalgae- multicellular • Sessile (generally) – Attached to a solid substrate (ex- rocks, trees) – Few found on slow moving mammal (sloths) 2 Kingdom Stramenopila • General Characteristics – Hairy Flagella (usually in reproductive phase) – Autotrophic OR Heterotrophic •Phylums – Oomycota – Chrysophyta – Diatom – Phaeophyta Kingdom Stramenopila Hyphae & Oogonia • Phylum Oomycota – Hetertrophic – Cellulose cell wall – Dioecious – Gametic meiosis zoosporangia Phylum Diatoms • Phytoplankton • Chlorophyll a & c, • Carotenoids • Silica cell walls • Reproduce asexually (mostly) • Gametic Meiosis during sexual reproduction 3 Phylum Diatoms Centric Pennate (Marine water) (fresh water) Not Diatoms Dinoflagellata Foraminifera Actinopoda (Radiolarian) Phylum Phaeophyta • Macroalgae • Chlorophyll a & c & Carotenoids • Store energy as laminarin and mannitol • Cellulose cell walls • Gametes: 2 flagella 4 Macroalgae Anatomy • Blade •Stipe • Air bladder – pneumatocyst • Holdfast Phylum Phaeophyta • Genus
    [Show full text]
  • Download Full Article 6.9MB .Pdf File
    Memoirs of the Museum of Victoria 52(2): 1 37-262 ( 1 990) ISSN 08 1 4- 1 827 https://doi.org/10.24199/j.mmv.1991.52.02 30 September 1991 AUSTRALASIAN SPECIES OF LIMNORIIDAE (CRUSTACEA: ISOPODA) By Laurie J. Cookson CSIRO Division of Forest Products, Private Bag 10, Clayton, Victoria 3168, Australia Abstract Cookson, L.J., 1991. Australasian species of Limnoriidae (Crustacea: Isopoda). Memoirs of the Museum of Victoria 52: 137-262. Some members of the Limnoriidae are important marine wood-borers. The taxonomy of the family was studied with emphasis on species from the Australasian region. The Lim- noriidae are reduced to two genera: Limnoria Leach and Paralimnoria Menzies. The genus Phycolimnoria is synonymised with Limnoria. Species from Australia are redescribed: Limnoria indica Becker and Kampf, L. insulae Menzies, L. multipunctata Menzies, L. nonsegnis Menzies, L. pfefferi Stebbing, L. plaiy- cauda Menzies, L. quadripunctata Holthuis, L. rugosissima Menzies, L. sublittorale Menzies, L. tripunctata Menzies and L. unicornis Menzies. New species from Australia are: L. agrostisa, L. echidna, L. gibbera, L. glaucinosa, L. orbellum, L. poorei, L. raruslima, L. torquisa and L. uncapedis. The new species L. loricata and L. convexa are also described from The Snares, New Zealand. Species from Papua New Guinea are: Paralimnoria andrewsi (Caiman), P. asterosa Cook- son and Cragg, L. andamanensis Rao and Ganapati, L. indica, L. insulae, L. kautensis Cookson and Cragg, L. multipunctata, L. pfefferi, L. tripunctata and L. unicornis. L. antarctica Pfeffer and L. stephenseni Menzies from Macquarie Island are redes- cribed. Although not found near Australia, L. tuberculata Sowinsky is also redescribed to distin- guish it from L.
    [Show full text]
  • Stranding Dynamics of Floating Bull Kelp Durvillaea Antarctica (Fucales, Phaeophyceae) on Beaches in the Se Pacific1
    J. Phycol. 53, 70–84 (2017) © 2016 Phycological Society of America DOI: 10.1111/jpy.12479 THE VARIABLE ROUTES OF RAFTING: STRANDING DYNAMICS OF FLOATING BULL KELP DURVILLAEA ANTARCTICA (FUCALES, PHAEOPHYCEAE) ON BEACHES IN THE SE PACIFIC1 Boris A. Lopez Facultad de Ciencias del Mar, Universidad Catolica del Norte, Larrondo 1281, Coquimbo, Chile Departamento de Acuicultura y Recursos Agroalimentarios, Universidad de Los Lagos, Avenida Fuchslocher 1305, Osorno, Chile Erasmo C. Macaya Laboratorio de Estudios Algales (ALGALAB), Departamento de Oceanografıa, Universidad de Concepcion, Casilla 160-C, Concepcion, Chile Millennium Nucleus Ecology and Sustainable Management of Oceanic Island (ESMOI), Coquimbo, Chile Centro FONDAP de Investigaciones en Dinamica de Ecosistemas Marinos de Altas Latitudes (IDEAL), Valdivia, Chile Fadia Tala Facultad de Ciencias del Mar, Universidad Catolica del Norte, Larrondo 1281, Coquimbo, Chile Centro de Investigacion y Desarrollo Tecnologico en Algas (CIDTA), Universidad Catolica del Norte, Larrondo 1281, Coquimbo, Chile Florence Tellier Departamento de Ecologıa, Facultad de Ciencias, Universidad Catolica de la Santısima Concepcion, Casilla 297, Concepcion, Chile Centro de Investigacion en Biodiversidad y Ambientes Sustentables (CIBAS), Universidad Catolica de la Santısima Concepcion, Casilla 297, Concepcion, Chile and Martin Thiel2 Facultad de Ciencias del Mar, Universidad Catolica del Norte, Larrondo 1281, Coquimbo, Chile Millennium Nucleus Ecology and Sustainable Management of Oceanic Island (ESMOI), Coquimbo,
    [Show full text]