Enzyme Engineering for Intensified Processes for the Production of Rare Monosaccharides

Total Page:16

File Type:pdf, Size:1020Kb

Enzyme Engineering for Intensified Processes for the Production of Rare Monosaccharides Research Collection Doctoral Thesis Enzyme engineering for intensified processes for the production of rare monosaccharides Author(s): Bosshart, Andreas Publication Date: 2014 Permanent Link: https://doi.org/10.3929/ethz-a-010252699 Rights / License: In Copyright - Non-Commercial Use Permitted This page was generated automatically upon download from the ETH Zurich Research Collection. For more information please consult the Terms of use. ETH Library DISS. ETH NO 22128 Enzyme engineering for intensified processes for the production of rare monosaccharides A thesis submitted to attain the degree of DOCTOR OF SCIENCES of ETH ZURICH (Dr. sc. ETH Zurich) presented by Andreas Bosshart Master of Science UZH in Biochemistry, University of Zurich born on 29.11.1982 citizen of Fischingen (TG), Switzerland accepted on the recommendation of Prof. Dr. Sven Panke (ETH Zurich, Switzerland), examiner Prof. Dr. Andreas Plückthun (University of Zurich, Switzerland), co-examiner Prof. Dr. Sai Reddy (ETH Zurich, Switzerland), co-examiner 2014 ABSTRACT With the current trend in chemical industry towards more sustainable processes that produce less waste and are less energy-intensive, enzyme-catalyzed reactions are gaining increasing interest due to their striking selectivity and specificity and their ability to operate at ambient conditions (neutral pH, aqueous solution, moderate temperatures). However, biocatalysts considered for industrial application need to provide high reaction rates (i.e., a high specific activity) and operational stability in order to be competitive in economic terms. In order to overcome limitations in such properties, enzyme engineering procedures like directed evolution or rational design have been successfully applied for a wide range of enzymes. This thesis describes the development of a D-tagatose epimerase from Pseudomonas cichorii (PcDTE) into an industrially suitable biocatalyst by directed evolution. D-Tagatose epimerase is arguably the central enzyme in the synthesis of a wide range of rare monosaccharides, carbohydrates that are not available in large amounts from natural resources, but have recently attracted great interest as low-calorie sweetener, chiral building blocks, or active pharmaceutical ingredients. They can be synthesized via simple isomerization or epimerization reactions from readily available bulk sugars as e.g. D-glucose, D-fructose or D-galactose, but these reactions suffer from an unfavorable position of the thermodynamic equilibrium, limiting the yield and making these reactions economically unfeasible. Integration of enzyme- catalyzed reaction and separation of product and reactant, e.g. by continuous chromatography, into one continuous process can offer a highly attractive solution to overcome this limitation. Such an integrated process, however, demands high standards of the biocatalyst in terms of stability, selectivity and specific activity in order to enable an economic process. Thermostability is one of the most frequent limitations in the application of biocatalysts for the synthesis of fine and bulk chemicals, especially at elevated temperatures which are often required in sugar-processing plants to avoid microbial contaminations, to reduce the viscosity and to increase the reaction rate. Systematic screening of the subunit-subunit interface of dimeric PcDTE in a medium-throughput in vitro assay format revealed several mutations that increased the thermostability of PcDTE. Combination of all 9 beneficial sites by iterative saturation mutagenesis (ISM) resulted in variant PcDTE Var8 that had an increase in temperature stability of 21.4°C over wild-type. This variant showed no significant loss in D-fructose conversion over 4 days in a long-term experiment at 50°C, while conversion catalyzed by the WT decreased by 40% in the same time. Next, this variant was taken as basis for improving the specific activity of the enzyme for the reactions D-fructose/D-psicose and L-sorbose/L-tagatose. Saturation mutagenesis of 20 individual residues in the first sphere and 28 residues in the second sphere around the active site revealed 8 mutations that increased activity towards D-fructose in variant IDF8 and 6 mutations that did so for L-sorbose in variant ILS6. IDF8 exhibited an increased specific activity I for D-fructose of 8.6-fold and ILS6 showed a 13.5-fold higher catalytic rate for L-sorbose. The crystal structures of PcDTE Var8, IDF8 and ILS6 in presence of the respective substrates indicated that modifications of the entrance tunnel afforded an increased catalytic rate for IDF8 whereas the increase for ILS6 rather derived from differences in the hydrogen bonding network to substrate and product. The operational performance of further developed variant of IDF8, IDF10-3, was determined in an enzyme-membrane reactor at different temperatures in presence of the respective substrate and confirmed that these final variants exhibited an up to 40-fold higher total turnover numbers compared to WT PcDTE. Finally, to reduce the screening effort for the directed evolution of PcDTE, a growth-based selection system was developed that was expected to facilitate the discovery of variants with improved specific activity significantly. Therefore, a de novo metabolic pathway from D-allose via D-psicose and D-fructose to fructose 6-phosphate was established by introduction of the enzymes L-rhamnose isomerase, D-tagatose epimerase and fructokinase. Additionally, five genes or complete operons of the E. coli host were deleted that were found to interfere with the proposed metabolic pathway. Growth of the assembled selection system on D-allose as sole carbon source could demonstrate the principle feasibility of the approach, but consistent failures of the selections suggest that either a pathway intermediate had a toxic effect on the selection host or that the catalytic activity of one of the pathway enzymes had too low activity to effectively satisfy the flux requirement for growth on D-allose. II ZUSAMMENFASSUNG Der Fokus der chemischen Industrie liegt zunehmend auf neuen Prozessen, die weniger Abfall produzieren, weniger Energie verbrauchen und weniger gefährliche oder giftige Lösungsmittel benötigen. Enzym-katalysierte Reaktionen können hier einen entscheidenden Beitrag leisten, sowohl wegen ihrer erstaunlichen Spezifität und Selektivität, als auch wegen ihrer Fähigkeit, Reaktionen in wässriger Lösung, bei beinahe neutralem pH und moderaten Temperaturen zu katalysieren. Um sowohl prozesstechnischen als auch ökonomischen Ansprüchen zu genügen, muss ein Biokatalysator jedoch bestimmte Anforderungen erfüllen, wie beispielsweise eine seht gute spezifische Aktivität und Selektivität, als auch genügend Prozessstabilität gewährleisten. Durch Protein-Engineering lassen sich praktisch alle dieser Parameter an die Prozessbedürfnisse anpassen. In dieser Arbeit wird die Entwicklung einer D-Tagatoseepimerase vom Bakterium Pseudomonas cichorii (PcDTE) behandelt, die durch gerichtete Evolution zu einem Biokatalysator verändert wurde, der prozessbedingte Anforderungen erfüllen kann. D-Tagatoseepimerase ist das zentrale Enzym in der Synthese von seltenen Zuckern, die in letzter Zeit grosses Interesse geweckt haben durch ihre potentielle Rolle als kalorienarme Süssstoffe, als chirale Bausteine für die Synthese von Arzneistoffen oder direkt als pharmazeutisch aktive Stoffe. Diese seltenen Zucker kommen in der Natur nur in Spuren vor, lassen sich aber durch einfache enzymatische Isomerisierungsreaktionen aus günstig verfügbaren Zuckern wie D-Glukose, D-Fruktose oder D-Galaktose herstellen. Das Hauptproblem bei der Synthese dieser Stoffe durch enzymatische Katalyse ist das thermodynamische Gleichgewicht der Iso- oder Epimerisierungsreaktionen, was dazu führt, dass die Reaktionen unvollständig ablaufen und somit nur eine relativ geringe Ausbeute ermöglichen. Durch eine Integration der enzymatischen Reaktion mit einer direkt anschliessenden Trennung des Produkts von Ausgangs- und Zwischenprodukten und einem Recycling des Ausgangsstoffs zurück in die Reaktion, lässt sich dieses Hindernis jedoch effektiv überwinden. Andererseits stellt eine solche Integration hohe Anforderungen an den Biokatalysator bezüglich Selektivität, spezifische Aktivität und vor allem Thermostabilität, die indirekt – als Stellvertreter für Prozessstabilität allgemein – und in diesem Fall auch direkt (siehe unten) von Bedeutung ist. Ungenügende Prozess- und/oder Thermostabilität ist eine der häufigsten Limitationen bei der Anwendung von Biokatalysatoren in der Synthese von Fein- und Massenchemikalien. Oftmals werden erhöhte Temperaturen benötigt, speziell in der Zuckerindustrie, um Kontaminationen durch Mikroorganismen zu verhindern, die Viskosität der Zuckerlösung zu reduzieren oder um die Reaktionsrate zu erhöhen. Das Wildtypenzym PcDTE zeigte eine ungenügende Stabilität bei solchen Bedingungen. Eine systematische Durchmusterung der Kontaktflächen der beiden Untereinheiten des dimeren Enzyms PcDTE förderte mehrere Mutationen zutage, die eine erhöhte Thermostabilität des Enzyms bewirkten, vermutlich indem sie die Trennung der III Untereinheiten als den die Enzyminaktivierung einleitenden Schritt hinauszögern. Die Kombination von optimalen Mutationen in allen neun identifizierten Positionen durch iterative 20 Sättigungsmutagenese resultierte in einer finalen Variante namens PcDTE Var8, die einen T50 - Wert (die Temperatur, bei der nach einer Inkubation von 20 min nur noch 50% der ursprünglichen Aktivität gemessen werden kann) von 87°C erreichte, was einem
Recommended publications
  • Comparison of Strand-Specific Transcriptomes Of
    Landstorfer et al. BMC Genomics 2014, 15:353 http://www.biomedcentral.com/1471-2164/15/353 RESEARCH ARTICLE Open Access Comparison of strand-specific transcriptomes of enterohemorrhagic Escherichia coli O157:H7 EDL933 (EHEC) under eleven different environmental conditions including radish sprouts and cattle feces Richard Landstorfer1, Svenja Simon2, Steffen Schober3, Daniel Keim2, Siegfried Scherer1 and Klaus Neuhaus1* Abstract Background: Multiple infection sources for enterohemorrhagic Escherichia coli O157:H7 (EHEC) are known, including animal products, fruit and vegetables. The ecology of this pathogen outside its human host is largely unknown and one third of its annotated genes are still hypothetical. To identify genetic determinants expressed under a variety of environmental factors, we applied strand-specific RNA-sequencing, comparing the SOLiD and Illumina systems. Results: Transcriptomes of EHEC were sequenced under 11 different biotic and abiotic conditions: LB medium at pH4, pH7, pH9, or at 15°C; LB with nitrite or trimethoprim-sulfamethoxazole; LB-agar surface, M9 minimal medium, spinach leaf juice, surface of living radish sprouts, and cattle feces. Of 5379 annotated genes in strain EDL933 (genome and plasmid), a surprising minority of only 144 had null sequencing reads under all conditions. We therefore developed a statistical method to distinguish weakly transcribed genes from background transcription. We find that 96% of all genes and 91.5% of the hypothetical genes exhibit a significant transcriptional signal under at least one condition. Comparing SOLiD and Illumina systems, we find a high correlation between both approaches for fold-changes of the induced or repressed genes. The pathogenicity island LEE showed highest transcriptional activity in LB medium, minimal medium, and after treatment with antibiotics.
    [Show full text]
  • Preclinical Evaluation of Protein Disulfide Isomerase Inhibitors for the Treatment of Glioblastoma by Andrea Shergalis
    Preclinical Evaluation of Protein Disulfide Isomerase Inhibitors for the Treatment of Glioblastoma By Andrea Shergalis A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Medicinal Chemistry) in the University of Michigan 2020 Doctoral Committee: Professor Nouri Neamati, Chair Professor George A. Garcia Professor Peter J. H. Scott Professor Shaomeng Wang Andrea G. Shergalis [email protected] ORCID 0000-0002-1155-1583 © Andrea Shergalis 2020 All Rights Reserved ACKNOWLEDGEMENTS So many people have been involved in bringing this project to life and making this dissertation possible. First, I want to thank my advisor, Prof. Nouri Neamati, for his guidance, encouragement, and patience. Prof. Neamati instilled an enthusiasm in me for science and drug discovery, while allowing me the space to independently explore complex biochemical problems, and I am grateful for his kind and patient mentorship. I also thank my committee members, Profs. George Garcia, Peter Scott, and Shaomeng Wang, for their patience, guidance, and support throughout my graduate career. I am thankful to them for taking time to meet with me and have thoughtful conversations about medicinal chemistry and science in general. From the Neamati lab, I would like to thank so many. First and foremost, I have to thank Shuzo Tamara for being an incredible, kind, and patient teacher and mentor. Shuzo is one of the hardest workers I know. In addition to a strong work ethic, he taught me pretty much everything I know and laid the foundation for the article published as Chapter 3 of this dissertation. The work published in this dissertation really began with the initial identification of PDI as a target by Shili Xu, and I am grateful for his advice and guidance (from afar!).
    [Show full text]
  • Enzymatic Synthesis of L-Fucose from L-Fuculose Using a Fucose Isomerase
    Kim et al. Biotechnol Biofuels (2019) 12:282 https://doi.org/10.1186/s13068-019-1619-0 Biotechnology for Biofuels RESEARCH Open Access Enzymatic synthesis of L-fucose from L-fuculose using a fucose isomerase from Raoultella sp. and the biochemical and structural analyses of the enzyme In Jung Kim1†, Do Hyoung Kim1†, Ki Hyun Nam1,2 and Kyoung Heon Kim1* Abstract Background: L-Fucose is a rare sugar with potential uses in the pharmaceutical, cosmetic, and food industries. The enzymatic approach using L-fucose isomerase, which interconverts L-fucose and L-fuculose, can be an efcient way of producing L-fucose for industrial applications. Here, we performed biochemical and structural analyses of L-fucose isomerase identifed from a novel species of Raoultella (RdFucI). Results: RdFucI exhibited higher enzymatic activity for L-fuculose than for L-fucose, and the rate for the reverse reaction of converting L-fuculose to L-fucose was higher than that for the forward reaction of converting L-fucose to L-fuculose. In the equilibrium mixture, a much higher proportion of L-fucose (~ ninefold) was achieved at 30 °C and pH 7, indicating that the enzyme-catalyzed reaction favors the formation of L-fucose from L-fuculose. When biochemical analysis was conducted using L-fuculose as the substrate, the optimal conditions for RdFucI activity were determined to be 40 °C and pH 10. However, the equilibrium composition was not afected by reaction temperature in the range 2 of 30 to 50 °C. Furthermore, RdFucI was found to be a metalloenzyme requiring Mn + as a cofactor. The comparative crystal structural analysis of RdFucI revealed the distinct conformation of α7–α8 loop of RdFucI.
    [Show full text]
  • Table 6. Putative Genes Involved in the Utilization of Carbohydrates in G
    Table 6. Putative genes involved in the utilization of carbohydrates in G. thermodenitrificans NG80-2 genome Carbohydrates* Enzymes Gene ID Glycerol Glycerol Kinase GT1216 Glycerol-3-phosphate dehydrogenase, aerobic GT2089 NAD(P)H-dependent glycerol-3-phosphate dehydrogenase GT2153 Enolase GT3003 2,3-bisphosphoglycerate-independentphosphoglycerate mutase GT3004 Triosephosphate isomerase GT3005 3-phosphoglycerate kinase GT3006 Glyceraldehyde-3-phosphate dehydrogenase GT3007 Phosphoglycerate mutase GT1326 Pyruvate kinase GT2663 L-Arabinose L-arabinose isomerase GT1795 L-ribulokinase GT1796 L-ribulose 5-phosphate 4-epimerase GT1797 D-Ribose Ribokinase GT3174 Transketolase GT1187 Ribose 5-phosphate epimerase GT3316 D-Xylose Xylose kinase GT1756 Xylose isomerase GT1757 D-Galactose Galactokinase GT2086 Galactose-1-phosphate uridyltransferase GT2084 UDP-glucose 4-epimerase GT2085 Carbohydrates* Enzymes Gene ID D-Fructose 1-phosphofructokinase GT1727 Fructose-1,6-bisphosphate aldolase GT1805 Fructose-1,6-bisphosphate aldolase type II GT3331 Triosephosphate isomerase GT3005 D-Mannose Mannnose-6 phospate isomelase GT3398 6-phospho-1-fructokinase GT2664 D-Mannitol Mannitol-1-phosphate dehydrogenase GT1844 N-Acetylglucosamine N-acetylglucosamine-6-phosphate deacetylase GT2205 N-acetylglucosamine-6-phosphate isomerase GT2204 D-Maltose Alpha-1,4-glucosidase GT0528, GT1643 Sucrose Sucrose phosphorylase GT3215 D-Trehalose Alpha-glucosidase GT1643 Glucose kinase GT2381 Inositol Myo-inositol catabolism protein iolC;5-dehydro-2- GT1807 deoxygluconokinase
    [Show full text]
  • SUPPY Liglucosexlmtdh
    US 20100314248A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2010/0314248 A1 Worden et al. (43) Pub. Date: Dec. 16, 2010 (54) RENEWABLE BOELECTRONIC INTERFACE Publication Classification FOR ELECTROBOCATALYTC REACTOR (51) Int. Cl. (76) Inventors: Robert M. Worden, Holt, MI (US); C25B II/06 (2006.01) Brian L. Hassler, Lake Orion, MI C25B II/2 (2006.01) (US); Lawrence T. Drzal, Okemos, GOIN 27/327 (2006.01) MI (US); Ilsoon Lee, Okemo s, MI BSD L/04 (2006.01) (US) C25B 9/00 (2006.01) (52) U.S. Cl. ............... 204/403.14; 204/290.11; 204/400; Correspondence Address: 204/290.07; 427/458; 204/252: 977/734; PRICE HENEVELD COOPER DEWITT & LIT 977/742 TON, LLP 695 KENMOOR, S.E., PO BOX 2567 (57) ABSTRACT GRAND RAPIDS, MI 495.01 (US) An inexpensive, easily renewable bioelectronic device useful for bioreactors, biosensors, and biofuel cells includes an elec (21) Appl. No.: 12/766,169 trically conductive carbon electrode and a bioelectronic inter face bonded to a surface of the electrically conductive carbon (22) Filed: Apr. 23, 2010 electrode, wherein the bioelectronic interface includes cata lytically active material that is electrostatically bound directly Related U.S. Application Data or indirectly to the electrically conductive carbon electrode to (60) Provisional application No. 61/172,337, filed on Apr. facilitate easy removal upon a change in pH, thereby allowing 24, 2009. easy regeneration of the bioelectronic interface. 7\ POWER 1 - SUPPY|- LIGLUCOSEXLMtDH?till pi 6.0 - esses&aaaas-exx-xx-xx-xx-xxxxixax-e- Patent Application Publication Dec. 16, 2010 Sheet 1 of 18 US 2010/0314248 A1 Potential (nV) Patent Application Publication Dec.
    [Show full text]
  • WO 2014/207087 Al 31 December 2014 (31.12.2014) P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2014/207087 Al 31 December 2014 (31.12.2014) P O P C T (51) International Patent Classification: Seville (ES). GUTIERREZ GOMEZ, Pablo; Campus C12N 9/00 (2006.01) C12N 9/90 (2006.01) Palmas Altas, Calle Energia Solar 1, E-41014 Seville (ES). C12N 9/02 (2006.01) C12P 5/02 (2006.01) (74) Agent: NEDERLANDSCH OCTROOIBUREAU; J.W. C12N 9/10 (2006.01) C12P 7/76 (2006.01) Frisolaan 13, NL-2517 JS The Hague (NL). C12N 9/12 (2006.01) C12P 7/64 (2006.01) C12N 9/88 (2006.01) C12N 1/1 9 (2006.01) (81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, (21) International Application Number: AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, PCT/EP2014/063484 BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, (22) International Filing Date: DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, 26 June 2014 (26.06.2014) HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, (25) Filing Language: English MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, (26) Publication Language: English OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, (30) Priority Data: TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, 13382241 .1 26 June 2013 (26.06.2013) EP ZW.
    [Show full text]
  • Of Candida Bombicola
    Aerodynamically, the bumble bee shouldn't be able to fly, but the bumble bee doesn't know it so it goes on flying anyway. Mary Kay Ash Jury: Prof. Dr. ir. Norbert DE KIMPE Prof. Dr. ir. Nico BOON Lic. Dirk DEVELTER Prof. Dr. ir. Monica HÖFTE Prof. Dr. Andreas SCHMID Prof. Dr. Els VAN DAMME Prof. Dr. ir. Wim SOETAERT Prof. Dr. ir. Erick VANDAMME Promotors: Prof . Dr. ir. Erick VANDAMME Prof. Dr. ir. Wim SOETAERT Laboratory of Industrial Microbiology and Biocatalysis Department of Biochemical and Microbial Technology Ghent University Dean: Prof. Dr. ir. Herman VAN LANGENHOVE Rector: Prof. Dr. Paul VAN CAUWENBERGE Ir. Inge Van Bogaert was supported by Ecover Belgium NV (Malle, Belgium) and a fellowship of the Bijzonder Onderzoekfonds of Ghent University (BOF). The research was conducted at the Laboratory of Industrial Microbiology and Biocatalysis, Department of Biochemical and Microbial Technology, Ghent University. ir. Inge Van Bogaert MICROBIAL SYNTHESIS OF SOPHOROLIPIDS BY THE YEAST CANDIDA BOMBICOLA Thesis submitted in fulfillment of the requirements for the degree of Doctor (PhD) in Applied Biological Sciences Titel van het doctoraatsproefschrift in het Nederlands: Microbiële synthese van sopohorolipiden door de gist Candida bombicola Cover illustration: Cadzand on a stormy day by Inge Van Bogaert Refer to this thesis: Van Bogaert INA (2008) Microbial synthesis of sophorolipids by the yeast Candida bombicola. PhD-thesis, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium, 239 p. ISBN-number: ISBN 978-90-5989-243-9 The author and the promotor give the authorisation to consult and to copy parts of this work for personal use only.
    [Show full text]
  • Supplementary Informations SI2. Supplementary Table 1
    Supplementary Informations SI2. Supplementary Table 1. M9, soil, and rhizosphere media composition. LB in Compound Name Exchange Reaction LB in soil LBin M9 rhizosphere H2O EX_cpd00001_e0 -15 -15 -10 O2 EX_cpd00007_e0 -15 -15 -10 Phosphate EX_cpd00009_e0 -15 -15 -10 CO2 EX_cpd00011_e0 -15 -15 0 Ammonia EX_cpd00013_e0 -7.5 -7.5 -10 L-glutamate EX_cpd00023_e0 0 -0.0283302 0 D-glucose EX_cpd00027_e0 -0.61972444 -0.04098397 0 Mn2 EX_cpd00030_e0 -15 -15 -10 Glycine EX_cpd00033_e0 -0.0068175 -0.00693094 0 Zn2 EX_cpd00034_e0 -15 -15 -10 L-alanine EX_cpd00035_e0 -0.02780553 -0.00823049 0 Succinate EX_cpd00036_e0 -0.0056245 -0.12240603 0 L-lysine EX_cpd00039_e0 0 -10 0 L-aspartate EX_cpd00041_e0 0 -0.03205557 0 Sulfate EX_cpd00048_e0 -15 -15 -10 L-arginine EX_cpd00051_e0 -0.0068175 -0.00948672 0 L-serine EX_cpd00054_e0 0 -0.01004986 0 Cu2+ EX_cpd00058_e0 -15 -15 -10 Ca2+ EX_cpd00063_e0 -15 -100 -10 L-ornithine EX_cpd00064_e0 -0.0068175 -0.00831712 0 H+ EX_cpd00067_e0 -15 -15 -10 L-tyrosine EX_cpd00069_e0 -0.0068175 -0.00233919 0 Sucrose EX_cpd00076_e0 0 -0.02049199 0 L-cysteine EX_cpd00084_e0 -0.0068175 0 0 Cl- EX_cpd00099_e0 -15 -15 -10 Glycerol EX_cpd00100_e0 0 0 -10 Biotin EX_cpd00104_e0 -15 -15 0 D-ribose EX_cpd00105_e0 -0.01862144 0 0 L-leucine EX_cpd00107_e0 -0.03596182 -0.00303228 0 D-galactose EX_cpd00108_e0 -0.25290619 -0.18317325 0 L-histidine EX_cpd00119_e0 -0.0068175 -0.00506825 0 L-proline EX_cpd00129_e0 -0.01102953 0 0 L-malate EX_cpd00130_e0 -0.03649016 -0.79413596 0 D-mannose EX_cpd00138_e0 -0.2540567 -0.05436649 0 Co2 EX_cpd00149_e0
    [Show full text]
  • Characterization of Ribose-5-Phosphate Isomerase B from Newly Isolated Strain Ochrobactrum Sp
    J. Microbiol. Biotechnol. (2018), 28(7), 1122–1132 https://doi.org/10.4014/jmb.1802.02021 Research Article Review jmb Characterization of Ribose-5-Phosphate Isomerase B from Newly Isolated Strain Ochrobactrum sp. CSL1 Producing L-Rhamnulose from L-Rhamnose Min Shen1†, Xin Ju1†, Xinqi Xu2, Xuemei Yao1, Liangzhi Li1*, Jiajia Chen1, Cuiying Hu1, Jiaolong Fu1, and Lishi Yan1 1School of Chemistry, Biology, and Material Engineering, Suzhou University of Science and Technology, Suzhou 215009, P.R. China 2Fujian Key Laboratory of Marine Enzyme Engineering, Fuzhou University, Fujian 350116, P.R. China Received: February 14, 2018 Revised: April 12, 2018 In this study, we attempted to find new and efficient microbial enzymes for producing rare Accepted: April 13, 2018 sugars. A ribose-5-phosphate isomerase B (OsRpiB) was cloned, overexpressed, and First published online preliminarily purified successfully from a newly screened Ochrobactrum sp. CSL1, which could May 8, 2018 catalyze the isomerization reaction of rare sugars. A study of its substrate specificity showed *Corresponding author that the cloned isomerase (OsRpiB) could effectively catalyze the conversion of L-rhamnose to Phone: +86-512-68056493; L-rhamnulose, which was unconventional for RpiB. The optimal reaction conditions (50oC, Fax: +86-512-68418431; 2+ E-mail: [email protected] pH 8.0, and 1 mM Ca ) were obtained to maximize the potential of OsRpiB in preparing L-rhamnulose. The catalytic properties of OsRpiB, including Km, kcat, and catalytic efficiency † These authors contributed (k /K ), were determined as 43.47 mM, 129.4 sec-1, and 2.98 mM/sec. The highest conversion equally to this work.
    [Show full text]
  • GLUCOSE ISOMERASE from an ARTHROBACTER SPECIES By
    GLUCOSE ISOMERASE FROM AN ARTHROBACTER SPECIES by Christopher Andrew Smith A dissertation submitted to the University of London in candidature for the degree of Doctor of Philosophy. Imperial College, December 1979 University of London, London. SW7 2AZ Abstract C.A. Smith Glucose Isomerase from an Arthrobacter Species This dissertation describes the investigation of possible means of increasing the yield of glucose isomerase from a species of Arthro- bacter. Glucose isomerase catalyses the interconversion of D-glucose and D-fructose, although its natural substrate is D-xylose. The enzyme is of importance in the production of high fructose syrups for use as sweeteners in the food industry. The possibility of manipulating the normal pathways of glucose metabolism by mutation to make the enzymic conversion of glucose to fructose an essential step in glucose metabolism was explored. Since the activity of the enzyme towards glucose is low under physiological conditions, it would then be rate-limiting for growth on glucose. This would enable the selection of mutants producing either elevated levels of the wild type enzyme or an enzyme of increased specificity for glucose, by virtue of their faster growth in glucose limited chemo- stat culture. Evidence was obtained that this approach was not like- ly to be successful in the case of Arthrobacter. No activity able to phosphorylate intracellular fructose could be detected. The enzyme was purified from a strain constitutive for its syn- thesis and was found already to account for at least ten percent of the soluble cell protein. The activity of the purified enzyme towards various potential substrates was determined, to evaluate the possibility of using grat- uitous substrates other than glucose to select for mutants with elev- ated levels of the isomerase.
    [Show full text]
  • Microorganism Expressing Xylose Isomerase Mikroorganismus Welcher Xylose Isomerase Exprimiert Micro-Organisme Exprimant De Xylose Isomerase
    (19) TZZ ¥¥Z_T (11) EP 2 376 630 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) Int Cl.: of the grant of the patent: C12N 9/92 (2006.01) C12N 15/81 (2006.01) 20.04.2016 Bulletin 2016/16 C12P 7/06 (2006.01) C12P 19/24 (2006.01) (21) Application number: 09787397.0 (86) International application number: PCT/IB2009/055652 (22) Date of filing: 10.12.2009 (87) International publication number: WO 2010/070549 (24.06.2010 Gazette 2010/25) (54) MICROORGANISM EXPRESSING XYLOSE ISOMERASE MIKROORGANISMUS WELCHER XYLOSE ISOMERASE EXPRIMIERT MICRO-ORGANISME EXPRIMANT DE XYLOSE ISOMERASE (84) Designated Contracting States: WO-A1-2010/000464 WO-A1-2010/001363 AT BE BG CH CY CZ DE DK EE ES FI FR GB GR WO-A2-2009/120731 HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR • VAN MARIS A J A ET AL: "Development of Designated Extension States: Efficient Xylose Fermentation in Saccharomyces AL BA RS cerevisiae: Xylose Isomerase as a Key Component" ADVANCES IN BIOCHEMICAL (30) Priority: 16.12.2008 GB 0822937 ENGINEERING, BIOTECHNOLOGY, SPRINGER, 17.12.2008 US 138293 P BERLIN, DE, vol. 108, 1 January 2007 (2007-01-01), pages 179-204, XP008086128 ISSN: (43) Date of publication of application: 0724-6145 19.10.2011 Bulletin 2011/42 • KUYPER M ET AL: "Metabolic engineering of a xylose-isomerase-expressing Saccharomyces (73) Proprietor: Terranol A/S cerevisiae strain for rapid anaerobic xylose 2800 Lyngby (DK) fermentation" FEMS YEAST RESEARCH, WILEY-BLACKWELL PUBLISHING LTD, GB, NL (72) Inventors: LNKD- DOI:10.1016/J.FEMSYR.2004.09.010, vol.
    [Show full text]
  • Production of Natural and Rare Pentoses Using Microorganisms and Their Enzymes
    EJB Electronic Journal of Biotechnology ISSN: 0717-3458 Vol.4 No.2, Issue of August 15, 2001 © 2001 by Universidad Católica de Valparaíso -- Chile Received April 24, 2001 / Accepted July 17, 2001 REVIEW ARTICLE Production of natural and rare pentoses using microorganisms and their enzymes Zakaria Ahmed Food Science and Biochemistry Division Faculty of Agriculture, Kagawa University Kagawa 761-0795, Kagawa-Ken, Japan E-mail: [email protected] Financial support: Ministry of Education, Science, Sports and Culture of Japan under scholarship program for foreign students. Keywords: enzyme, microorganism, monosaccharides, pentose, rare sugar. Present address: Scientific Officer, Microbiology and Biochemistry Division, Bangladesh Jute Research Institute, Shere-Bangla Nagar, Dhaka- 1207, Bangladesh. Tel: 880-2-8124920. Biochemical methods, usually microbial or enzymatic, murine tumors and making them useful for cancer treatment are suitable for the production of unnatural or rare (Morita et al. 1996; Takagi et al. 1996). Recently, monosaccharides. D-Arabitol was produced from D- researchers have found many important applications of L- glucose by fermentation with Candida famata R28. D- arabinose in medicine as well as in biological sciences. In a xylulose can also be produced from D-arabitol using recent investigation, Seri et al. (1996) reported that L- Acetobacter aceti IFO 3281 and D-lyxose was produced arabinose selectively inhibits intestinal sucrase activity in enzymatically from D-xylulose using L-ribose isomerase an uncompetitive manner and suppresses the glycemic (L-RI). Ribitol was oxidized to L-ribulose by microbial response after sucrose ingestion by such inhibition. bioconversion with Acetobacter aceti IFO 3281; L- Furthermore, Sanai et al. (1997) reported that L-arabinose ribulose was epimerized to L-xylulose by the enzyme D- is useful in preventing postprandial hyperglycemia in tagatose 3-epimerase and L-lyxose was produced by diabetic patients.
    [Show full text]