Ch 11 Vibrations and Waves Simple Harmonic Motion Simple Harmonic Motion

Total Page:16

File Type:pdf, Size:1020Kb

Ch 11 Vibrations and Waves Simple Harmonic Motion Simple Harmonic Motion Ch 11 Vibrations and Waves Simple Harmonic Motion Simple Harmonic Motion A vibration (oscillation) back & forth taking the same amount of time for each cycle is periodic. Each vibration has an equilibrium position from which it is somehow disturbed by a given energy source. The disturbance produces a displacement from equilibrium. This is followed by a restoring force. Vibrations transfer energy. Recall Hooke’s Law The restoring force of a spring is proportional to the displacement, x. F = -kx. K is the proportionality constant and we choose the equilibrium position of x = 0. The minus sign reminds us the restoring force is always opposite the displacement, x. F is not constant but varies with position. Acceleration of the mass is not constant therefore. http://www.youtube.com/watch?v=eeYRkW8V7Vg&feature=pl ayer_embedded Key Terms Displacement- distance from equilibrium Amplitude- maximum displacement Cycle- one complete to and fro motion Period (T)- Time for one complete cycle (s) Frequency (f)- number of cycles per second (Hz) * period and frequency are inversely related: T = 1/f f = 1/T Energy in SHOs (Simple Harmonic Oscillators) In stretching or compressing a spring, work is required and potential energy is stored. Elastic PE is given by: PE = ½ kx2 Total mechanical energy E of the mass-spring system = sum of KE + PE E = ½ mv2 + ½ kx2 Here v is velocity of the mass at x position from equilibrium. E remains constant w/o friction. Energy Transformations As a mass oscillates on a spring, the energy changes from PE to KE while the total E remains constant. Displacement, x ranges from –A to + A at the extreme points when the spring is compressed and stretched. At these points when the mass changes direction, v = 0m/s so E = ½ kA2 Thus doubling the amplitude does WHAT to the energy of a system? Period of Oscillation In SHM, the period T of vibration depends on the stiffness of the spring and the suspended mass, but NOT on the Amplitude of oscillation. 2A v 2Af max T 1 2 1 2 kA mvmax 2 2 A m vmax k m T 2 k x = A cos Θ Simple Pendulum A mass oscillating along the arc of a circle with equal amplitude on either side of the equilibrium point resembles simple harmonic motion. Displacement, x = LΘ, is met by a restoring force which would be the component of the weight, mg, tangent to the arc. F = -mgsinΘ. Period of a pendulum If displacement is x = LΘ, then Θ = x/L, so mg F x L mg k L m m T 2 2 k mg/L L T 2 g The mass of a pendulum has no effect on the period. Nor does the amplitude of the swing! So what now? A vibrating object creates a wave. Waves transfer energy from one place to another. Waves travel with or without mediums. A medium can be solid, liquid, or gas, but it affects how fast a wave travels. Some waves like light travel without a medium. These are called Electromagnetic Waves. All waves have a wavelength (λ), a frequency (f), a period (T), and an amplitude (A or x). Wave diagrams Here is a common wave model: F v T m /L The medium determines the wave velocity. In a string, Tension also effects velocity since particles are held close together. Forced Vibrations All objects have a Natural Frequency at which they vibrate at when set into motion. An object can be set into vibration at a different frequency other than it’s natural frequency, f0. This is called a forced vibration, f. The amplitude of this vibration depends on the difference between f and f0. When f = f0 the amplitude is max and often dramatic. This is called the Resonant Frequency. Resonance occurs when an object is forced into vibrations at it’s natural frequency. http://www.youtube.com/watch?v=Az503VJ6kHw&feature=player_ detailpage Tacoma Narrows Wave Motion A wave is not matter but energy moving through matter (or through a vacuum) A single bump is a pulse. A continuous or periodic wave is a repeating disturbance caused by a vibrating source. The frequency of the wave matches the frequency of the source. Wave crests travel a distance of one wavelength λ in a time of one period T. Thus velocity v=λ/T. Since f=1/T, then v = f λ. This is the wave equation. Wave Types Longitudinal: Medium moves parallel to wave energy. Examples include sound and slinky B(bulk mod ulus) v velocity depends on elasticity & inertia of (density ) medium Transverse: Medium moves perpendicular to wave energy. Most waves are this type including light, water, and Electromagnetic waves Surface: Currents in the surface of the ocean sometimes travel in small circles. These are combinations of the above. http://www.acs.psu.edu/drussell/Demos/waves/wavemotion.html Your turn to Practice Please do the HW problems on pgs 323 & 324 #s 1-7, 28 & 30. Complete the Ch 11 Reading worksheet if you have not already done so. Wave Behavior When a wave pulse strikes an obstacle or barrier, at least part of the wave is reflected. Law of Reflection Wave fronts are all points along a wave forming the crest. Ray- a line perpendicular to the wave front For every ray striking a surface and being reflected back into the original medium, the Law of Reflection holds true. “Normal” is perpendicular to surface Principle of Superposition Unlike matter, two or more waves can pass through the exact same space at the same time. In the area where the waves overlap, the resulting displacement is the algebraic sum of their individual displacements. This is the Principle of Superposition Standing wave formations Interference The position of wave crests relative to each other is described by Phases: Waves are IN PHASE when crests and troughs are aligned and the result is CONSTRUCTIVE INTERFERENCE. Waves are OUT OF PHASE when crests and troughs produce DESTRUCTIVE INTERFERENCE. Standing Waves When an incident wave and a reflective wave interfere at just the right frequency, they can form a standing wave. This wave appears to have fixed nodes (zero displacement) and antinodes (maximum amplitude). Standing waves are produced when objects vibrate at their natural frequency or resonant frequency. Harmonics & Overtones The wavelengths of standing waves are directly related to the length of the string, L. The fundamental frequency, lowest resonant frequency, is one loop. This L = ½ λ1. (AKA first harmonic) The other natural frequencies are called overtones. A whole # multiple of the fundamental. These are also called harmonics. st Second harmonic has 2 loops. L = λ2 (recall λ1 is the 1 harmonic). Any harmonic n can be found by n where n=1,2,3,… L n 2 Think of n as # of loops. Your turn to Practice Please do the remaining HW problems on your Reading worksheet pgs 342-345. .
Recommended publications
  • Primary Mechanical Vibrators Mass-Spring System Equation Of
    Primary Mechanical Vibrators Music 206: Mechanical Vibration Tamara Smyth, [email protected] • With a model of a wind instrument body, a model of Department of Music, the mechanical “primary” resonator is needed for a University of California, San Diego (UCSD) complete instrument. November 15, 2019 • Many sounds are produced by coupling the mechanical vibrations of a source to the resonance of an acoustic tube: – In vocal systems, air pressure from the lungs controls the oscillation of a membrane (vocal fold), creating a variable constriction through which air flows. – Similarly, blowing into the mouthpiece of a clarinet will cause the reed to vibrate, narrowing and widening the airflow aperture to the bore. 1 Music 206: Mechanical Vibration 2 Mass-spring System Equation of Motion • Before modeling this mechanical vibrating system, • The force on an object having mass m and let’s review some acoustics, and mechanical vibration. acceleration a may be determined using Newton’s second law of motion • The simplest oscillator is the mass-spring system: – a horizontal spring fixed at one end with a mass F = ma. connected to the other. • There is an elastic force restoring the mass to its equilibrium position, given by Hooke’s law m F = −Kx, K x where K is a constant describing the stiffness of the Figure 1: An ideal mass-spring system. spring. • The motion of an object can be describe in terms of • The spring force is equal and opposite to the force its due to acceleration, yielding the equation of motion: 2 1. displacement x(t) d x m 2 = −Kx.
    [Show full text]
  • Free and Forced Vibration Modes of the Human Fingertip
    applied sciences Article Free and Forced Vibration Modes of the Human Fingertip Gokhan Serhat * and Katherine J. Kuchenbecker Haptic Intelligence Department, Max Planck Institute for Intelligent Systems, 70569 Stuttgart, Germany; [email protected] * Correspondence: [email protected] Abstract: Computational analysis of free and forced vibration responses provides crucial information on the dynamic characteristics of deformable bodies. Although such numerical techniques are prevalently used in many disciplines, they have been underutilized in the quest to understand the form and function of human fingers. We addressed this opportunity by building DigiTip, a detailed three-dimensional finite element model of a representative human fingertip that is based on prior anatomical and biomechanical studies. Using the developed model, we first performed modal analyses to determine the free vibration modes with associated frequencies up to about 250 Hz, the frequency at which humans are most sensitive to vibratory stimuli on the fingertip. The modal analysis results reveal that this typical human fingertip exhibits seven characteristic vibration patterns in the considered frequency range. Subsequently, we applied distributed harmonic forces at the fingerprint centroid in three principal directions to predict forced vibration responses through frequency-response analyses; these simulations demonstrate that certain vibration modes are excited significantly more efficiently than the others under the investigated conditions. The results illuminate the dynamic behavior of the human fingertip in haptic interactions involving oscillating stimuli, such as textures and vibratory alerts, and they show how the modal information can predict the forced vibration responses of the soft tissue. Citation: Serhat, G.; Kuchenbecker, Keywords: human fingertips; soft-tissue dynamics; natural vibration modes; frequency-response K.J.
    [Show full text]
  • VIBRATIONAL SPECTROSCOPY • the Vibrational Energy V(R) Can Be Calculated Using the (Classical) Model of the Harmonic Oscillator
    VIBRATIONAL SPECTROSCOPY • The vibrational energy V(r) can be calculated using the (classical) model of the harmonic oscillator: • Using this potential energy function in the Schrödinger equation, the vibrational frequency can be calculated: The vibrational frequency is increasing with: • increasing force constant f = increasing bond strength • decreasing atomic mass • Example: f cc > f c=c > f c-c Vibrational spectra (I): Harmonic oscillator model • Infrared radiation in the range from 10,000 – 100 cm –1 is absorbed and converted by an organic molecule into energy of molecular vibration –> this absorption is quantized: A simple harmonic oscillator is a mechanical system consisting of a point mass connected to a massless spring. The mass is under action of a restoring force proportional to the displacement of particle from its equilibrium position and the force constant f (also k in followings) of the spring. MOLECULES I: Vibrational We model the vibrational motion as a harmonic oscillator, two masses attached by a spring. nu and vee! Solving the Schrödinger equation for the 1 v h(v 2 ) harmonic oscillator you find the following quantized energy levels: v 0,1,2,... The energy levels The level are non-degenerate, that is gv=1 for all values of v. The energy levels are equally spaced by hn. The energy of the lowest state is NOT zero. This is called the zero-point energy. 1 R h Re 0 2 Vibrational spectra (III): Rotation-vibration transitions The vibrational spectra appear as bands rather than lines. When vibrational spectra of gaseous diatomic molecules are observed under high-resolution conditions, each band can be found to contain a large number of closely spaced components— band spectra.
    [Show full text]
  • Control Strategy Development of Driveline Vibration Reduction for Power-Split Hybrid Vehicles
    applied sciences Article Control Strategy Development of Driveline Vibration Reduction for Power-Split Hybrid Vehicles Hsiu-Ying Hwang 1, Tian-Syung Lan 2,* and Jia-Shiun Chen 1 1 Department of Vehicle Engineering, National Taipei University of Technology, Taipei 10608, Taiwan; [email protected] (H.-Y.H.); [email protected] (J.-S.C.) 2 College of Mechatronic Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, Guangdong, China * Correspondence: [email protected] Received: 16 January 2020; Accepted: 25 February 2020; Published: 2 March 2020 Abstract: In order to achieve better performance of fuel consumption in hybrid vehicles, the internal combustion engine is controlled to operate under a better efficient zone and often turned off and on during driving. However, while starting or shifting the driving mode, the instantaneous large torque from the engine or electric motor may occur, which can easily lead to a high vibration of the elastomer on the driveline. This results in decreased comfort. A two-mode power-split hybrid system model with elastomers was established with MATLAB/Simulink. Vibration reduction control strategies, Pause Cancelation strategy (PC), and PID control were developed in this research. When the system detected a large instantaneous torque output on the internal combustion engine or driveline, the electric motor provided corresponding torque to adjust the torque transmitted to the shaft mitigating the vibration. To the research results, in the two-mode power-split hybrid system, PC was able to mitigate the vibration of the engine damper by about 60%. However, the mitigation effect of PID and PC-PID was better than PC, and the vibration was able to converge faster when the instantaneous large torque input was made.
    [Show full text]
  • The Physics of Sound 1
    The Physics of Sound 1 The Physics of Sound Sound lies at the very center of speech communication. A sound wave is both the end product of the speech production mechanism and the primary source of raw material used by the listener to recover the speaker's message. Because of the central role played by sound in speech communication, it is important to have a good understanding of how sound is produced, modified, and measured. The purpose of this chapter will be to review some basic principles underlying the physics of sound, with a particular focus on two ideas that play an especially important role in both speech and hearing: the concept of the spectrum and acoustic filtering. The speech production mechanism is a kind of assembly line that operates by generating some relatively simple sounds consisting of various combinations of buzzes, hisses, and pops, and then filtering those sounds by making a number of fine adjustments to the tongue, lips, jaw, soft palate, and other articulators. We will also see that a crucial step at the receiving end occurs when the ear breaks this complex sound into its individual frequency components in much the same way that a prism breaks white light into components of different optical frequencies. Before getting into these ideas it is first necessary to cover the basic principles of vibration and sound propagation. Sound and Vibration A sound wave is an air pressure disturbance that results from vibration. The vibration can come from a tuning fork, a guitar string, the column of air in an organ pipe, the head (or rim) of a snare drum, steam escaping from a radiator, the reed on a clarinet, the diaphragm of a loudspeaker, the vocal cords, or virtually anything that vibrates in a frequency range that is audible to a listener (roughly 20 to 20,000 cycles per second for humans).
    [Show full text]
  • Euler Equation and Geodesics R
    Euler Equation and Geodesics R. Herman February 2, 2018 Introduction Newton formulated the laws of motion in his 1687 volumes, col- lectively called the Philosophiae Naturalis Principia Mathematica, or simply the Principia. However, Newton’s development was geometrical and is not how we see classical dynamics presented when we first learn mechanics. The laws of mechanics are what are now considered analytical mechanics, in which classical dynamics is presented in a more elegant way. It is based upon variational principles, whose foundations began with the work of Eu- ler and Lagrange and have been refined by other now-famous figures in the eighteenth and nineteenth centuries. Euler coined the term the calculus of variations in 1756, though it is also called variational calculus. The goal is to find minima or maxima of func- tions of the form f : M ! R, where M can be a set of numbers, functions, paths, curves, surfaces, etc. Interest in extrema problems in classical mechan- ics began near the end of the seventeenth century with Newton and Leibniz. In the Principia, Newton was interested in the least resistance of a surface of revolution as it moves through a fluid. Seeking extrema at the time was not new, as the Egyptians knew that the shortest path between two points is a straight line and that a circle encloses the largest area for a given perimeter. Heron, an Alexandrian scholar, deter- mined that light travels along the shortest path. This problem was later taken up by Willibrord Snellius (1580–1626) after whom Snell’s law of refraction is named.
    [Show full text]
  • Chapter 1 Chapter 2 Chapter 3
    Notes CHAPTER 1 1. Herbert Westren Turnbull, The Great Mathematicians in The World of Mathematics. James R. Newrnan, ed. New York: Sirnon & Schuster, 1956. 2. Will Durant, The Story of Philosophy. New York: Sirnon & Schuster, 1961, p. 41. 3. lbid., p. 44. 4. G. E. L. Owen, "Aristotle," Dictionary of Scientific Biography. New York: Char1es Scribner's Sons, Vol. 1, 1970, p. 250. 5. Durant, op. cit., p. 44. 6. Owen, op. cit., p. 251. 7. Durant, op. cit., p. 53. CHAPTER 2 1. Williarn H. Stahl, '' Aristarchus of Samos,'' Dictionary of Scientific Biography. New York: Charles Scribner's Sons, Vol. 1, 1970, p. 246. 2. Jbid., p. 247. 3. G. J. Toorner, "Ptolerny," Dictionary of Scientific Biography. New York: Charles Scribner's Sons, Vol. 11, 1975, p. 187. CHAPTER 3 1. Stephen F. Mason, A History of the Sciences. New York: Abelard-Schurnan Ltd., 1962, p. 127. 2. Edward Rosen, "Nicolaus Copernicus," Dictionary of Scientific Biography. New York: Charles Scribner's Sons, Vol. 3, 1971, pp. 401-402. 3. Mason, op. cit., p. 128. 4. Rosen, op. cit., p. 403. 391 392 NOTES 5. David Pingree, "Tycho Brahe," Dictionary of Scientific Biography. New York: Charles Scribner's Sons, Vol. 2, 1970, p. 401. 6. lbid.. p. 402. 7. Jbid., pp. 402-403. 8. lbid., p. 413. 9. Owen Gingerich, "Johannes Kepler," Dictionary of Scientific Biography. New York: Charles Scribner's Sons, Vol. 7, 1970, p. 289. 10. lbid.• p. 290. 11. Mason, op. cit., p. 135. 12. Jbid .. p. 136. 13. Gingerich, op. cit., p. 305. CHAPTER 4 1.
    [Show full text]
  • Oscillations
    CHAPTER FOURTEEN OSCILLATIONS 14.1 INTRODUCTION In our daily life we come across various kinds of motions. You have already learnt about some of them, e.g., rectilinear 14.1 Introduction motion and motion of a projectile. Both these motions are 14.2 Periodic and oscillatory non-repetitive. We have also learnt about uniform circular motions motion and orbital motion of planets in the solar system. In 14.3 Simple harmonic motion these cases, the motion is repeated after a certain interval of 14.4 Simple harmonic motion time, that is, it is periodic. In your childhood, you must have and uniform circular enjoyed rocking in a cradle or swinging on a swing. Both motion these motions are repetitive in nature but different from the 14.5 Velocity and acceleration periodic motion of a planet. Here, the object moves to and fro in simple harmonic motion about a mean position. The pendulum of a wall clock executes 14.6 Force law for simple a similar motion. Examples of such periodic to and fro harmonic motion motion abound: a boat tossing up and down in a river, the 14.7 Energy in simple harmonic piston in a steam engine going back and forth, etc. Such a motion motion is termed as oscillatory motion. In this chapter we 14.8 Some systems executing study this motion. simple harmonic motion The study of oscillatory motion is basic to physics; its 14.9 Damped simple harmonic motion concepts are required for the understanding of many physical 14.10 Forced oscillations and phenomena. In musical instruments, like the sitar, the guitar resonance or the violin, we come across vibrating strings that produce pleasing sounds.
    [Show full text]
  • Leonhard Euler - Wikipedia, the Free Encyclopedia Page 1 of 14
    Leonhard Euler - Wikipedia, the free encyclopedia Page 1 of 14 Leonhard Euler From Wikipedia, the free encyclopedia Leonhard Euler ( German pronunciation: [l]; English Leonhard Euler approximation, "Oiler" [1] 15 April 1707 – 18 September 1783) was a pioneering Swiss mathematician and physicist. He made important discoveries in fields as diverse as infinitesimal calculus and graph theory. He also introduced much of the modern mathematical terminology and notation, particularly for mathematical analysis, such as the notion of a mathematical function.[2] He is also renowned for his work in mechanics, fluid dynamics, optics, and astronomy. Euler spent most of his adult life in St. Petersburg, Russia, and in Berlin, Prussia. He is considered to be the preeminent mathematician of the 18th century, and one of the greatest of all time. He is also one of the most prolific mathematicians ever; his collected works fill 60–80 quarto volumes. [3] A statement attributed to Pierre-Simon Laplace expresses Euler's influence on mathematics: "Read Euler, read Euler, he is our teacher in all things," which has also been translated as "Read Portrait by Emanuel Handmann 1756(?) Euler, read Euler, he is the master of us all." [4] Born 15 April 1707 Euler was featured on the sixth series of the Swiss 10- Basel, Switzerland franc banknote and on numerous Swiss, German, and Died Russian postage stamps. The asteroid 2002 Euler was 18 September 1783 (aged 76) named in his honor. He is also commemorated by the [OS: 7 September 1783] Lutheran Church on their Calendar of Saints on 24 St. Petersburg, Russia May – he was a devout Christian (and believer in Residence Prussia, Russia biblical inerrancy) who wrote apologetics and argued Switzerland [5] forcefully against the prominent atheists of his time.
    [Show full text]
  • Exact Solution for the Nonlinear Pendulum (Solu¸C˜Aoexata Do Pˆendulon˜Aolinear)
    Revista Brasileira de Ensino de F¶³sica, v. 29, n. 4, p. 645-648, (2007) www.sb¯sica.org.br Notas e Discuss~oes Exact solution for the nonlinear pendulum (Solu»c~aoexata do p^endulon~aolinear) A. Bel¶endez1, C. Pascual, D.I. M¶endez,T. Bel¶endezand C. Neipp Departamento de F¶³sica, Ingenier¶³ade Sistemas y Teor¶³ade la Se~nal,Universidad de Alicante, Alicante, Spain Recebido em 30/7/2007; Aceito em 28/8/2007 This paper deals with the nonlinear oscillation of a simple pendulum and presents not only the exact formula for the period but also the exact expression of the angular displacement as a function of the time, the amplitude of oscillations and the angular frequency for small oscillations. This angular displacement is written in terms of the Jacobi elliptic function sn(u;m) using the following initial conditions: the initial angular displacement is di®erent from zero while the initial angular velocity is zero. The angular displacements are plotted using Mathematica, an available symbolic computer program that allows us to plot easily the function obtained. As we will see, even for amplitudes as high as 0.75¼ (135±) it is possible to use the expression for the angular displacement, but considering the exact expression for the angular frequency ! in terms of the complete elliptic integral of the ¯rst kind. We can conclude that for amplitudes lower than 135o the periodic motion exhibited by a simple pendulum is practically harmonic but its oscillations are not isochronous (the period is a function of the initial amplitude).
    [Show full text]
  • Lecture I, Aug25, 2014 Newton, Lagrange and Hamilton's Equations of Classical Mechanics
    Lecture I, Aug25, 2014 Newton, Lagrange and Hamilton’s Equations of Classical Mechanics Introduction What this course is about... BOOK Goldstein is a classic Text Book Herbert Goldstein ( June 26, 1922 January 12, 2005) PH D MIT in 1943; Then at Harvard and Columbia first edition of CM book was published in 1950 ( 399 pages, each page is about 3/4 in area compared to new edition) Third edition appeared in 2002 ... But it is an old Text book What we will do different ?? Start with Newton’s Lagrange and Hamilton’s equation one after the other Small Oscillations: Marion, why is it important ??? we start right in the beginning talking about small oscillations, simple limit Phase Space Plots ( Marian, page 159 ) , Touch nonlinear physics and Chaos, Symmetries Order in which Chapters are covered is posted on the course web page Classical Encore 1-4pm, Sept 29, Oct 27, Dec 1 Last week of the Month: Three Body Problem.. ( chaos ), Solitons, may be General Relativity We may not cover scattering and Rigid body dynamics.. the topics that you have covered in Phys303 and I think there is less to gain there.... —————————————————————————— Newton’s Equation, Lagrange and Hamilton’s Equations Beauty Contest: Write Three equations and See which one are the prettiest?? (Simplicity, Mathematical Beauty...) Same Equations disguised in three different forms (I)Lagrange and Hamilton’s equations are scalar equations unlike Newton’s equation.. (II) To apply Newtons’ equation, Forces of constraints are needed to describe constrained motion (III) Symmetries are best described in the Lagrangian formulation (IV)For rectangular coordinates, Newtons’ s Eqn are the easiest.
    [Show full text]
  • HOOKE's LAW and Sihlple HARMONIC MOTION by DR
    Hooke’s Law by Dr. James E. Parks Department of Physics and Astronomy 401 Nielsen Physics Building The University of Tennessee Knoxville, Tennessee 37996-1200 Copyright June, 2000 by James Edgar Parks* *All rights are reserved. No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopy, recording, or any information storage or retrieval system, without permission in writing from the author. Objective The objectives of this experiment are: (1) to study simple harmonic motion, (2) to learn the requirements for simple harmonic motion, (3) to learn Hooke's Law, (4) to verify Hooke's Law for a simple spring, (5) to measure the force constant of a spiral spring, (6) to learn the definitions of period and frequency and the relationships between them, (7) to learn the definition of amplitude, (8) to learn the relationship between the period, mass, and force constant of a vibrating mass on a spring undergoing simple harmonic motion, (9) to determine the period of a vibrating spring with different masses, and (10) to compare the measured periods of vibration with those calculated from theory. Theory The motion of a body that oscillates back and forth is defined as simple harmonic motion if there exists a restoring force F that is opposite and directly proportional to the distance x that the body is displaced from its equilibrium position. This relationship between the restoring force F and the displacement x may be written as F=-kx (1) where k is a constant of proportionality. The minus sign indicates that the force is oppositely directed to the displacement and is always towards the equilibrium position.
    [Show full text]