Using Embedded Resistor Emulation and Trimming to Demonstrate Measurement Methods and Associated Engineering Model Development*

Total Page:16

File Type:pdf, Size:1020Kb

Using Embedded Resistor Emulation and Trimming to Demonstrate Measurement Methods and Associated Engineering Model Development* IJEE 1830 Int. J. Engng Ed. Vol. 22, No. 1, pp. 000±000, 2006 0949-149X/91 $3.00+0.00 Printed in Great Britain. # 2006 TEMPUS Publications. Using Embedded Resistor Emulation and Trimming to Demonstrate Measurement Methods and Associated Engineering Model Development* PHILLIP A.M.SANDBORN AND PETER A.SANDBORN CALCE Electronic Products and Systems Center, Department of Mechanical Engineering, University of Maryland, College Park, MD, USA.E-mail: [email protected] Embedded resistors are planar resistors that are fabricated inside printed circuit boards and used as an alternative to discrete resistor components that are mounted on the surface of the boards.The successful use of embedded resistors in many applications requires that the resistors be trimmed to required design values prior to lamination into printed circuit boards.This paper describes a simple emulation approach utilizing conductive paper that can be used to characterize embedded resistor operation and experimentally optimize resistor trimming patterns.We also describe a hierarchy of simple modeling approaches appropriate to both college engineering students and pre-college students that can be verified with the experimental results, and used to extend the experimental trimming analysis.The methodology described in this paper is a simple and effective approach for demonstrating a combination of measurement methods, uncertainty analysis, and associated engineering model development. Keywords: embedded resistors; embedded passives; trimming INTRODUCTION process that starts with a layer pair that is pre- coated with resistive material that is selectively EMBEDDING PASSIVE components (capaci- removed to create the resistors.The layer contain- tors, resistors, and possibly inductors) within ing the resistor is laminated together with other printed circuit boards is one of a series of technol- layers to make the finished printed circuit board. ogy advances enabling performance increases, size One significant factor governing the applicabil- and weight reductions, and potentially cost advan- ity of embedded resistors is their tolerance level. tages in the manufacturing of electronic systems The tolerance to which a resistor can be fabricated [1].Figure 1 shows a comparison of surface mount determines the applications for which it can be and embedded resistors. used and potentially affects its impact on the yield Multilayer printed circuit boards are fabricated of the product.While discrete surface mount starting with dielectric layers that are plated on resistors can be pre-sorted by value, or even both sides with copper.Application-specific replaced during assembly when their value is not conductor patterns are created on each side of within the required range, embedded resistors the dielectric using a photosensitive resist and provide no such opportunity and must be within etching to remove the unnecessary copper.These design tolerance value before the board fabrication patterned `layer pairs' are stacked with a B-stage process is completed.Therefore, embedded resis- epoxy between them and laminated using high tors, depending on their method of fabrication and temperature and pressure.Holes can be drilled the application for which they are used, may be and plated in the laminated stack to create vertical `trimmed' to the desired value after they are connections.[Note, there are many printed circuit fabricated.To allow for trimming, embedded board fabrication process and material variations, resistors are designed to have a resistance value e.g., [2]. The process described here is one simpli- that is lower than that needed by the application. fied approach.] Embedded resistors (also called Trimming is then accomplished by cutting holes integral resistors) are fabricated by plating or into the resistor in order to increase its resistance printing a resistive material onto a layer that will value. be part of a printed circuit board (additive Embedded resistors are normally trimmed using process), or alternatively, using a subtractive a laser to micromachine a trough in the resistive element, [3].The length and path-shape of the trough determine the characteristics of the resis- tance change obtained.Several different path- * Accepted 18 May 2006. shapes can be used depending on the specific 1 2 P.A.M.Sandborn and P.A.Sandborn Fig.1. Surface mount and embedded resistors. trimming requirements.As the laser cuts the resistance' (in ohms per square), and L, W, and trough, the resistor value is measured and used T are the length, width, and thickness of the as feedback to control the trimming process. resistor.Therefore, for a constant aspect ratio Unfortunately, laser trimming equipment is expen- (L/W), a small planar resistor (dimensions in the sive and the process of trimming potentially repre- thousands of the inch) has the same resistance sents a throughput bottleneck in the board characteristics as a large area planar resistor fabrication process.Trimming has been identified (dimensions of inches), and trimming of small as one possible impediment to the widespread use resistors can be emulated using large area resistors. of embedded resistors [4, 5]. To emulate planar embedded resistors, we used This paper describes a simple methodology for conductive paper purchased from PASCO Scien- experimentally assessing embedded resistor trim tific (Model PK-9025).This type of paper is patterns that can be supplemented with the devel- usually used for tracing lines of equipotential and opment and verification of simple models that can electric fields, and comes in 8.5 Â 11 inch pages be used to extend the experimental results.The with a centimeter grid printed on it.Prior to work described herein has been successfully used exploring trimming of the resistors, each page of by both pre-college high school students and paper is cut to the desired resistor shapeÐin our within an undergraduate electronic packaging case approximately 1 cm was removed from all the curriculum for college-level mechanical and elec- edges of the pages and the remaining page is cut in trical engineering students.Students are motivated half to create two 28 Â 10 cm resistors.In order to by being able to work on a topic that is at the measure the resistance, metal clamps are placed on forefront of electronic systems design and fabrica- the ends of the resistor and an ohmmeter is tion, yet conceptually simple enough so as not to attached to the clamps via alligator clips, Fig.2. defeat their limited knowledge of physics and Students make an initial set of measurements on a engineering.The experiment and modeling single piece of paper by assembling the test setup, described in the paper provides students with an measuring, and disassembling the test setup, then understanding of resistance, resistance measure- repeating the process 10±15 times.The first thing ments, experimental uncertainty analysis, the en- noticed is that the resistance of the conductive gineering model development and verification paper varies from page-to-page.In order to make process, and the use of models to extend experi- the measurements from different pages compar- mental results. able, a page-specific `normalization' must be deter- mined.In order to normalize a page's mean resistance to 65 k ,65k was divided by the EMULATING EMBEDDED RESISTORS mean resistance from the initial measurements for the page to obtain a scaling factor, then each For a constant sheet resistance (ohms per measurement from that page of paper (as it is square), the resistance of a planar resistor does trimmed) is first multiplied by the scaling factor not change with size (i.e., length or width) as long before comparison with other pages.[For the 28 Â as the ratio of length to width (`aspect ratio') is 10 cm resistors suggested, 65 k was found to be constant, the approximate average resistance value over many pages of conductive paper and was therefore L L L L used as the normalization target.] R R ; 1 A TW T W W The way that the page measurements are normalized adjusts for page-to-page variation in where is the bulk resistivity, A is the cross- resistance due to variations in the sheet resistance sectional area of the resistor, R is the `sheet (R) but does not affect variations in the contact to Using Embedded Resistor Emulation and Trimming to Demonstrate Measurement Methods 3 semiconductor).Students can also check to see if thermocouple effects are significant by switching the ohmmeter connection and determining if there is any significant change in the resistance measured.In our experience, thermocouple effects, if present, are smaller than the measurement uncertainty.[The thermocouple effect is due to the thermal emf generated by the change in the temperature at the junction of the conductive paper and the silver contacts on each end, which form thermocouples.If the temperature at both ends of the resistor is the same, the thermal emfs will cancel and the resistance measured is the same, regardless of the way the meter is connected.If the temperature at one end is different from the other than the measured resistance will differ when the meter connections are switched.] Fig.2. Experimental setup. the conductive paper or other series resistance effect within the measurement path.Variations in RESISTOR TRIMMING: the sheet resistance could be due to thickness EXPERIMENTAL RESULTS variations in the conductive coating or moisture absorption by the paper.Variations in the Once the baseline measurements are made on a measurement path are quantified as measurement
Recommended publications
  • Development of Printed Circuit Board Technology Embedding Active and Passive Devices for E-Function Module
    Development of Printed Circuit Board Technology Embedding Active and Passive Devices for e-Function Module Noboru Fujimaki Kiyoshi Koike Kazuhiro Takami Sigeyuki Ogata Hiroshi Iinaga Background shortening of signal wirings between circuits, reduction of damping resistors and elimination of characteristic Higher functionality of today’s portable devices impedance controls. Embedded component module demands smaller, lighter and thinner electronic boards have been adopted for higher functionality of components. Looking at the evolution of package video cameras and miniaturizing wireless communication miniaturization from the flat structure (System in Package: devices. It is expected the use will spread to a wider SiP) -> silicon chip stack structure (Chip on Chip: CoC) -> range of areas including automotive, consumer products, package stack structure (Package on Package: PoP) -> Si industrial equipment and infrastructure equipment. To through chip contact structure, the technology has gone meet these needs, a technology to package and embed from two-dimensional to three-dimensional packaging the various components and LSI will be required. This achieving high density packages. The trends in printed article discusses the method of embedding components, circuit boards and their packaging are shown in Figure 1. soldering technology, production method, reliability and Among the printed circuit boards, the three-dimensional case examples of the embedded component module integrated printed circuit board (hereafter referred to as board. “embedded component module board”) is attracting great attention. Integrating components into embedded component module boards Component embedding enables passive components (1) Embedding active components to be positioned directly beneath the LSI mounted There are two methods of embedding active on the surface providing electrical benefits such as components.
    [Show full text]
  • Utilising Commercially Fabricated Printed Circuit Boards As an Electrochemical Biosensing Platform
    micromachines Article Utilising Commercially Fabricated Printed Circuit Boards as an Electrochemical Biosensing Platform Uroš Zupanˇciˇc,Joshua Rainbow , Pedro Estrela and Despina Moschou * Centre for Biosensors, Bioelectronics and Biodevices (C3Bio), Department of Electronic & Electrical Engineering, University of Bath, Claverton Down, Bath BA2 7AY, UK; [email protected] (U.Z.); [email protected] (J.R.); [email protected] (P.E.) * Correspondence: [email protected]; Tel.: +44-(0)-1225-383245 Abstract: Printed circuit boards (PCBs) offer a promising platform for the development of electronics- assisted biomedical diagnostic sensors and microsystems. The long-standing industrial basis offers distinctive advantages for cost-effective, reproducible, and easily integrated sample-in-answer-out diagnostic microsystems. Nonetheless, the commercial techniques used in the fabrication of PCBs produce various contaminants potentially degrading severely their stability and repeatability in electrochemical sensing applications. Herein, we analyse for the first time such critical technological considerations, allowing the exploitation of commercial PCB platforms as reliable electrochemical sensing platforms. The presented electrochemical and physical characterisation data reveal clear evidence of both organic and inorganic sensing electrode surface contaminants, which can be removed using various pre-cleaning techniques. We demonstrate that, following such pre-treatment rules, PCB-based electrodes can be reliably fabricated for sensitive electrochemical
    [Show full text]
  • Best Practices for Board Layout of Motor Drivers
    Application Report SLVA959A–November 2018–Revised January 2019 Best Practices for Board Layout of Motor Drivers .................................................................................................................. Motor Drive Business Unit ABSTRACT PCB design of motor drive systems is not trivial and requires special considerations and techniques to achieve the best performance. Power efficiency, high-speed switching frequency, low-noise jitter, and compact board design are few primary factors that designers must consider when laying out a motor drive system. Texas Instruments' DRV devices are ideal for such type of systems because they are highly integrated and well-equipped with protection circuitry. The goal of this application report is to highlight the primary factors of a motor drive layout when using a DRV device and provide a best practice guideline for a high performance solution that reduces thermal stress, optimizes efficiency, and minimizes noise in a motor drive application. Contents 1 Grounding Optimization ..................................................................................................... 3 2 Thermal Overview ........................................................................................................... 7 3 Vias........................................................................................................................... 11 4 General Routing Techniques ............................................................................................. 14 5 Bulk and Bypass
    [Show full text]
  • What Is a Neutral Earthing Resistor?
    Fact Sheet What is a Neutral Earthing Resistor? The earthing system plays a very important role in an electrical network. For network operators and end users, avoiding damage to equipment, providing a safe operating environment for personnel and continuity of supply are major drivers behind implementing reliable fault mitigation schemes. What is a Neutral Earthing Resistor? A widely utilised approach to managing fault currents is the installation of neutral earthing resistors (NERs). NERs, sometimes called Neutral Grounding Resistors, are used in an AC distribution networks to limit transient overvoltages that flow through the neutral point of a transformer or generator to a safe value during a fault event. Generally connected between ground and neutral of transformers, NERs reduce the fault currents to a maximum pre-determined value that avoids a network shutdown and damage to equipment, yet allows sufficient flow of fault current to activate protection devices to locate and clear the fault. NERs must absorb and dissipate a huge amount of energy for the duration of the fault event without exceeding temperature limitations as defined in IEEE32 standards. Therefore the design and selection of an NER is highly important to ensure equipment and personnel safety as well as continuity of supply. Power Transformer Motor Supply NER Fault Current Neutral Earthin Resistor Nov 2015 Page 1 Fact Sheet The importance of neutral grounding Fault current and transient over-voltage events can be costly in terms of network availability, equipment costs and compromised safety. Interruption of electricity supply, considerable damage to equipment at the fault point, premature ageing of equipment at other points on the system and a heightened safety risk to personnel are all possible consequences of fault situations.
    [Show full text]
  • MAT 253 Operating Manual - Rev
    MAT 253 OPERATING MANUAL Issue 04/2002 Ident. No. 114 9090 Thermo Finnigan MAT GmbH Postfach 1401 62 28088 Bremen Germany Reparatur-Begleitkarte*) Repair-Covering Letter Absender: Geräte-Type: Despachter: Instrument Type: __________________________________ _________________________________ __________________________________ Service-Nr.: Service No Sie erhalten zur Reparatur unter unserer Bestell-Nr.: You receive for repair under our order no.: Festgestellte Mängel oder deren Auswirkung: Established defect or its effect: Bitte detaillierte Angaben machen / Please specify in detail Ein Austauschteil haben wir erhalten unter Kommissions-Nr.: An exchange part already received with commission no.: Ja/Yes Nein/No Die Anlage ist außer Funktion The system is out of function Ja/Yes Nein/No Durch die nachfolgende Unterschrift By signing this document I am/ we are certifying bestätige(n) ich /wir, daß die o.g. Teile frei von that the a. m. parts are free from hazardous gesundheitsschädlichen Stoffen sind, bzw. vor materials. In case the parts have been used for ihrer Einsendung an Thermo Finnigan MAT the analysis of hazardous substances I/we dekontaminiert wurden, falls die Teile mit attest that the parts have been decontaminated giftigen Stoffen in Verbindung gekommen sind. before sending them to Thermo Finnigan MAT. __________________________________ _________________________________ Datum / date Unterschrift / signature *) Bitte vollständig ausfüllen / Please fill in completely MAT 253 O P E R A T I N G M A N U A L TABLE OF CONTENTS 1 GETTING
    [Show full text]
  • Notes for Lab 1 (Bipolar (Junction) Transistor Lab)
    ECE 327: Electronic Devices and Circuits Laboratory I Notes for Lab 1 (Bipolar (Junction) Transistor Lab) 1. Introduce bipolar junction transistors • “Transistor man” (from The Art of Electronics (2nd edition) by Horowitz and Hill) – Transistors are not “switches” – Base–emitter diode current sets collector–emitter resistance – Transistors are “dynamic resistors” (i.e., “transfer resistor”) – Act like closed switch in “saturation” mode – Act like open switch in “cutoff” mode – Act like current amplifier in “active” mode • Active-mode BJT model – Collector resistance is dynamically set so that collector current is β times base current – β is assumed to be very high (β ≈ 100–200 in this laboratory) – Under most conditions, base current is negligible, so collector and emitter current are equal – β ≈ hfe ≈ hFE – Good designs only depend on β being large – The active-mode model: ∗ Assumptions: · Must have vEC > 0.2 V (otherwise, in saturation) · Must have very low input impedance compared to βRE ∗ Consequences: · iB ≈ 0 · vE = vB ± 0.7 V · iC ≈ iE – Typically, use base and emitter voltages to find emitter current. Finish analysis by setting collector current equal to emitter current. • Symbols – Arrow represents base–emitter diode (i.e., emitter always has arrow) – npn transistor: Base–emitter diode is “not pointing in” – pnp transistor: Emitter–base diode “points in proudly” – See part pin-outs for easy wiring key • “Common” configurations: hold one terminal constant, vary a second, and use the third as output – common-collector ties collector
    [Show full text]
  • Series Catalog
    Conductive Polymer Aluminum Electrolytic Capacitors Surface Mount Type CY,SY series [Guaranteed at 85 ℃] Features ● Endurance 85 ℃ 2000 h ● Product height (3.0 mm max.) ● High ripple current (5100 mA rms to 6300 mA rms max.) ● RoHS compliance, Halogen free Specifications Series CY / SY Category temp. range –55 ℃ to +85 ℃ Rated voltage range 4.0 V, 6.3V Nominal cap. range 330 μF to 470 μF Capacitance tolerance ±20 % (120 Hz / +20 ℃) DC leakage current I ≦ 0.1 CV (μA) 2 minutes Dissipation factor (tan δ) ≦ 0.06 (120 Hz / + 20 ℃) Surge voltage (V) Rated voltage × 1.25 (15 ℃ to 35 ℃) +85 ℃ 2000 h, rated voltage applied Capacitance change Within ±20 % of the initial value Endurance Dissipation factor (tan δ) ≦ 2 times of the initial limit DC leakage current ≦ 3 times of the initial limit +60 ℃, 90 % RH, 500 h, No-applied voltage Capacitance change of 4.0 V 6.3 V Damp heat initial measurd value +60 %, –20 % +50 %, –20 % (Steady state) Dissipation factor (tan δ) ≦ 2 times of the initial limit DC leakage current Within the initial limit Marking Dimensions (not to scale) Capacitance (μF) Polarity bar (Positive) ⊖ ⊕ H P P L W1 W2 Lot No. W2 R. voltage code R. voltage code Unit:V 単位:mm g 4.0 Series L±0.2 W1±0.2 W2±0.1 H±0.2 P±0.3 j 6.3 CY / SY 7.3 4.3 2.4 2.8 1.3 ✽ Externals of figure are the reference. Design and specifications are each subject to change without notice. Ask factory for the current technical specifications before purchase and/or use.
    [Show full text]
  • Resistors, Diodes, Transistors, and the Semiconductor Value of a Resistor
    Resistors, Diodes, Transistors, and the Semiconductor Value of a Resistor Most resistors look like the following: A Four-Band Resistor As you can see, there are four color-coded bands on the resistor. The value of the resistor is encoded into them. We will follow the procedure below to decode this value. • When determining the value of a resistor, orient it so the gold or silver band is on the right, as shown above. • You can now decode what resistance value the above resistor has by using the table on the following page. • We start on the left with the first band, which is BLUE in this case. So the first digit of the resistor value is 6 as indicated in the table. • Then we move to the next band to the right, which is GREEN in this case. So the second digit of the resistor value is 5 as indicated in the table. • The next band to the right, the third one, is RED. This is the multiplier of the resistor value, which is 100 as indicated in the table. • Finally, the last band on the right is the GOLD band. This is the tolerance of the resistor value, which is 5%. The fourth band always indicates the tolerance of the resistor. • We now put the first digit and the second digit next to each other to create a value. In this case, it’s 65. 6 next to 5 is 65. • Then we multiply that by the multiplier, which is 100. 65 x 100 = 6,500. • And the last band tells us that there is a 5% tolerance on the total of 6500.
    [Show full text]
  • Session 2 ENVIRONMENTALLY SOUND MANAGEMENT of USED and SCRAP PERSONAL COMPUTERS (Pcs)
    Session 2 ENVIRONMENTALLY SOUND MANAGEMENT OF USED AND SCRAP PERSONAL COMPUTERS (PCs) Robert Tonetti US EPA, Office of Solid Waste Second OECD Workshop on Environmentally Sound Management of Wastes Destined for Recovery Operations 28-29 September 2000 Vienna, Austria TABLE OF CONTENTS INTRODUCTION...........................................................................................................................................4 DEFINITION AND CHARACTERIZATION OF “USED AND SCRAP PCS” ...........................................5 PRINCIPAL ENVIRONMENTAL CONCERNS...........................................................................................7 Substances of Concern.................................................................................................................................7 Exposure to Substances of Concern.............................................................................................................8 OVERVIEW OF REUSE/RECYCLING PRACTICES..................................................................................9 Overview of Reuse.......................................................................................................................................9 Environmental Considerations of Reuse......................................................................................................9 Overview of Raw Material Recovery ........................................................................................................10 GUIDELINES FOR DOMESTIC PROGRAMS ..........................................................................................12
    [Show full text]
  • OPERATION ASSIGNMENT with BOARD SPLITTING and MULTIPLE MACHINES in PRINTED CIRCUIT BOARD ASSEMBLY by SAKCHAI RAKKARN Submitted
    OPERATION ASSIGNMENT WITH BOARD SPLITTING AND MULTIPLE MACHINES IN PRINTED CIRCUIT BOARD ASSEMBLY by SAKCHAI RAKKARN Submitted in partial fulfillment of the requirements For the degree of Doctor of Philosophy Dissertation Adviser: Dr. Vira Chankong Department of Electrical Engineering and Computer Science CASE WESTERN RESERVE UNIVERSITY May, 2008 CASE WESTERN RESERVE UNIVERSITY SCHOOL OF GRADUATE STUDIES We hereby approve the thesis/dissertation of ______________________________________________________ candidate for the ________________________________degree *. (signed)_______________________________________________ (chair of the committee) ________________________________________________ ________________________________________________ ________________________________________________ ________________________________________________ ________________________________________________ (date) _______________________ *We also certify that written approval has been obtained for any proprietary material contained therein. i Table of Contents Table of Contents…………………………………………………………………………..i List of Figures……………………………………………………………………………..v List of Tables…………………………………………………………………………….vii Acknowledgements………………………………………………………………………..x Abstract…………………………………………………………………………………...xi 1 Introduction……………………………………………………………………………...1 1.1 The Overview of Printed Circuit Board Assembly…………………………....1 1.2 Planning and Process for PCB Assembly……………………………………..2 1.3 Problem Statement and Rationale...…………………………………………...6 1.4 Research Objective……………………………………………………………8
    [Show full text]
  • Field Programmable Gate Array (FPGA) Based Trigger System for the Klystron Department
    SLAC-TN-10-007 Field Programmable Gate Array (FPGA) Based Trigger System for the Klystron Department Darius Gray Office of Science, Science Undergraduate Laboratory Internship Program Texas A&M University, College Station SLAC National Accelerator Laboratory Menlo Park, California August 14, 2009 Prepared in partial fulfillment of the requirement of the Office of Science, Department of Energy’s Science Undergraduate Laboratory Internship under the direction of Michael G. Apte in the Environmental Energy and Technology division at Lawrence Berkeley National Laboratory. Participant: __________________________________ Signature Research Advisor: __________________________________ Signature Work supported in part by US Department of Energy contract DE-AC02-76SF00515. Table of Contents Abstract……….2 Introduction/Problem Description………….3 Materials and Methods…………..3 Literature Cited…………....…10 Acknowledgements…………..11 Figures and Tables…………12 1 Abstract Field Programmable Gate Array (FPGA) Based Trigger System for the Klystron Department. Darius Gray, Alternative Paper, Science Undergraduate Laboratory Internship, SLAC National Accelerator Laboratory, Summer 2009. The Klystron Department is in need of a new trigger system to update the laboratory capabilities. The objective of the research is to develop the trigger system using Field Programmable Gate Array (FPGA) technology with a user interface that will allow one to communicate with the FPGA via a Universal Serial Bus (USB). This trigger system will be used for the testing of klystrons. The key materials used consists of the Xilinx Integrated Software Environment (ISE) Foundation, a Programmable Read Only Memory (Prom) XCF04S, a Xilinx Spartan 3E 35S500E FPGA, Xilinx Platform Cable USB II, a Printed Circuit Board (PCB), a 100 MHz oscillator, and an oscilloscope. Key considerations include eight triggers, two of which have variable phase shifting capabilities.
    [Show full text]
  • MTD1N50E Power MOSFET 1 Amp, 500 Volts
    ON Semiconductor Is Now To learn more about onsemi™, please visit our website at www.onsemi.com onsemi and and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba “onsemi” or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided “as-is” and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. “Typical” parameters which may be provided in onsemi data sheets and/ or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others.
    [Show full text]