Unit I - (Computer Fundamentals)

Total Page:16

File Type:pdf, Size:1020Kb

Unit I - (Computer Fundamentals) Unit I - (Computer fundamentals) Computer: Computer is an electronic device which manipulates the data according to the list of instructions. A computer is used as a data processor which converts data into information. Computers can solve highly complicated problems quickly and accurately. They can perform a lot of tasks such as online reservations, playing games, controlling flight timings, traffic and weather forecasting etc. Computerization has been done in business, banking, electronic publishing, engineering, creative designing, fashion designing etc. Data and Information: Data: In terms of computers, data means raw facts and figures. For example, +,2,4,6,=, etc. Whereas Information is the meaningful content which is extracted from data i.e., raw facts and figures. For example, 2+4 = 6 here, 6 is the information. Evolutions/History of computers: Evolution of computers refers to the historical developments through which computers and technology have passed, from the time they started to exist(in ancient forms) to their current state. 1. ABACUS Many centuries ago when man started to count the numbers, he thought of a device which can trace the numbers and thus came the existence of ABACUS. It was the first counting device which was developed in China more than 3000 years ago. The name Abacus was obtained from Greek word Abax which means slab. This device basically consists of a rectangular wooden frame and beads. 2. Napier ’s Bones It is a device which contains a set of rods made of bones. It was developed by John Napier, a Scottish Mathematician and hence the device was named as Napier’s Bones. The device was mainly developed for performing multiplication and division. Later in 1614 he also introduced logarithms. 3. Pascaline Pascaline is a calculating machine developed by Blaise Pascal, a French Mathematician. It was the first device with an ability to perform additions and subtractions on whole numbers. The devices made up of interlocked cog wheels which contains numbers 0 to 9 on 1 its circumference. When one wheel completes its rotation the other wheel moves by one segment. 4. Babbage’s Difference and Analytical Engine Charles Babbage was an English mathematician. In 1822, he designed a machine called difference engine. This machine was used to calculate and print mathematical tables. The analytical engine was capable of performing all four arithmetic operations as well as comparison. It is also called pioneer computer. Hence, Charles Babbage is rightly known as the Father of computer. 5. Punched Card System Punched Card System is used for storing and retrieving data. This was invented by Herman Hollerith, an American Statistician in US Census Bureau. The system stores the data coded in the form of punched holes. 6. Mark-1 In 1943, Prof. Howard Aiken of U.S.A. constructed an electro-mechanical computer named Mark-1 which could multiply two 10 digit number in 5 second- a record at that time. This was the first operational general purpose computer. Generations of computer: First Generation(1940-1956) The computers in this generations were very large in size and their programming was a difficult task. Examples are ENIAC, EDVAC etc. Characteristics of First generation computers: i. Vacuum tube was core element. ii. Punched card and paper tape were secondary memory. iii. Generate considerable heat and poor reliability. iv. High electricity consumption v. Machine and symbolic language programming. Second Generations(1956-1963): In this generation, the transistor was invented in 1947, and the vacuum tubes was replaced by the transistor. Transistor helped computers to become smaller, faster, cheaper, more energy- efficient and more reliable than their first-generation predecessors. Examples are IBM- 700, ATLAS etc. Characteristics of Second generation computers: i. Transistor circuit used as core element. ii. Magnetic core primary storage. iii. Required less power to operate and more reliable. iv. Computers programmed in assembly and machine languages. v. Smaller compared to first generation. 2 Third Generation(1964-1971): The third generation of computers is marked by the use of Integrated Circuits(ICs) in place of transistors. A single IC has many transistors, resistors and capacitors along with the associated circuitry. Examples include IBM/360/370, NCR 395 etc. Characteristics of Third generation computers: i. Increased miniaturization, speed and reliability. ii. Development of minicomputer. iii. Magnetic disk secondary storage. iv. Better storage devices(tapes). Fourth Generations(1972-present): Large Scale Integrated(LSI) Circuits and Very Large Scale Integrated(VLSI) circuits were emerged in the fourth generation of computers. These circuits are packed about thousands of transistors in a single chip. Examples include Intel 4004. Characteristics of Fourth generation computers: i. One advancement was the development of personal computers through which costs came down rapidly. Floppy disks served as a low cost, high capacity backup peripherals. ii. Higher storage device than earlier generations. iii. Development of microcomputer or personal computer. iv. More speed than earlier generations. Fifth Generation(Present and Beyond): In the fifth generation, the VLSI technology became ULSI(Ultra Large Scale Integration) technology resulting in the production of microprocessor chips having ten million electronic components. This generation is based on parallel processing hardware and superconductor, which help to make artificial intelligence a reality. All the higher level languages like C and C++ are used in this generation. Characteristics of Fifth generation computers: i. Organic chips ii. Decreasing cost of software and hardware. iii. Large data storage facility. iv. Artificial intelligence. v. High speed processing. Functional unit of computer: The basic organizations of a computer system includes four major functional units CPU, Input unit, Output unit and storage devices. The block diagram of basic computer system is shown below: 3 CPU (Central Processing Unit) Input Unit Output Unit CU (Control Unit) ALU (Arithmetic Logic Unit) Primary Storage Secondary Storage Basic organization of computer system A) Input Unit: The following functions are performed by an input unit: i) It accepts (or reads) the instructions and data from the outside world. ii) It converts these instructions and data in computer acceptable form because a computer can understand only binary symbols(i.e. 0 and 1) iii) It supplies the converted instructions and data to the computer system for further processing. B) Output Unit: The following functions are performed by an output unit: i) It accepts the results produced by the computer, which are in coded form(i.e., in binary form), and hence , cannot be easily understood by us. ii) It converts these coded results to human acceptable(readable) form. iii) It supplies the converted result to the outside world. C) Storage Unit: The following functions of the storage unit are to hold: i) The data and instruction required for processing , received from input devices. ii) Intermediate results of processing. 4 iii) Final results of processing, before these results are released to an output device. The storage unit of all computers is comprised of the following two types of storage: 1. Primary storage 2. Secondary storage D) Central Processing Unit(CPU): Sometimes CPU is only referred to as the central processor, but more commonly called only processor, the CPU is the brain of the computer where all or most of the calculations take place. In terms of computing power, the CPU is the most important element of a computer system. Two typical components of a CPU are the following: i) The Arithmetic Logic Unit(ALU), performs arithmetic and logical operations. ii) The Control Unit(CU), extracts instructions from memory and decodes then executes them. a) Arithmetic Control Unit(ALU): The ALU of a computer system is the place, where the actual execution of the instructions takes place, during the processing operation. To be more precise, all the arithmetic(+, -, x, /) and logical(<, >, ==, <=, >=) operations are performed in ALU. b) Control Unit(CU): It does not perform any actual processing on the data, the control unit acts as a central nervous system, for the other components of the computer system. It manages and co-ordinates the entire computer system. Also, it controls and guides the operations like a supervisor. It obtains instructions from the program stored in main memory, interprets the instructions and issue signals which cause other units of the system to execute them. There are input devices are explained as under: 1. Keyboard: A computer keyboard is one of the primary input devices used with a computer. Similar to an electric typewriter, a keyboard is composed of buttons that create letters, numbers, and symbols, as well as perform other functions. 2. Mouse: A computer mouse is a handheld hardware input device that controls a cursor in a GUI (graphical user interface) and can move and select text, icons, files, and folders on your computer. 3. Scanner: A scanner is an input device that scans documents such as photographs and pages of text. When a document is scanned, it is converted into a digital format. This creates an electronic version of the document that can be viewed and edited on a computer. 4. Barcode reader: Customers new to barcoding typically ask, "What is a barcode scanner?" The answer is simple: A barcode scanner—also known as a barcode reader— is an electronic device that decodes and physically
Recommended publications
  • Data Processing with Unit Record Equipment in Iceland
    Data Processing with Unit Record Equipment in Iceland Óttar Kjartansson (Retired) Manager of Data Processing Department at Skýrr, Iceland [email protected] Abstract. This paper presents an overview of the usage of unit record equipment and punched cards in Iceland and introduces some of the pioneers. The usage of punched cards as a media in file processing started 1949 and became the dominant machine readable media in Iceland until 1968. After that punched cards were still used as data entry media for a while but went completely out of use in 1982. Keywords: Data processing, unit record, punched card, Iceland. 1 Hagstofa Íslands Hagstofa Íslands (Statistical Bureau of Iceland) initiated the use of 80 column punched cards and unit record equipment in Iceland in the year 1949. The first ma- chinery consisted of tabulating machine of the type IBM 285 (handled numbers only), the associated key punch machines, verifiers, and a card sorter. See Figures 1 and 2. This equipment was primarily used to account for the import and export for Iceland. Skýrr (Skýrsluvélar ríkisins og Reykjavíkurborgar - The Icelandic State and Munici- pal Data Center) was established three years later by an initiative from Hagstofa Íslands, Rafmagnsveita Reykjavíkur (Reykjavík Electric Power Utility), and the Medical Director of Health of Iceland as was described in an earlier article [3]. Fig. 1. IBM 285 Electric Accounting Machine at Hagstofa Íslands year 1949 J. Impagliazzo, T. Järvi, and P. Paju (Eds.): HiNC 2, IFIP AICT 303, pp. 225–229, 2009. © IFIP International Federation for Information Processing 2009 226 Ó. Kjartansson Fig. 2. Early form of the data registration using a punched card.
    [Show full text]
  • Secondary Memory
    Secondary Memory This type of memory is also known as external memory or non-volatile. It is slower than main memory. These are used for storing data/Information permanently. CPU directly does not access these memories instead they are accessed via input-output routines. Contents of secondary memories are first transferred to main memory, and then CPU can access it. For example : Hard disk, CD-ROM, DVD etc. Electronic data is a sequence of bits. This data can either reside in : • Primary storage - main memory (RAM), relatively small, fast access, expensive (cost per MB), volatile (go away when power goes off) • Secondary storage - disks, tape, large amounts of data, slower access, cheap (cost per MB), persistent (remain even when power is off) Data storage has expanded from text and numeric files to include digital music files, photographic files, video files, and much more. These new types of files require secondary storage devices with much greater capacity than floppy disks. 1 Primary storage ( or main memory or internal memory) , often referred to simply as memory , is the only directly accessible to the CPU. Primary memory can be divided into volatile and nonvolatile memories. Primary storage (Main Memory ) has three main functions: 1-It stored all or part of the program that being executed. 2-It also holds data that are being used by the program. 3-It also stored the operating system programs that manage the operation of the computer. Limitation of Primary storage 1. Limited capacity- because the cost per bit of storage is high. 2. Volatile – data stored in it is lost when the electric power is turned off Or interrupted.
    [Show full text]
  • Computer Organization and Architecture Designing for Performance Ninth Edition
    COMPUTER ORGANIZATION AND ARCHITECTURE DESIGNING FOR PERFORMANCE NINTH EDITION William Stallings Boston Columbus Indianapolis New York San Francisco Upper Saddle River Amsterdam Cape Town Dubai London Madrid Milan Munich Paris Montréal Toronto Delhi Mexico City São Paulo Sydney Hong Kong Seoul Singapore Taipei Tokyo Editorial Director: Marcia Horton Designer: Bruce Kenselaar Executive Editor: Tracy Dunkelberger Manager, Visual Research: Karen Sanatar Associate Editor: Carole Snyder Manager, Rights and Permissions: Mike Joyce Director of Marketing: Patrice Jones Text Permission Coordinator: Jen Roach Marketing Manager: Yez Alayan Cover Art: Charles Bowman/Robert Harding Marketing Coordinator: Kathryn Ferranti Lead Media Project Manager: Daniel Sandin Marketing Assistant: Emma Snider Full-Service Project Management: Shiny Rajesh/ Director of Production: Vince O’Brien Integra Software Services Pvt. Ltd. Managing Editor: Jeff Holcomb Composition: Integra Software Services Pvt. Ltd. Production Project Manager: Kayla Smith-Tarbox Printer/Binder: Edward Brothers Production Editor: Pat Brown Cover Printer: Lehigh-Phoenix Color/Hagerstown Manufacturing Buyer: Pat Brown Text Font: Times Ten-Roman Creative Director: Jayne Conte Credits: Figure 2.14: reprinted with permission from The Computer Language Company, Inc. Figure 17.10: Buyya, Rajkumar, High-Performance Cluster Computing: Architectures and Systems, Vol I, 1st edition, ©1999. Reprinted and Electronically reproduced by permission of Pearson Education, Inc. Upper Saddle River, New Jersey, Figure 17.11: Reprinted with permission from Ethernet Alliance. Credits and acknowledgments borrowed from other sources and reproduced, with permission, in this textbook appear on the appropriate page within text. Copyright © 2013, 2010, 2006 by Pearson Education, Inc., publishing as Prentice Hall. All rights reserved. Manufactured in the United States of America.
    [Show full text]
  • CSCI 120 Introduction to Computation Bits... and Pieces (Draft)
    CSCI 120 Introduction to Computation Bits... and pieces (draft) Saad Mneimneh Visiting Professor Hunter College of CUNY 1 Yes No Yes No... I am a Bit You may recall from the previous lecture that the use of electro mechanical relays, and in subsequent years, diodes and transistor, made it possible to con- struct more advanced computers, e.g. ENIAC. This is accredited to the fact that these devices could function as on/off switches. On one hand, they create the ability to encode logic into the circuits of the computer. This means that the computer can perform different tasks under different conditions, i.e. the notion of a program. For instance, one could encode the logic if A OR B then C. On the other hand, these devices allow the engineers to worry less about the values that could possibly arise in the system: the switch is either on or off. It cannot be anything in between. Therefore, this means that any errors due to fluctuation in voltage levels are greatly reduced. It would be enough to simply distinguish between high voltage and low voltage. This brings us to the question of Analog versus Digital. In simple terms, a digital system encodes information using a number of de- vices that have discrete states (e.g. on/off switches). An analog system encodes information using a device that have continuous states (e.g. measurement in an electric circuit). To build an intuition for digital versus analog, consider the problem of en- coding a number using buckets of water. One possibility is to use two kinds of buckets, full and empty.
    [Show full text]
  • Hollerith Punched Card Code
    ANSI X3.26-1970 ' •> American National Standard Adopled tor Use by the Federal Government Hollerith punched card code FIPS PUB 14 See Nolice on Inside Front Cover 6-1970 3.2 X This standard was approved as a Federal Information Processing Standard by the Office of Management and Budget on June 16, 1971. Details concerning the use of this standard within the Federal Government are contained in FIPS PUB 14, HOLLERITH PUNCHED CARD CODE. For a complete list of the publications available in the FEDERAL INFORMATION PROCESSING STANDARDS Series, write to the Office of Technical Information and Publications, National Bureau of Standards, Washington, D.C. 20234. ANSI X3.26-1970 American National Standard Hollerith Punched Card Code American National Standard This standard is one of approximately 6000 approved as either a USA Standard or as an American Standard. It became an American National Standard in October 1969 when the Institute changed its name to American National Standards Institute, Inc. ANSI, 1430 Broadway, New York, N.Y. 10018 J Sponsor Business Equipment Manufacturers Association Approved January 19, 1970 American National Standards Institute, Inc American National Standard An American National Standard implies a consensus of those sub¬ stantially concerned with its scope and provisions. An American National Standard is intended as a guide to aid the manufacturer, the consumer, and the general public. The existence of an American National Standard does not in any respect preclude anyone, whether he has approved the standard or not, from manufacturing, marketing, purchasing, or using products, processes, or procedures not conforming to the standard. American National Standards are subject to periodic review and users are cautioned to obtain the latest editions.
    [Show full text]
  • Chapter 6 : Memory System
    Computer Organization and Architecture Chapter 6 : Memory System Chapter – 6 Memory System 6.1 Microcomputer Memory Memory is an essential component of the microcomputer system. It stores binary instructions and datum for the microcomputer. The memory is the place where the computer holds current programs and data that are in use. None technology is optimal in satisfying the memory requirements for a computer system. Computer memory exhibits perhaps the widest range of type, technology, organization, performance and cost of any feature of a computer system. The memory unit that communicates directly with the CPU is called main memory. Devices that provide backup storage are called auxiliary memory or secondary memory. 6.2 Characteristics of memory systems The memory system can be characterised with their Location, Capacity, Unit of transfer, Access method, Performance, Physical type, Physical characteristics, Organisation. Location • Processor memory: The memory like registers is included within the processor and termed as processor memory. • Internal memory: It is often termed as main memory and resides within the CPU. • External memory: It consists of peripheral storage devices such as disk and magnetic tape that are accessible to processor via i/o controllers. Capacity • Word size: Capacity is expressed in terms of words or bytes. — The natural unit of organisation • Number of words: Common word lengths are 8, 16, 32 bits etc. — or Bytes Unit of Transfer • Internal: For internal memory, the unit of transfer is equal to the number of data lines into and out of the memory module. • External: For external memory, they are transferred in block which is larger than a word.
    [Show full text]
  • Computer Hardware and Interfacing KSR
    16EC764/ Computer Hardware and Interfacing K.S.R. COLLEGE OF ENGINEERING (Autonomous) SEMESTER – VII L T P C COURSE / LESSON PLAN SCHEDULE 3 0 0 3 NAME : K.KARUPPANASAMY CLASS : IV-B.E ECE - A&B SUBJECT : 16EC764 / COMPUTER HARDWARE AND INTERFACING a) TEXT BOOKS : 1. Stephen J.Bigelow, “Troubleshooting, Maintaining & Repairing of PCs”, Tata McGraw Hill, 5th Edition, 2008. 2. B.Govindarajulu, “IBM PC and Clones hardware trouble shooting and maintenance”, Tata McGraw Hill, 12th Edition, 2008. b)REFERENCES: 1. Mike Meyers,“Introduction to PC Hardware and Troubleshooting”, Tata McGraw Hill,1st Edition,2005. 2. Craig Zacker& John Rourke, “The complete reference: PC hardware”, Tata McGraw Hill, 1st Edition, 2007. 3. D.V.Hall, “Microprocessorsand InterfacingProgrammingand Hardware”, McGraw Hill, 2nd Edition, 2006. 4. Mueller.S, “Upgrading and repairing PCS”, Pearson Education, 21th Edition, 2013. C)LEGEND: L - Lecture PPT - Power Point T - Tutorial BB - Black Board OHP - Over Head Projector pp - Pages Rx - Reference Ex - Extra Teaching Lecture S. No Aid Book No./Page No Hour Topics to be covered Required UNIT-I CPU AND MEMORY L1 CPU essentials - processor modes , T /pp429-431 1 OHP X1 modern CPU concepts TX1/pp 431-436 2 L2 Architectural performance features BB TX1/pp436-439 CPU over clocking , TX1/pp481-483, 3 L3 over clocking the system ,over clocking the Intel BB TX1/pp 483-486, processors TX1/pp 487-490 Essential memory concepts -memory 4 L4 BB T /pp 856-857 organizations X1 5 L5 memory packages & modules BB TX1/pp 857-872 6 L6 logical memory
    [Show full text]
  • Herman Hollerith and Early Mechanical/Electrical Tabulator/Sorters
    Herman Hollerith and early mechanical/electrical tabulator/sorters The US Constitution requires that the people of the U.S. be counted every ten years and that the members of the House of Representatives “be apportioned among the States according to their respective numbers”1. (The other house of Congress, the Senate, has two members from each state.) Accordingly, every ten years, a census is taken. By 1880, the census was becoming harder and harder to accomplish. Everything was done on paper. Marks were placed in squares on paper, the marked squares were counted, and of course people made many mistakes. Further, the census was used more and more not just to count people but to get useful data on age, gender, marital status, working status, and so on. There were more and more marks to make and count! Herman Hollerith: the inventor of mechanical/electrical data processing systems Herman Hollerith graduated from the Columbia University School of Mines (in New York City) in 1879 at the age of 19. He knew about the problems with the census and be- gan research into mechanizing part of the counting of the census. In 1882, he taught me- chanical engineering at MIT and conducted his first experiments with punched cards. He was extremely successful, and he soon moved to Washington D.C. and set up a company, The Hollerith Electric Tabulating System. By the middle of the 1880’s, his first punched-card system was working. His company provided the Census Office with the equipment used in processing the 1890 census —62 million punched cards were processed by his machines, cutting two years off the time to complete the census.
    [Show full text]
  • Punched Card - Wikipedia, the Free Encyclopedia Page 1 of 11
    .... _ ALL COMMUNICATIONS IN REFERENCE TO FORESTRY TO BE ADDRESSED TO THE CHIEF FORESTER VICTORIA. B.C. TIlE GO'IEIltDIEIIT Of THE P/IOVJII!;E DfBRItISH CIIJIIIIA DEPARTMENT OF LANDS FOREST BRANCH Yay 16th, 1928. H. J. Coles, Esq., Port Alberni, B.C. Please refer to File No. Management 081406 Dear Sirl- This is to advise that you passed the Licensed Scaler's Examina- tion held by Mr. A. L. Bryant a.t Vancouver, B.C., on May 2nd and 3rd, 1928. Your ~cence No. 811 is enclosed herewith. Xours truly, JM/pb • 1 Enc.l• N° 811 lHE 60VERNMIJIT OF '(f£ PROVINCe OF BRlnsH CIl.UIBIA FOREST ACT AND AMENDMENTS. ~raliug mirturt. FOREST BRANCH, LANDS DEPARTtvt~_NT. r)//) -4 ««e/<i;««<<<</tJ<<<<< < «««<<<<<<<<<<<<<<.<<. 192.K. .. W41n 1n tn (!1rrtify thatC~. /~~J.(~ff/~ -z::.~l::k~ -r1J->·r /7' £I P' . ;j residing at./!&~ L.1~~~-t.- Yi...-£" ~ ~ . ", in the Province of British Columbia, ;;.«~ ~ d-1~ ed ;22 2. / q "'r 8::. b has been examin /07 .••• =Zf'7;m .m.' mm.. .... ... m.................... /~ ..... .... ......... y •••• ««««<<<<<... - «««««< <(.,"F«<· < «. «<.««< of the Board of Examiners for Licensing alers, as provided in the "Forest Act" and amendments, and having creditably passed the said examination is hereby appointed a Licensed Scaler, and ·is duly authorized to perform the duties of a Licensed Scaler, as specified under Part VIII. of the "Forest <~:<~,.(_2.,_,;,::c,.(. «c.,"G~~< .. .. < ••• «« ••• «<•• CHAIRMAN OF BOARD OF EXAMINERS. Punched card - Wikipedia, the free encyclopedia Page 1 of 11 Punched card From Wikipedia, the free encyclopedia A punched card (or punch card or Hollerith card or IBM card) is a piece of stiff paper that contains digital information represented by the presence or absence of holes in predefined positions.
    [Show full text]
  • Onetouch 4.0 Sanned Documents
    TO: MSPM Distribution FROM: J. H. Saltzer SUBJECT: 88.3.02 DATE: 02/05/68 This revision of BB.3.02 is because 1. The ASCII standard character set has been approved. References are altered accordingly. 2. The latest proposed ASCII standard card code has been revised slightly. Since the Multics standard card code matches the ASCII standard wherever convenient# 88.3.02 is changed. Codes for the grave accent# left and right brace, and tilde are affected. 3. One misprint has been corrected; the code for capita 1 11 S" is changed. MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BB.3.02 PAGE 1 Published: 02/05/68; (Supersedes: BB.3.02; 03/30/67; BC.2.06; 11/10/66) Identification Multics standard card punch codes and Relation between ASCII and EBCDIC J • H • Sa 1 tze r Purpose This section defines standard card punch codes to be used in representing ASCII characters for use with Multics. Since the card punch codes are based on the punch codes defined for the IBM EBCDIC standard, automatically a correspondence between the EBCDIC and ASCII character sets is also defined. Note The Multics standard card punch codes described in this section are DQ! identical to the currently proposed ASCII punched card code. The proposed ASCII standard code is not supported by any currently available punched card equipment; until such support exists it is not a practical standard for Multics work. The Multics standard card punch code described here is based on widely available card handling equipment used with IBM System/360 computers. The six characters for which the Multics standard card code differs with the ASCII card code are noted in the table below.
    [Show full text]
  • BES Scientific and Facility Highlights/Accomplishments FY 1997
    Thirteen Years of Basic Energy Sciences Accomplishments Provided below are vignettes of some significant Basic Energy Sciences (BES) program accomplishments from FY 1997 through FY 2009. These brief accounts appear in the BES sections of the President’s FY 1999 through FY 2011 Budget Requests to Congress, respectively. The selected program highlights are representative of the broad range of studies supported in the BES program. Selected FY 2009 Scientific Highlights/Accomplishments Materials Sciences and Engineering Subprogram . Encoding Information at Sub-Atomic Scales. Using state-of-the-art nanoscience instruments and novel techniques, scientists have set a record for the smallest writing, forming letters with features that are one third of a billionth of a meter or 0.3 nanometers. This sub-atomic writing was achieved by using a scanning tunnelling microscope (STM) to precisely position carbon monoxide molecules into a desired pattern on a copper surface. The electrons that move around on the copper surface act as waves that interfere with the carbon monoxide molecules and with each other, forming an interference pattern that depends on the positions of the molecules. By altering the arrangement of the molecules, specific electron interference patterns are created, thereby encoding information for later retrieval. In addition, several data sets can be stored in a single molecular arrangement by using multiple electron energies, one of the variables possible with the STM. The same STM technology can then be used to read the data that has been stored. Because the information is stored in the electron interference pattern, rather than in the individual carbon monoxide molecules or surface copper atoms, the storage density is not limited by the size of an atom.
    [Show full text]
  • Random Access Memory (Ram)
    www.studymafia.org A Seminar report On RANDOM ACCESS MEMORY (RAM) Submitted in partial fulfillment of the requirement for the award of degree of Bachelor of Technology in Computer Science SUBMITTED TO: SUBMITTED BY: www.studymafia.org www.studymafia.org www.studymafia.org Acknowledgement I would like to thank respected Mr…….. and Mr. ……..for giving me such a wonderful opportunity to expand my knowledge for my own branch and giving me guidelines to present a seminar report. It helped me a lot to realize of what we study for. Secondly, I would like to thank my parents who patiently helped me as i went through my work and helped to modify and eliminate some of the irrelevant or un-necessary stuffs. Thirdly, I would like to thank my friends who helped me to make my work more organized and well-stacked till the end. Next, I would thank Microsoft for developing such a wonderful tool like MS Word. It helped my work a lot to remain error-free. Last but clearly not the least, I would thank The Almighty for giving me strength to complete my report on time. www.studymafia.org Preface I have made this report file on the topic RANDOM ACCESS MEMORY (RAM); I have tried my best to elucidate all the relevant detail to the topic to be included in the report. While in the beginning I have tried to give a general view about this topic. My efforts and wholehearted co-corporation of each and everyone has ended on a successful note. I express my sincere gratitude to …………..who assisting me throughout the preparation of this topic.
    [Show full text]