History of Digital Storage White Paper
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Design of a Drum Memory System
Scholars' Mine Masters Theses Student Theses and Dissertations 1967 The design of a drum memory system Frederick W. Lynch Follow this and additional works at: https://scholarsmine.mst.edu/masters_theses Part of the Electrical and Computer Engineering Commons Department: Recommended Citation Lynch, Frederick W., "The design of a drum memory system" (1967). Masters Theses. 5163. https://scholarsmine.mst.edu/masters_theses/5163 This thesis is brought to you by Scholars' Mine, a service of the Missouri S&T Library and Learning Resources. This work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the permission of the copyright holder. For more information, please contact [email protected]. THE DESIGN OF A DRUM MEMORY SYSTEM BY FREDERICK W. LYNCH A l'HESIS 129533 submitted to the faculty of the UNIVERSITY OF MISSOURI AT ROLLA in partial fulfillment of the requirements for the Degree of MASTER OF SCIENCE IN ELECTRICAL ENGINEERING Rolla, Missouri I"",,--;;'d I ~ 1967 rfJ·.dfl c, I ii ABSTRACT Three methods for obtaining an auxiliary memory for an SeC-6S0 (Scientific Control Corporation) digital computer are presented. A logic design is then developed on the basis of using the drum and write circuits from an available IBM-6S0 digital computer and con structing the remaining logic functions. The results of the logic design are the transfer equations necessary to implement the memory system. iii ACKNOWLEDGMENT The author wishes to express his sincere appreciation to his major professor, Dr. James Tracey, for guidance and support in the preparation of this thesis. iv TABLE OF CONTENTS Page ABSTRACT ii ACKNm>JLEDGlVIENT iii LIST OF FIGURES v LIST OF TABLES vi I. -
DRAM EMAIL GIM Teams!!!/Teaming Issues •Memories in Verilog •Memories on the FPGA
Memories & More •Overview of Memories •External Memories •SRAM (async, sync) •Flash •DRAM EMAIL GIM teams!!!/teaming Issues •Memories in Verilog •Memories on the FPGA 10/18/18 6.111 Fall 2018 1 Memories: a practical primer • The good news: huge selection of technologies • Small & faster vs. large & slower • Every year capacities go up and prices go down • Almost cost competitive with hard disks: high density, fast flash memories • Non-volatile, read/write, no moving parts! (robust, efficient) • The bad news: perennial system bottleneck • Latencies (access time) haven’t kept pace with cycle times • Separate technology from logic, so must communicate between silicon, so physical limitations (# of pins, R’s and C’s and L’s) limit bandwidths • New hopes: capacitive interconnect, 3D IC’s • Likely the limiting factor in cost & performance of many digital systems: designers spend a lot of time figuring out how to keep memories running at peak bandwidth • “It’s the memory - just add more faster memory” 10/18/18 6.111 Fall 2018 2 How do we Electrically Remember Things? • We can convey/transfer information with voltages that change over time • How can we store information in an electrically accessible manner? • Store in either: • Electric Field • Magnetic Field 10/18/18 6.111 Fall 2018 3 Mostly focus on rewritable • Punched Cards have existed as electromechanical program storage since ~1800s • We’re mostly concerned with rewritable storage mechanisms today (cards were true Computer program in punched card format ROMs) https://en.wiKipedia.org/wiKi/Computer_programming_in_the_ -
Data Processing with Unit Record Equipment in Iceland
Data Processing with Unit Record Equipment in Iceland Óttar Kjartansson (Retired) Manager of Data Processing Department at Skýrr, Iceland [email protected] Abstract. This paper presents an overview of the usage of unit record equipment and punched cards in Iceland and introduces some of the pioneers. The usage of punched cards as a media in file processing started 1949 and became the dominant machine readable media in Iceland until 1968. After that punched cards were still used as data entry media for a while but went completely out of use in 1982. Keywords: Data processing, unit record, punched card, Iceland. 1 Hagstofa Íslands Hagstofa Íslands (Statistical Bureau of Iceland) initiated the use of 80 column punched cards and unit record equipment in Iceland in the year 1949. The first ma- chinery consisted of tabulating machine of the type IBM 285 (handled numbers only), the associated key punch machines, verifiers, and a card sorter. See Figures 1 and 2. This equipment was primarily used to account for the import and export for Iceland. Skýrr (Skýrsluvélar ríkisins og Reykjavíkurborgar - The Icelandic State and Munici- pal Data Center) was established three years later by an initiative from Hagstofa Íslands, Rafmagnsveita Reykjavíkur (Reykjavík Electric Power Utility), and the Medical Director of Health of Iceland as was described in an earlier article [3]. Fig. 1. IBM 285 Electric Accounting Machine at Hagstofa Íslands year 1949 J. Impagliazzo, T. Järvi, and P. Paju (Eds.): HiNC 2, IFIP AICT 303, pp. 225–229, 2009. © IFIP International Federation for Information Processing 2009 226 Ó. Kjartansson Fig. 2. Early form of the data registration using a punched card. -
Computer Organization & Architecture Eie
COMPUTER ORGANIZATION & ARCHITECTURE EIE 411 Course Lecturer: Engr Banji Adedayo. Reg COREN. The characteristics of different computers vary considerably from category to category. Computers for data processing activities have different features than those with scientific features. Even computers configured within the same application area have variations in design. Computer architecture is the science of integrating those components to achieve a level of functionality and performance. It is logical organization or designs of the hardware that make up the computer system. The internal organization of a digital system is defined by the sequence of micro operations it performs on the data stored in its registers. The internal structure of a MICRO-PROCESSOR is called its architecture and includes the number lay out and functionality of registers, memory cell, decoders, controllers and clocks. HISTORY OF COMPUTER HARDWARE The first use of the word ‘Computer’ was recorded in 1613, referring to a person who carried out calculation or computation. A brief History: Computer as we all know 2day had its beginning with 19th century English Mathematics Professor named Chales Babage. He designed the analytical engine and it was this design that the basic frame work of the computer of today are based on. 1st Generation 1937-1946 The first electronic digital computer was built by Dr John V. Atanasoff & Berry Cliford (ABC). In 1943 an electronic computer named colossus was built for military. 1946 – The first general purpose digital computer- the Electronic Numerical Integrator and computer (ENIAC) was built. This computer weighed 30 tons and had 18,000 vacuum tubes which were used for processing. -
Hollerith Punched Card Code
ANSI X3.26-1970 ' •> American National Standard Adopled tor Use by the Federal Government Hollerith punched card code FIPS PUB 14 See Nolice on Inside Front Cover 6-1970 3.2 X This standard was approved as a Federal Information Processing Standard by the Office of Management and Budget on June 16, 1971. Details concerning the use of this standard within the Federal Government are contained in FIPS PUB 14, HOLLERITH PUNCHED CARD CODE. For a complete list of the publications available in the FEDERAL INFORMATION PROCESSING STANDARDS Series, write to the Office of Technical Information and Publications, National Bureau of Standards, Washington, D.C. 20234. ANSI X3.26-1970 American National Standard Hollerith Punched Card Code American National Standard This standard is one of approximately 6000 approved as either a USA Standard or as an American Standard. It became an American National Standard in October 1969 when the Institute changed its name to American National Standards Institute, Inc. ANSI, 1430 Broadway, New York, N.Y. 10018 J Sponsor Business Equipment Manufacturers Association Approved January 19, 1970 American National Standards Institute, Inc American National Standard An American National Standard implies a consensus of those sub¬ stantially concerned with its scope and provisions. An American National Standard is intended as a guide to aid the manufacturer, the consumer, and the general public. The existence of an American National Standard does not in any respect preclude anyone, whether he has approved the standard or not, from manufacturing, marketing, purchasing, or using products, processes, or procedures not conforming to the standard. American National Standards are subject to periodic review and users are cautioned to obtain the latest editions. -
Magnetic Storage- Magnetic-Core Memory, Magnetic Tape,RAM
Magnetic storage- From magnetic tape to HDD Juhász Levente 2016.02.24 Table of contents 1. Introduction 2. Magnetic tape 3. Magnetic-core memory 4. Bubble memory 5. Hard disk drive 6. Applications, future prospects 7. References 1. Magnetic storage - introduction Magnetic storage: Recording & storage of data on a magnetised medium A form of „non-volatile” memory Data accessed using read/write heads Widely used for computer data storage, audio and video applications, magnetic stripe cards etc. 1. Magnetic storage - introduction 2. Magnetic tape 1928 Germany: Magnetic tape for audio recording by Fritz Pfleumer • Fe2O3 coating on paper stripes, further developed by AEG & BASF 1951: UNIVAC- first use of magnetic tape for data storage • 12,7 mm Ni-plated brass-phosphorus alloy tape • 128 characters /inch data density • 7000 ch. /s writing speed 2. Magnetic tape 2. Magnetic tape 1950s: IBM : patented magnetic tape technology • 12,7 mm wide magnetic tape on a 26,7 cm reel • 370-730 m long tapes 1980: 1100 m PET –based tape • 18 cm reel for developers • 7, 9 stripe tapes (8 bit + parity) • Capacity up to 140 MB DEC –tapes for personal use 2. Magnetic tape 2014: Sony & IBM recorded 148 Gbit /squareinch tape capacity 185 TB! 2. Magnetic tape Remanent structural change in a magnetic medium Analog or digital recording (binary storage) Longitudinal or perpendicular recording Ni-Fe –alloy core in tape head 2. Magnetic tape Hysteresis in magnetic recording 40-150 kHz bias signal applied to the tape to remove its „magnetic history” and „stir” the magnetization Each recorded signal will encounter the same magnetic condition Current in tape head proportional to the signal to be recorded 2. -
Influence of U.S. Cryptologic Organizations on the Digital Computer Industry
UNCLASSIFIED Influence of U.S. Cryptologic Organizations on the Digital Computer Industry SAMUELS. SNYDER This article was originally published in two parts in the Fall 1977 and Winter 1978 issues o{Cryptologic Spectrum (Vol. 7, No. 4 and Vol. 8, No. 2). INTRODUCTION An unfortunate aspect of historical accounts of computer lore in open sources is the omission - conspicuously to some of us - of mention of the U.S. cryptologic organizations, or of the contributions by these organizations which helped in laying the foundation of the computer industry. NSA, and other cryptologic organizations, have been required over the years to observe a policy of anonymity, and with good reason. But in the age of maturing appreciation of the role of computers in nearly all civilized endeavors, it is time to acknowledge, for the first time, their outstanding contributions to the computer industry. The reader will notice the absence of remarks concerning software efforts by cryptologic organizations. While this side of their operations received its proper share of support, space restrictions preclude its inclusion in this article. Also, the Army and Navy cryptologic services have frequently changed organizational titles throughout the years. Therefore, to avoid confusion in this article, they are, previous to 1945, referred to as "Army," "Navy," "service cryptologic organizations," and the like. Too, NSA's predecessor organization, AFSA, was established in 1949, and NSA in 1952. Consequently, references to "NSA" and "Agency" are, on occasion, used interchangeably, the particular agency referred to depending upon the time period being discussed. EARLY DEVELOPMENTS The development of the U.S. computer industry might have been delayed for years ifit had not been for the stimulus and financial support of the U.S. -
Computer Peripheral Memory System Forecast
OF NBS H^^LK,!,, STAND S. TECH PUBLICATIONS | COMPUTER SUici^CZ^i TECHNOLOGY: COMPUTER PERIPHERAL MEMORY SYSTEM FORECAST QC 100 U57 NBS Special Publication 500-45 #500-45 U.S. DEPARTMENT OF COMMERCE 1979 National Bureau of Standards NATIONAL BUREAU OF STANDARDS The National Bureau of Standards' was established by an act of Congress March 3, 1901 . The Bureau's overall goal is to strengthen and advance the Nation's science and technology and facilitate their effective application for public benefit. To this end, the Bureau conducts research and provides: (1) a basis for the Nation's physical measurement system, (2) scientific and technological services for industry and government, (3) a technical basis for equity in trade, and (4) technical services to promote public safety. The Bureau's technical work is performed by the National Measurement Laboratory, the National Engineering Laboratory, and the Institute for Computer Sciences and Technology. THE NATIONAL MEASUREMENT LABORATORY provides the national system of physical and chemical and materials measurement; coordinates the system with measurement systems of other nations and furnishes essential services leading to accurate and uniform physical and chemical measurement throughout the Nation's scientific community, industry, and commerce; conducts materials research leading to improved methods of measurement, standards, and data on the properties of materials needed by industry, commerce, educational institutions, and Government; provides advisory and research services to other Government Agencies; develops, produces, and distributes Standard Reference Materials; and provides calibration services. The Laboratory consists of the following centers: Absolute Physical Quantities^ — Radiation Research — Thermodynamics and Molecular Science — Analytical Chemistry — Materials Science. -
Herman Hollerith and Early Mechanical/Electrical Tabulator/Sorters
Herman Hollerith and early mechanical/electrical tabulator/sorters The US Constitution requires that the people of the U.S. be counted every ten years and that the members of the House of Representatives “be apportioned among the States according to their respective numbers”1. (The other house of Congress, the Senate, has two members from each state.) Accordingly, every ten years, a census is taken. By 1880, the census was becoming harder and harder to accomplish. Everything was done on paper. Marks were placed in squares on paper, the marked squares were counted, and of course people made many mistakes. Further, the census was used more and more not just to count people but to get useful data on age, gender, marital status, working status, and so on. There were more and more marks to make and count! Herman Hollerith: the inventor of mechanical/electrical data processing systems Herman Hollerith graduated from the Columbia University School of Mines (in New York City) in 1879 at the age of 19. He knew about the problems with the census and be- gan research into mechanizing part of the counting of the census. In 1882, he taught me- chanical engineering at MIT and conducted his first experiments with punched cards. He was extremely successful, and he soon moved to Washington D.C. and set up a company, The Hollerith Electric Tabulating System. By the middle of the 1880’s, his first punched-card system was working. His company provided the Census Office with the equipment used in processing the 1890 census —62 million punched cards were processed by his machines, cutting two years off the time to complete the census. -
Punched Card - Wikipedia, the Free Encyclopedia Page 1 of 11
.... _ ALL COMMUNICATIONS IN REFERENCE TO FORESTRY TO BE ADDRESSED TO THE CHIEF FORESTER VICTORIA. B.C. TIlE GO'IEIltDIEIIT Of THE P/IOVJII!;E DfBRItISH CIIJIIIIA DEPARTMENT OF LANDS FOREST BRANCH Yay 16th, 1928. H. J. Coles, Esq., Port Alberni, B.C. Please refer to File No. Management 081406 Dear Sirl- This is to advise that you passed the Licensed Scaler's Examina- tion held by Mr. A. L. Bryant a.t Vancouver, B.C., on May 2nd and 3rd, 1928. Your ~cence No. 811 is enclosed herewith. Xours truly, JM/pb • 1 Enc.l• N° 811 lHE 60VERNMIJIT OF '(f£ PROVINCe OF BRlnsH CIl.UIBIA FOREST ACT AND AMENDMENTS. ~raliug mirturt. FOREST BRANCH, LANDS DEPARTtvt~_NT. r)//) -4 ««e/<i;««<<<</tJ<<<<< < «««<<<<<<<<<<<<<<.<<. 192.K. .. W41n 1n tn (!1rrtify thatC~. /~~J.(~ff/~ -z::.~l::k~ -r1J->·r /7' £I P' . ;j residing at./!&~ L.1~~~-t.- Yi...-£" ~ ~ . ", in the Province of British Columbia, ;;.«~ ~ d-1~ ed ;22 2. / q "'r 8::. b has been examin /07 .••• =Zf'7;m .m.' mm.. .... ... m.................... /~ ..... .... ......... y •••• ««««<<<<<... - «««««< <(.,"F«<· < «. «<.««< of the Board of Examiners for Licensing alers, as provided in the "Forest Act" and amendments, and having creditably passed the said examination is hereby appointed a Licensed Scaler, and ·is duly authorized to perform the duties of a Licensed Scaler, as specified under Part VIII. of the "Forest <~:<~,.(_2.,_,;,::c,.(. «c.,"G~~< .. .. < ••• «« ••• «<•• CHAIRMAN OF BOARD OF EXAMINERS. Punched card - Wikipedia, the free encyclopedia Page 1 of 11 Punched card From Wikipedia, the free encyclopedia A punched card (or punch card or Hollerith card or IBM card) is a piece of stiff paper that contains digital information represented by the presence or absence of holes in predefined positions. -
Onetouch 4.0 Sanned Documents
TO: MSPM Distribution FROM: J. H. Saltzer SUBJECT: 88.3.02 DATE: 02/05/68 This revision of BB.3.02 is because 1. The ASCII standard character set has been approved. References are altered accordingly. 2. The latest proposed ASCII standard card code has been revised slightly. Since the Multics standard card code matches the ASCII standard wherever convenient# 88.3.02 is changed. Codes for the grave accent# left and right brace, and tilde are affected. 3. One misprint has been corrected; the code for capita 1 11 S" is changed. MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BB.3.02 PAGE 1 Published: 02/05/68; (Supersedes: BB.3.02; 03/30/67; BC.2.06; 11/10/66) Identification Multics standard card punch codes and Relation between ASCII and EBCDIC J • H • Sa 1 tze r Purpose This section defines standard card punch codes to be used in representing ASCII characters for use with Multics. Since the card punch codes are based on the punch codes defined for the IBM EBCDIC standard, automatically a correspondence between the EBCDIC and ASCII character sets is also defined. Note The Multics standard card punch codes described in this section are DQ! identical to the currently proposed ASCII punched card code. The proposed ASCII standard code is not supported by any currently available punched card equipment; until such support exists it is not a practical standard for Multics work. The Multics standard card punch code described here is based on widely available card handling equipment used with IBM System/360 computers. The six characters for which the Multics standard card code differs with the ASCII card code are noted in the table below. -
Memory Krste Asanovic [email protected]
CS252 Graduate Computer Architecture Fall 2015 Lecture 11: Memory Krste Asanovic [email protected] http://inst.eecs.berkeley.edu/~cs252/fa15 CS252, Fall 2015, Lecture 11 © Krste Asanovic, 2015 Last Time in Lecture 10 VLIW Machines § Compiler-controlled stac scheduling § Loop unrolling § SoEware pipelining § Trace scheduling § Rotang register file § Predicaon § Limits of stac scheduling CS252, Fall 2015, Lecture 11 © Krste Asanovic, 2015 2 Early Read-Only Memory Technologies Punched cards, From early 1700s through Jaquard Loom, Punched paper tape, Babbage, and then IBM instrucCon stream in Harvard Mk 1 Diode Matrix, EDSAC-2 µcode store IBM Balanced Capacitor ROS IBM Card Capacitor ROS CS252, Fall 2015, Lecture 11 © Krste Asanovic, 2015 3 Early Read/Write Main Memory Technologies Babbage, 1800s: Digits stored on mechanical wheels Williams Tube, Manchester Mark 1, 1947 Mercury Delay Line, Univac 1, 1951 Also, regenerave capacitor memory on Atanasoff-Berry computer, and rotang magneCc drum memory on IBM 650 CS252, Fall 2015, Lecture 11 © Krste Asanovic, 2015 4 MIT Whirlwind Core Memory CS252, Fall 2015, Lecture 11 © Krste Asanovic, 2015 5 Core Memory § Core memory was first large scale reliable main memory - invented by Forrester in late 40s/early 50s at MIT for Whirlwind project § Bits stored as magneCzaon polarity on small ferrite cores threaded onto two-dimensional grid of wires § Coincident current pulses on X and Y wires would write cell and also sense original state (destrucCve reads) § Robust, non-volale storage § Used on space shugle computers § Cores threaded onto wires by hand (25 billion a year at peak producCon) § Core access Cme ~ 1µs DEC PDP-8/E Board, 4K words x 12 bits, (1968) CS252, Fall 2015, Lecture 11 © Krste Asanovic, 2015 6 Semiconductor Memory § Semiconductor memory began to be compeCCve in early 1970s - Intel formed to exploit market for semiconductor memory - Early semiconductor memory was Stac RAM (SRAM).