<<

arXiv:1906.06640v1 [.class-ph] 16 Jun 2019 hi offiinsms eeuli qain()ad(6). and (1) Equation in equal Hence be must coefficients their of Since, eobtain we enn h eeaie oetmcnuaeto conjugate generalized the Defining function Lagrangian of relation The n using and and aigttldffrnito feuto 2,w obtain we (2), equation of differentiation total Taking by o’ ucini endb h olwn equation following the by defined is function ton’s oa ieetaino h Hamiltonian the of differentiation total lzdmmnu endo h hs pc ( phase the on defined momentum alized aitnsfnto 13 ncmlxpaesae where space, phase complex q in [1–3] function Hamilton’s ∗ H stegnrlzdcodnt and coordinate generalized the is dH Email:[email protected] Let dq = , = dp p H q dH q ˙ ∂U and ∂q ( − ,p t p, q, and = L dq orsodn rjcoyaepotdo eladcmlxph harmo complex simple and real of on Example and plotted part are . trajectory imaginary of corresponding the equation including canonical by ton’s function Hamilton’s the p ( pd dH q, dt + epeettebscfruaino aitndnmc ncom in Hamilton of formulation basic the present We = ) r needn aibe,tevariations the variables, independent are q ˙ ,t q, ∂L ˙ ∂q j r uulyidpnet saresult a As independent. mutually are ˙ + ˙ = ∂V ∂q = ) p qdp U dq qdp ˙ q ˙ = ( dq = ∂H ,p t p, q, = ∂t p − − − q p + ˙ ∂U ∂p dt ∂U d − = ∂q pdq ∂L ∂ ˙ = aitnsDnmc nCmlxPaeSpace Phase Complex in Dynamics Hamilton’s ∂U ∂p + ) q ∂L ˙ ∂  + ∂L ∂ − W dq q − ˙ − q dp ˙ j ∂L dq ∂t jV ( j − ∂V eateto hsc,Hzr nvriy Pakistan. University, Hazara Physics, of Department q, ∂p ∂V + ∂L/∂t ∂q ˙ = i p ( ,t q, ˙ ,p t p, q, ∂L L j ∂q h ojgt gener- conjugate the pdq ∂V ( ∂p + ) q, dq H  ,t q, dp ˙ eacomplex a be ) dt jZ ( − ,p t p, q, ihHamil- with ) + ∂L ( ∂t q, ∂H ∂t ,p q, ,t q, dt sgiven is ) ˙ Dtd ue1,2019) 18, June (Dated: dt .The ). ) q .A Shahzad A. M.  as (6) (5) (7) (3) (1) (4) (9) (8) (2) ecnie neapeo ipehroi oinde- motion function harmonic Hamilton’s simple following the of by example fined an consider phase-space, complex we in dynamics Hamilton the derstand cleuto fmto o h aitnsfunction Hamilton’s the for motion of H equation ical U ihnnzr mgnr part, imaginary non-zero with iue(()1c)sontetaetr fsml har- simple space. phase of complex trajectory on motion the monic shown (1(b),1(c)) Figure npriua,[ particular, In by given is bracket Poisson n [ and jV n ope aitnfnto fteform the consider- of By function Hamilton complex motion. a of ing equation canonical Hamilton’s mgnr ateult zero, to equal part imaginary ytefloigcmlxHmlo’ function Hamilton’s defined complex motion following harmonic the simple by of example an simple Consider of trajectory space motion. phase harmonic the shown (1(a)) Figure h orsodn qaino oincnb rte as written be can motion of equation corresponding The aitnseutos(,,) ehave we (7,8,9), equations Hamilton’s rmeuto 789,w have we (7,8,9), equation From hs rtodrdffrnileutosaecle as called are equations differential first-order These ( ( Let ,p t p, q, ( ,p t p, q, ,p q, H H q ( i dF ( F dt ,b w ucin npaesae hnthe Then space. phase on functions two be ), jp , ,p t p, q, ,p t p, q, )+ endo ope hs pc.I re oun- to order In space. phase complex on defined ) s space. ase ( ,p q, q ˙ k q [ = ˙ jV i oinaecniee n the and considered are motion nic ∂H n u h orsodn Hamil- corresponding the out find [ = ] = ∂H ∂t = = ) ∂t = ) and ) ,H F, ( ∂H ,p t p, q, ∂p ∂H ∂p lxpaesae eextend We space. phase plex q 0 = [ 0 = U q, i ,H F, U q , ( + ] ( ]+ 0] = ,p t p, q, = i ,p t p, q, ,w bandteHmlo’ canon- Hamilton’s the obtained we ), H + [ = ] m p ∂F m ( p ∂t ∗ ,p q, jp j + ) [ + ) ,p q, k ,U F, [ = ,with ), [ = ] jV p jV = ] ˙ p ,U F, ˙ = + ] = ( ( ,p t p, q, ,p t p, q, q − jδ − i + ] j q , ∂H [ H ∂q ik ∂H ,V F, ∂q i = ) ihtehl of help the With . j + ] ( = ) [ ,p q, ,V F, = = (10) ] j 2 P = ) − 2 P − [ m H q m 2 + ] jkq 2 i kq p , ( + H ,p t p, q, + k ∂F U ( ∂t j H = ] ,p t p, q, k 2 k 2 ( ( q ,p q, q ,p t p, q, with ) 2 2 jδ + ) = ) ik ) 2

Consider a bivariate Hamilton function H′(q,p) as-

sociated to the univariate Hamilton function H(z) via ′ H (x, y)= U(x, y)+ jV (x, y) = H(z)|z=x+jy. The total differential is defined as [4]

′ ′ ′ ∂H (q,p) ∂H (q,p) dH = dq + dp ∂q ∂p

p Using H (q,p)= U(q,p)+ jV (q,p), we obtain

− ′ ∂U(q,p) ∂V (q,p) dH = dq + j dq − ∂q ∂q ∂U(q,p) ∂U(q,p) + dp + j dp − ∂p ∂p

− ∗ − − − − Since, z = q + jp and z = q − jp, we have q dz = dq + jdp (a) ∗ dz = dq − jdp

and

1 ∗ dq = (dz + dz ) 2 1 ∗ dp = (dz − dz ) 2j The total differential dH of a complex valued Hamilton

p function H(z) can be expressed as

∂H(z) ∂H(z) ∗ dH = dz + dz (11) − ∂z ∂z∗ where the Wirtinger derivatives [5] are defined by − ∂ 1 ∂ ∂ − − − − = h − j i (12) iq ∂z 2 ∂q ∂p ∂ 1 ∂ ∂ (b) = + j (13) ∂z∗ 2h∂q ∂pi Using H = pq˙ − L, we have

∂L ∂L ∗ dH = pdq˙ +qdp ˙ − dz1 − dz1 (14) ∂z1 ∂z1∗

where

z1 = (q + jq˙) ∗ 1 ip z = (q − jq˙)

1 ∗ − dq = (dz1 + dz1 ) 2 − 1 ∗ dq˙ = (dz1 − dz1 ) − 2j

− Equation (14) becomes − − q 1 ∂ ∂ dH = pdq˙ +qdp ˙ − − j L dq + jdq˙ (c) 2∂q ∂q˙   1 ∂ ∂ FIG. 1: Trajectories of simple harmonic motion on −  + j L dq − jdq˙ (15) (q,p), (jq,p) and (q,jp). 2 ∂q ∂q˙  3

Using equation (4) and (5), equation (15) can be rewrit- with equation (11), we obtain ten as ∂ ∂ q˙ = j − H (19) ∂z ∂z∗  dH =qdp ˙ − pdq˙ (16) ∂ ∂ p˙ = − + H (20) ∂z ∂z∗  Using dq = (dz + dz∗)/2, and dp = (dz − dz∗)/2j, we Equation (19-20) are Hamilton equation of motion in have complex phase space. Substituting back the Wirtinger derivatives (equation (12,13)) in equation (19-20), we ob- q˙ ∗ p˙ ∗ dH = (dz − dz ) − (dz + dz ) (17) tain Hamilton equation of motion in real phase space; 2j 2 ∂H q˙ = (21) or ∂p ∂H p˙ = − (22) q˙ p˙ q˙ p˙ ∗ ∂q dH =  − dz −  + dz (18) 2j 2 2j 2 Equation (19-20) are basic Hamilton’s canonical equation of motion which can be used to understand the dynamics Comparing the coefficient of dz and dz∗ in equation (18) of in complex phase space.

[1] , On a General Method in Dy- [4] P. Henrici, Applied and Computational Complex Analysis, namics, Philosophical Transactions of the Royal Society, Volume 1: Series Integration Conformal Mapping 247-308, 1834. Location of Zero, Wiley-Interscience, 704, 1988. [2] William Rowan Hamilton, Second Essay on a General [5] W. Wirtinger, Zur formalen Theorie der Funktionen von Method in Dynamics, Philosophical Transactions of the mehr komplexen Ver¨anderlichen, Mathematische Annalen, Royal Society, 95-144, 1835. Volume 97,357-375, 1927. [3] T. L. Chow, Classical , 2nd Edition, Taylor and Francis Group, 2013.