WO 2014/207087 Al 31 December 2014 (31.12.2014) P O P C T

Total Page:16

File Type:pdf, Size:1020Kb

WO 2014/207087 Al 31 December 2014 (31.12.2014) P O P C T (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2014/207087 Al 31 December 2014 (31.12.2014) P O P C T (51) International Patent Classification: Seville (ES). GUTIERREZ GOMEZ, Pablo; Campus C12N 9/00 (2006.01) C12N 9/90 (2006.01) Palmas Altas, Calle Energia Solar 1, E-41014 Seville (ES). C12N 9/02 (2006.01) C12P 5/02 (2006.01) (74) Agent: NEDERLANDSCH OCTROOIBUREAU; J.W. C12N 9/10 (2006.01) C12P 7/76 (2006.01) Frisolaan 13, NL-2517 JS The Hague (NL). C12N 9/12 (2006.01) C12P 7/64 (2006.01) C12N 9/88 (2006.01) C12N 1/1 9 (2006.01) (81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, (21) International Application Number: AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, PCT/EP2014/063484 BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, (22) International Filing Date: DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, 26 June 2014 (26.06.2014) HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, (25) Filing Language: English MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, (26) Publication Language: English OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, (30) Priority Data: TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, 13382241 .1 26 June 2013 (26.06.2013) EP ZW. (71) Applicant: ABENGOA BIOENERGIA NUEVAS (84) Designated States (unless otherwise indicated, for every TECNOLOGIAS S.A. [ES/ES]; Campus Palmas Altas, kind of regional protection available): ARIPO (BW, GH, Calle Energia Solar no 1, E-41014 Seville (ES). GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ, (72) Inventors: DE ΒΟΝΤ,, Johannes Adrianus Maria; UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, Lawickse Allee 68, NL-6707 AK Wageningen (NL). TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, RAAB, Andreas; Ilsenburger Str. 13, 10589 Berlin (DE). EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, SCHILLING, Michael; Schonensche Str. 6, 10439 Berlin (DE). TAMAME GONZALEZ, Maria Mercedes; Calle TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, KM, ML, MR, NE, SN, TD, TG). Zacarias Gonzalez 2, E-37007 Salamanca (ES). DE LOS ANGELES SANTOS GARCIA, Maria; Edificio De- Published: partamental, Campus Unamuno, E-37007 Salamanca (ES). — with international search report (Art. 21(3)) MARTINS DOS SANTOS, Vitor; Harzstrasse 27, 38300 Wolfenbuettel (DE). ARJONA ANTOLIN, Ricardo; — with sequence listing part of description (Rule 5.2(a)) Campus Palmas Altas, Calle Energia Solar 1, E-41014 (54) Title: PRODUCTION OF ADVANCED FUELS AND OF CHEMICALS BY YEASTS ON THE BASIS OF SECOND GEN ERATION FEEDSTOCKS 00 o (57) Abstract: The present invention relates to modified eukaryotic microbial cells that have been engineered for producing ferment ation products such as fatty acids, 1-alcohols, β- keto-acids and -alcohols, β-hydroxyacids, 1,3-diols, trans-A -fatty acids, alkenes, al- o kanes and derivatives thereof, from second generation feedstocks, including at least pentoses. To this end the eukaryotic microbial cells have been modified to express enzymes of the fatty acid β-oxidation cycle in the cytosol of the cell in the absence of fatty acids and in the presence of a carbon source containing pentoses. The cells are further modified to express enzymes for metabolizing o pentose like xylose and arabinose, as well as to express a metabolic route for producing under oxic conditions, acetyl-CoA from the non- fatty acid carbon source to feed into and drive the β-oxidation cycle in the bio synthetic direction and, to express termination enzymes for conversion of reaction β-oxidation cycle intermediates into the desired fermentation product. The invention further o relates to oxic processes wherein the cells are used to produce fermentation products such as fatty acids, 1-alcohols, β-keto-acids and -alcohols, β- hydroxyacids, 1,3-diols, trans-A -fatty acids, alkenes, alkanes or derivatives thereof. Production of advanced fuels and of chemicals by yeasts on the basis of second generation feedstocks Field of the invention The present invention relates to the utilization of second generation feedstocks in the microbial production of advanced fuels and chemicals. The invention is based on metabolic engineering of and fermentation by yeasts such as Saccharomyces cerevisiae. In particular, the invention relates to S. cerevisiae strains that have been engineered to express in the absence of fatty acids several of the enzymes that are required in the degradation of such acids along with certain other enzymes. The expression of some of the native yeast enzymes has been prevented in order to avoid the formation of undesired by-products. By varying the expression of the various enzymes in yeast, it has been possible to obtain a range of metabolically-engineered yeasts that each produce a particular valuable compound from sugars such as hexoses and/or pentoses. The invention further relates to the processes wherein the engineered strains of the invention produce compounds from sugars. Background of the invention The production of ethanol from first generation feedstocks such as corn, wheat and sugarcane has been optimized and it currently is applied world-wide. The process, however, has generic drawbacks at two levels. Firstly, ethanol is not an optimal fuel compound in view of its chemical structure and the associated physical properties. Secondly, first generation feedstocks are under pressure both reasons of economics and of sustainability. These two drawbacks call for a radical change in the bioproduction of fuels. Novel ways should be explored to arrive at production processes for advanced fuels that are more suitable than ethanol. And such compounds should be produced from second rather from first generation feedstocks. In developing processes for advanced fuels it is possible to develop hand in hand production processes for chemicals. Second generation feedstocks are lignocellulosic materials. They may be derived from stalks, cobs, etc. from plants that now are used as first generation feedstocks. In other words bagasse, wheat straw, corn stover, etc. Such materials also can be obtained by growing dedicated energy crops on marginal lands thus not competing directly with food crops. Waste streams may be used as ell such as solid municipal wastes. Lignocellulosic materials are cheaper than first generation sugar streams, but they require specific treatments. Harvesting may be an issue and the feedstocks require costly pretreatment and enzymatic treatments for liberating sugars. An important aspect is that lignocellulosics contain not only C6 sugars (glucose, fructose) but also C5 sugars (xylose, arabinose). For a profitable process, it consequently is required that also the C5 sugars are converted into the desired product along with the C6 sugars. Another issue with lignocellulosics as feedstocks is that pretreatment results often in compounds that are toxic to microbes such as acetic acid, furfural and hydroxymethylfurfural . Zhang et al (Current Opinion in Biotechnology 201 1, 22:775-783) disclose that production of biofuels from renewable resources provides a source of liquid transportation fuel to replace petroleum-based fuels. This endeavor requires the conversion of cellulosic biomass into simple sugars, and the transformation of simple sugars into biofuels. Recently, microorganisms have been engineered to convert simple sugars into several types of biofuels, such as alcohols, fatty acid alkyl esters, alkanes, and terpenes, with high titers and yields. Several engineered metabolic pathways for the production of advanced biofuels were reported. Peralta-Yahya et al (2012, Nature, 488(741 1):320-8) disclose that advanced biofuels produced by microorganisms have similar properties to petroleum-based fuels, and can 'drop in' to the existing transportation infrastructure. However, producing these biofuels in yields high enough to be useful requires the engineering of the microorganism's metabolism. Pathways for fatty-acid-derived fuels were quoted from published data. Clomburg and Gonzalez (2010, Biotechnol Bioeng. 108(4):867-79) disclose biofuel production in E. coli with an emphasis on metabolic engineering and synthetic biology. Dellomonaco et al. (201 1, Nature, 476:355-361; WO 2012/109176) disclose the engineered reversal of the β-oxidation cycle for the synthesis of fuels and chemicals in E. coli. They produced long-chain products via elongation of short-chain metabolites. They applied a reversal of the β-oxidation cycle as based on CoA-thioester intermediates that directly uses acetyl-CoA for acyl-chain elongation. Gulevich et al. (2012, Biotechnol Lett. 34(3):463-9) disclose metabolic engineering of E. coli for 1-butanol synthesis through the inverted aerobic fatty acid β- oxidation pathway. Zheng et al. (2012, Microbial Cell Factories 11:65) disclose that they have studied the bioproduction of C12/C14 and C16/18 alcohols in E. coli. They improved the fatty alcohol production by systematically optimizing the fatty alcohol biosynthesis pathway, mainly by targeting three key steps from fatty acyl-acyl carrier proteins (ACPs) to fatty alcohols, which are sequentially catalyzed by thioesterase, acyl- coenzyme A (CoA) synthase and fatty acyl-CoA reductase. Bernard et al. (2012, Plant Cell. 24(7):3106-18) disclose that reconstitution of plant alkane biosynthesis is possible in yeast. The specific approaches in producing biofuels compounds as quoted above depend on the enzyme machinery for either fatty acid oxidation (e.g. Dellamonaco et al.
Recommended publications
  • Comparison of Strand-Specific Transcriptomes Of
    Landstorfer et al. BMC Genomics 2014, 15:353 http://www.biomedcentral.com/1471-2164/15/353 RESEARCH ARTICLE Open Access Comparison of strand-specific transcriptomes of enterohemorrhagic Escherichia coli O157:H7 EDL933 (EHEC) under eleven different environmental conditions including radish sprouts and cattle feces Richard Landstorfer1, Svenja Simon2, Steffen Schober3, Daniel Keim2, Siegfried Scherer1 and Klaus Neuhaus1* Abstract Background: Multiple infection sources for enterohemorrhagic Escherichia coli O157:H7 (EHEC) are known, including animal products, fruit and vegetables. The ecology of this pathogen outside its human host is largely unknown and one third of its annotated genes are still hypothetical. To identify genetic determinants expressed under a variety of environmental factors, we applied strand-specific RNA-sequencing, comparing the SOLiD and Illumina systems. Results: Transcriptomes of EHEC were sequenced under 11 different biotic and abiotic conditions: LB medium at pH4, pH7, pH9, or at 15°C; LB with nitrite or trimethoprim-sulfamethoxazole; LB-agar surface, M9 minimal medium, spinach leaf juice, surface of living radish sprouts, and cattle feces. Of 5379 annotated genes in strain EDL933 (genome and plasmid), a surprising minority of only 144 had null sequencing reads under all conditions. We therefore developed a statistical method to distinguish weakly transcribed genes from background transcription. We find that 96% of all genes and 91.5% of the hypothetical genes exhibit a significant transcriptional signal under at least one condition. Comparing SOLiD and Illumina systems, we find a high correlation between both approaches for fold-changes of the induced or repressed genes. The pathogenicity island LEE showed highest transcriptional activity in LB medium, minimal medium, and after treatment with antibiotics.
    [Show full text]
  • Adaptive Laboratory Evolution Enhances Methanol Tolerance and Conversion in Engineered Corynebacterium Glutamicum
    ARTICLE https://doi.org/10.1038/s42003-020-0954-9 OPEN Adaptive laboratory evolution enhances methanol tolerance and conversion in engineered Corynebacterium glutamicum Yu Wang 1, Liwen Fan1,2, Philibert Tuyishime1, Jiao Liu1, Kun Zhang1,3, Ning Gao1,3, Zhihui Zhang1,3, ✉ ✉ 1234567890():,; Xiaomeng Ni1, Jinhui Feng1, Qianqian Yuan1, Hongwu Ma1, Ping Zheng1,2,3 , Jibin Sun1,3 & Yanhe Ma1 Synthetic methylotrophy has recently been intensively studied to achieve methanol-based biomanufacturing of fuels and chemicals. However, attempts to engineer platform micro- organisms to utilize methanol mainly focus on enzyme and pathway engineering. Herein, we enhanced methanol bioconversion of synthetic methylotrophs by improving cellular tolerance to methanol. A previously engineered methanol-dependent Corynebacterium glutamicum is subjected to adaptive laboratory evolution with elevated methanol content. Unexpectedly, the evolved strain not only tolerates higher concentrations of methanol but also shows improved growth and methanol utilization. Transcriptome analysis suggests increased methanol con- centrations rebalance methylotrophic metabolism by down-regulating glycolysis and up- regulating amino acid biosynthesis, oxidative phosphorylation, ribosome biosynthesis, and parts of TCA cycle. Mutations in the O-acetyl-L-homoserine sulfhydrylase Cgl0653 catalyzing formation of L-methionine analog from methanol and methanol-induced membrane-bound transporter Cgl0833 are proven crucial for methanol tolerance. This study demonstrates the importance of
    [Show full text]
  • Contig Protein Description Symbol Anterior Posterior Ratio
    Table S2. List of proteins detected in anterior and posterior intestine pooled samples. Data on protein expression are mean ± SEM of 4 pools fed the experimental diets. The number of the contig in the Sea Bream Database (http://nutrigroup-iats.org/seabreamdb) is indicated. Contig Protein Description Symbol Anterior Posterior Ratio Ant/Pos C2_6629 1,4-alpha-glucan-branching enzyme GBE1 0.88±0.1 0.91±0.03 0.98 C2_4764 116 kDa U5 small nuclear ribonucleoprotein component EFTUD2 0.74±0.09 0.71±0.05 1.03 C2_299 14-3-3 protein beta/alpha-1 YWHAB 1.45±0.23 2.18±0.09 0.67 C2_268 14-3-3 protein epsilon YWHAE 1.28±0.2 2.01±0.13 0.63 C2_2474 14-3-3 protein gamma-1 YWHAG 1.8±0.41 2.72±0.09 0.66 C2_1017 14-3-3 protein zeta YWHAZ 1.33±0.14 4.41±0.38 0.30 C2_34474 14-3-3-like protein 2 YWHAQ 1.3±0.11 1.85±0.13 0.70 C2_4902 17-beta-hydroxysteroid dehydrogenase 14 HSD17B14 0.93±0.05 2.33±0.09 0.40 C2_3100 1-acylglycerol-3-phosphate O-acyltransferase ABHD5 ABHD5 0.85±0.07 0.78±0.13 1.10 C2_15440 1-phosphatidylinositol phosphodiesterase PLCD1 0.65±0.12 0.4±0.06 1.65 C2_12986 1-phosphatidylinositol-4,5-bisphosphate phosphodiesterase delta-1 PLCD1 0.76±0.08 1.15±0.16 0.66 C2_4412 1-phosphatidylinositol-4,5-bisphosphate phosphodiesterase gamma-2 PLCG2 1.13±0.08 2.08±0.27 0.54 C2_3170 2,4-dienoyl-CoA reductase, mitochondrial DECR1 1.16±0.1 0.83±0.03 1.39 C2_1520 26S protease regulatory subunit 10B PSMC6 1.37±0.21 1.43±0.04 0.96 C2_4264 26S protease regulatory subunit 4 PSMC1 1.2±0.2 1.78±0.08 0.68 C2_1666 26S protease regulatory subunit 6A PSMC3 1.44±0.24 1.61±0.08
    [Show full text]
  • Biosynthèse De Nouveaux Dérivés De L'alpha-Bisabolol Par Une Approche
    THÈSE En vue de l’obtention du DOCTORAT DE L’UNIVERSITÉ DE TOULOUSE Délivré par l'Institut National des Sciences Appliquées de Toulouse Présentée et soutenue par Arthur SARRADE-LOUCHEUR Le 30 juin 2020 Biosynthèse de nouveaux dérivés de l'α-bisabolol par une approche de biologie synthèse Ecole doctorale : SEVAB - Sciences Ecologiques, Vétérinaires, Agronomiques et Bioingenieries Spécialité : Ingénieries microbienne et enzymatique Unité de recherche : TBI - Toulouse Biotechnology Institute, Bio & Chemical Engineering Thèse dirigée par Gilles TRUAN et Magali REMAUD-SIMEON Jury Mme Véronique DE BERARDINIS, Rapporteure, Chercheur CEA M. Jean-Etienne BASSARD, Rapporteur, Chargé de Recherche, CNRS Mme Danièle WERCK-REICHHART, Examinatrice, Directeur de Recherche Emérite, CNRS M. Gilles TRUAN, Directeur de thèse, Directeur de Recherche, CNRS Mme Magali REMAUD-SIMEON, Co-directrice de thèse, Professeur des Universités, INSA Mme Fayza DABOUSSI, Présidente, Directeur de Recherche INRAE 2 Author: Arthur Sarrade-Loucheur Year: 2020 Biosynthesis of new α-bisabolol derivatives through a synthetic biology approach The rise of synthetic biology now enables the production of new to nature molecules. In the frame of this thesis we focused on the diversification of the (+)-epi-α-bisabolol scaffold. This molecule coming from the plant Lippia dulcis belongs to the vast family of sesquiterpenes. While sesquiterpenes possess diverse biological activities, (+)-epi-α- bisabolol is the precursor of hernandulcin, an intense sweetener. However, the last oxidative step(s) of the hernandulcin biosynthetic pathway remain elusive. Rather than seeking the native oxidase responsible for hernandulcin synthesis among L. dulcis enzymes we turned our choice towards oxidative enzymes known to be promiscuous and that could functionalize (+)-epi-α-bisabolol in order to i) generate diversity from (+)-epi-α-bisabolol; ii) hopefully identify an oxidative enzyme catalyzing hernandulcin synthesis.
    [Show full text]
  • Enzymatic Synthesis of L-Fucose from L-Fuculose Using a Fucose Isomerase
    Kim et al. Biotechnol Biofuels (2019) 12:282 https://doi.org/10.1186/s13068-019-1619-0 Biotechnology for Biofuels RESEARCH Open Access Enzymatic synthesis of L-fucose from L-fuculose using a fucose isomerase from Raoultella sp. and the biochemical and structural analyses of the enzyme In Jung Kim1†, Do Hyoung Kim1†, Ki Hyun Nam1,2 and Kyoung Heon Kim1* Abstract Background: L-Fucose is a rare sugar with potential uses in the pharmaceutical, cosmetic, and food industries. The enzymatic approach using L-fucose isomerase, which interconverts L-fucose and L-fuculose, can be an efcient way of producing L-fucose for industrial applications. Here, we performed biochemical and structural analyses of L-fucose isomerase identifed from a novel species of Raoultella (RdFucI). Results: RdFucI exhibited higher enzymatic activity for L-fuculose than for L-fucose, and the rate for the reverse reaction of converting L-fuculose to L-fucose was higher than that for the forward reaction of converting L-fucose to L-fuculose. In the equilibrium mixture, a much higher proportion of L-fucose (~ ninefold) was achieved at 30 °C and pH 7, indicating that the enzyme-catalyzed reaction favors the formation of L-fucose from L-fuculose. When biochemical analysis was conducted using L-fuculose as the substrate, the optimal conditions for RdFucI activity were determined to be 40 °C and pH 10. However, the equilibrium composition was not afected by reaction temperature in the range 2 of 30 to 50 °C. Furthermore, RdFucI was found to be a metalloenzyme requiring Mn + as a cofactor. The comparative crystal structural analysis of RdFucI revealed the distinct conformation of α7–α8 loop of RdFucI.
    [Show full text]
  • Table 6. Putative Genes Involved in the Utilization of Carbohydrates in G
    Table 6. Putative genes involved in the utilization of carbohydrates in G. thermodenitrificans NG80-2 genome Carbohydrates* Enzymes Gene ID Glycerol Glycerol Kinase GT1216 Glycerol-3-phosphate dehydrogenase, aerobic GT2089 NAD(P)H-dependent glycerol-3-phosphate dehydrogenase GT2153 Enolase GT3003 2,3-bisphosphoglycerate-independentphosphoglycerate mutase GT3004 Triosephosphate isomerase GT3005 3-phosphoglycerate kinase GT3006 Glyceraldehyde-3-phosphate dehydrogenase GT3007 Phosphoglycerate mutase GT1326 Pyruvate kinase GT2663 L-Arabinose L-arabinose isomerase GT1795 L-ribulokinase GT1796 L-ribulose 5-phosphate 4-epimerase GT1797 D-Ribose Ribokinase GT3174 Transketolase GT1187 Ribose 5-phosphate epimerase GT3316 D-Xylose Xylose kinase GT1756 Xylose isomerase GT1757 D-Galactose Galactokinase GT2086 Galactose-1-phosphate uridyltransferase GT2084 UDP-glucose 4-epimerase GT2085 Carbohydrates* Enzymes Gene ID D-Fructose 1-phosphofructokinase GT1727 Fructose-1,6-bisphosphate aldolase GT1805 Fructose-1,6-bisphosphate aldolase type II GT3331 Triosephosphate isomerase GT3005 D-Mannose Mannnose-6 phospate isomelase GT3398 6-phospho-1-fructokinase GT2664 D-Mannitol Mannitol-1-phosphate dehydrogenase GT1844 N-Acetylglucosamine N-acetylglucosamine-6-phosphate deacetylase GT2205 N-acetylglucosamine-6-phosphate isomerase GT2204 D-Maltose Alpha-1,4-glucosidase GT0528, GT1643 Sucrose Sucrose phosphorylase GT3215 D-Trehalose Alpha-glucosidase GT1643 Glucose kinase GT2381 Inositol Myo-inositol catabolism protein iolC;5-dehydro-2- GT1807 deoxygluconokinase
    [Show full text]
  • Structure of L-Rhamnose Isomerase in Complex with L
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector FEBS Open Bio 3 (2013) 35–40 journal homepage: www.elsevier.com/locate/febsopenbio Structure of l-rhamnose isomerase in complex with l-rhamnopyranose demonstrates the sugar-ring opening mechanism and the role of a substrate sub-binding site Hiromi Yoshidaa, Akihide Yoshiharab, Misa Teraokaa, Satoshi Yamashitaa, Ken Izumorib, Shigehiro Kamitoria,* aLife Science Research Center and Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan bRare Sugar Research Center and Faculty of Agriculture, Kagawa University, Miki-cho, Kagawa 761-0795, Japan article info abstract Article history: L-Rhamnose isomerase (L-RhI) catalyzes the reversible isomerization of L-rhamnose to L-rhamnulose. Received 27 November 2012 Previously determined X-ray structures of L-RhI showed a hydride-shift mechanism for the isomeriza- Accepted 30 November 2012 tion of substrates in a linear form, but the mechanism for opening of the sugar-ring is still unclear. To elucidate this mechanism, we determined X-ray structures of a mutant L-RhI in complex with L- Keywords: rhamnopyranose and D-allopyranose. Results suggest that a catalytic water molecule, which acts as an l-Rhamnose isomerase acid/base catalyst in the isomerization reaction, is likely to be involved in pyranose-ring opening, and Pseudomonas stutzeri Sugar-ring opening mechanism that a newly found substrate sub-binding site in the vicinity of the catalytic site may recognize different Rare sugar anomers of substrates. X-ray structure C 2012 The Authors.
    [Show full text]
  • SUPPY Liglucosexlmtdh
    US 20100314248A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2010/0314248 A1 Worden et al. (43) Pub. Date: Dec. 16, 2010 (54) RENEWABLE BOELECTRONIC INTERFACE Publication Classification FOR ELECTROBOCATALYTC REACTOR (51) Int. Cl. (76) Inventors: Robert M. Worden, Holt, MI (US); C25B II/06 (2006.01) Brian L. Hassler, Lake Orion, MI C25B II/2 (2006.01) (US); Lawrence T. Drzal, Okemos, GOIN 27/327 (2006.01) MI (US); Ilsoon Lee, Okemo s, MI BSD L/04 (2006.01) (US) C25B 9/00 (2006.01) (52) U.S. Cl. ............... 204/403.14; 204/290.11; 204/400; Correspondence Address: 204/290.07; 427/458; 204/252: 977/734; PRICE HENEVELD COOPER DEWITT & LIT 977/742 TON, LLP 695 KENMOOR, S.E., PO BOX 2567 (57) ABSTRACT GRAND RAPIDS, MI 495.01 (US) An inexpensive, easily renewable bioelectronic device useful for bioreactors, biosensors, and biofuel cells includes an elec (21) Appl. No.: 12/766,169 trically conductive carbon electrode and a bioelectronic inter face bonded to a surface of the electrically conductive carbon (22) Filed: Apr. 23, 2010 electrode, wherein the bioelectronic interface includes cata lytically active material that is electrostatically bound directly Related U.S. Application Data or indirectly to the electrically conductive carbon electrode to (60) Provisional application No. 61/172,337, filed on Apr. facilitate easy removal upon a change in pH, thereby allowing 24, 2009. easy regeneration of the bioelectronic interface. 7\ POWER 1 - SUPPY|- LIGLUCOSEXLMtDH?till pi 6.0 - esses&aaaas-exx-xx-xx-xx-xxxxixax-e- Patent Application Publication Dec. 16, 2010 Sheet 1 of 18 US 2010/0314248 A1 Potential (nV) Patent Application Publication Dec.
    [Show full text]
  • Genomic Analysis of Thermophilicbacillus Coagulans
    OPEN Genomic analysis of thermophilic Bacillus SUBJECT AREAS: coagulans strains: efficient producers for COMPARATIVE GENOMICS platform bio-chemicals BACTERIAL GENOMICS Fei Su & Ping Xu Received 17 September 2013 State Key Laboratory of Microbial Metabolism, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, P. R. China. Accepted 14 January 2014 Microbial strains with high substrate efficiency and excellent environmental tolerance are urgently needed Published for the production of platform bio-chemicals. Bacillus coagulans has these merits; however, little genetic 29 January 2014 information is available about this species. Here, we determined the genome sequences of five B. coagulans strains, and used a comparative genomic approach to reconstruct the central carbon metabolism of this species to explain their fermentation features. A novel xylose isomerase in the xylose utilization pathway was identified in these strains. Based on a genome-wide positive selection scan, the selection pressure on amino Correspondence and acid metabolism may have played a significant role in the thermal adaptation. We also researched the requests for materials immune systems of B. coagulans strains, which provide them with acquired resistance to phages and mobile should be addressed to genetic elements. Our genomic analysis provides comprehensive insights into the genetic characteristics of P.X. ([email protected]. B. coagulans and paves the way for improving and extending the uses of this species. cn) hite biotechnology, the clean industrial technology supported by several predominant political move- ments, will comprise no less than 20% of the chemical industry sales in the United States in 20201.To attempt to meet the dramatic future demands for these materials, researchers have used microbial W 2 strains to produce platform bio-chemicals .
    [Show full text]
  • Generate Metabolic Map Poster
    Authors: Pallavi Subhraveti Ron Caspi Quang Ong Peter D Karp An online version of this diagram is available at BioCyc.org. Biosynthetic pathways are positioned in the left of the cytoplasm, degradative pathways on the right, and reactions not assigned to any pathway are in the far right of the cytoplasm. Transporters and membrane proteins are shown on the membrane. Ingrid Keseler Periplasmic (where appropriate) and extracellular reactions and proteins may also be shown. Pathways are colored according to their cellular function. Gcf_900114035Cyc: Amycolatopsis sacchari DSM 44468 Cellular Overview Connections between pathways are omitted for legibility.
    [Show full text]
  • Supplementary Informations SI2. Supplementary Table 1
    Supplementary Informations SI2. Supplementary Table 1. M9, soil, and rhizosphere media composition. LB in Compound Name Exchange Reaction LB in soil LBin M9 rhizosphere H2O EX_cpd00001_e0 -15 -15 -10 O2 EX_cpd00007_e0 -15 -15 -10 Phosphate EX_cpd00009_e0 -15 -15 -10 CO2 EX_cpd00011_e0 -15 -15 0 Ammonia EX_cpd00013_e0 -7.5 -7.5 -10 L-glutamate EX_cpd00023_e0 0 -0.0283302 0 D-glucose EX_cpd00027_e0 -0.61972444 -0.04098397 0 Mn2 EX_cpd00030_e0 -15 -15 -10 Glycine EX_cpd00033_e0 -0.0068175 -0.00693094 0 Zn2 EX_cpd00034_e0 -15 -15 -10 L-alanine EX_cpd00035_e0 -0.02780553 -0.00823049 0 Succinate EX_cpd00036_e0 -0.0056245 -0.12240603 0 L-lysine EX_cpd00039_e0 0 -10 0 L-aspartate EX_cpd00041_e0 0 -0.03205557 0 Sulfate EX_cpd00048_e0 -15 -15 -10 L-arginine EX_cpd00051_e0 -0.0068175 -0.00948672 0 L-serine EX_cpd00054_e0 0 -0.01004986 0 Cu2+ EX_cpd00058_e0 -15 -15 -10 Ca2+ EX_cpd00063_e0 -15 -100 -10 L-ornithine EX_cpd00064_e0 -0.0068175 -0.00831712 0 H+ EX_cpd00067_e0 -15 -15 -10 L-tyrosine EX_cpd00069_e0 -0.0068175 -0.00233919 0 Sucrose EX_cpd00076_e0 0 -0.02049199 0 L-cysteine EX_cpd00084_e0 -0.0068175 0 0 Cl- EX_cpd00099_e0 -15 -15 -10 Glycerol EX_cpd00100_e0 0 0 -10 Biotin EX_cpd00104_e0 -15 -15 0 D-ribose EX_cpd00105_e0 -0.01862144 0 0 L-leucine EX_cpd00107_e0 -0.03596182 -0.00303228 0 D-galactose EX_cpd00108_e0 -0.25290619 -0.18317325 0 L-histidine EX_cpd00119_e0 -0.0068175 -0.00506825 0 L-proline EX_cpd00129_e0 -0.01102953 0 0 L-malate EX_cpd00130_e0 -0.03649016 -0.79413596 0 D-mannose EX_cpd00138_e0 -0.2540567 -0.05436649 0 Co2 EX_cpd00149_e0
    [Show full text]
  • Characterization of Ribose-5-Phosphate Isomerase B from Newly Isolated Strain Ochrobactrum Sp
    J. Microbiol. Biotechnol. (2018), 28(7), 1122–1132 https://doi.org/10.4014/jmb.1802.02021 Research Article Review jmb Characterization of Ribose-5-Phosphate Isomerase B from Newly Isolated Strain Ochrobactrum sp. CSL1 Producing L-Rhamnulose from L-Rhamnose Min Shen1†, Xin Ju1†, Xinqi Xu2, Xuemei Yao1, Liangzhi Li1*, Jiajia Chen1, Cuiying Hu1, Jiaolong Fu1, and Lishi Yan1 1School of Chemistry, Biology, and Material Engineering, Suzhou University of Science and Technology, Suzhou 215009, P.R. China 2Fujian Key Laboratory of Marine Enzyme Engineering, Fuzhou University, Fujian 350116, P.R. China Received: February 14, 2018 Revised: April 12, 2018 In this study, we attempted to find new and efficient microbial enzymes for producing rare Accepted: April 13, 2018 sugars. A ribose-5-phosphate isomerase B (OsRpiB) was cloned, overexpressed, and First published online preliminarily purified successfully from a newly screened Ochrobactrum sp. CSL1, which could May 8, 2018 catalyze the isomerization reaction of rare sugars. A study of its substrate specificity showed *Corresponding author that the cloned isomerase (OsRpiB) could effectively catalyze the conversion of L-rhamnose to Phone: +86-512-68056493; L-rhamnulose, which was unconventional for RpiB. The optimal reaction conditions (50oC, Fax: +86-512-68418431; 2+ E-mail: [email protected] pH 8.0, and 1 mM Ca ) were obtained to maximize the potential of OsRpiB in preparing L-rhamnulose. The catalytic properties of OsRpiB, including Km, kcat, and catalytic efficiency † These authors contributed (k /K ), were determined as 43.47 mM, 129.4 sec-1, and 2.98 mM/sec. The highest conversion equally to this work.
    [Show full text]