Macroevolution and Speciation

Total Page:16

File Type:pdf, Size:1020Kb

Macroevolution and Speciation Macroevolution and Speciation Evolution creates (and destroys) new species, but … What is a species? Its not as straightforward a question as most believe. These are members of different species - eastern (left) and western (right) meadowlark. What is a Species? There is only one extant (existing) human species. What is a Species? And these are all members of a single species. Determining What Is and What Isn’t a Distinct Species Can Have Economic Consequences Northern spotted owl (left) and barred owl (right). What is a Species? The definition we’ll use is this: A species is a group of individuals capable of interbreeding to produce fertile offspring. This is the biological species concept. Like all attempts to define a species, it has many problems. One Problem in the Biological Species Concept For asexually-reproducing organisms, like these bacteria, what constitutes a species? …and another problem with the Biological Species Concept… Where do you draw the line between different ‘species’? How Many Species Are There? We don’t know. About 2 million species have been described. Estimates of existing species number range from 4 million to 100 million (with 10-15 million being a more commonly considered upper estimate). How did this diversity of life come to be? Species = basic unit Continuous lineage - information passed through genes Speciation - rise of new species Two Patterns of Speciation How Do Species Arise? The key to speciation is reproductive isolation of populations. There are extrinsic and intrinsic reproductive isolating mechanisms. Geographic isolation is the primary extrinsic reproductive isolating mechanism. Process of speciation: Parent 2 separate species species I. Barrier II. Diverge III. Don’t interbreed Reproductive Isolation May Occur With or Without Geographic Isolation Allopatric speciation occurs when geographic isolation creates a reproductive barrier (an extrinsic mechanism). Sympatric speciation occurs when a reproductive barrier is created by something other than geographic isolation (intrinsic mechanisms). Allopatric Speciation Harris’ antelope squirrel White-tailed antelope squirrel Two species of ground squirrel are postulated to have descended from a common ancestral population that was separated by formation of the Grand Canyon. Many Intrinsic Reproductive Isolating Mechanisms Drive Speciation (different habits within an overlapping range) Many Intrinsic Reproductive Isolating Mechanisms Drive Speciation Courtship rituals, like these, are critical for mating within a species, but ineffective for attracting members of other species. Many Intrinsic Reproductive Isolating Mechanisms Drive Speciation Many Intrinsic Reproductive Isolating Mechanisms Drive Speciation Hybrid Infertility Was the Impetus for Cloning a Mule Speciation Dynamics - Gradualism or Punctuated Equilibrium? Gradualism-species is constantly making small changes over a long period of time until they are a new species Punctuated equilibrium: new species evolve fairly rapidly and then stay the same for a long time Punctuated equilibrium appears to be a more accurate view of speciation dynamics. Does Evolution Create the Perfect Organism? No, only better organisms as evolution is constrained by history and buffeted by random events. Essentially, every organism on earth is in significant part a sum of accidents. Species Come and Go Best estimates from the fossil record indicate that greater than 99% of species that have existed are now extinct. A typical “lifetime” for a species is about 1 million years. Mass Extinctions Are a Fact of Life 90% of all species that have ever existed are now extinct … The Cretaceous/Tertiary Mass Extinction Gary Larson Are We Now Causing a Mass Extinction? .
Recommended publications
  • Introduction to Macroevolution
    Spring, 2012 Phylogenetics 200A Modes of Macroevolution Macroevolution is used to refer to any evolutionary change at or above the level of species. Darwin illustrated the combined action of descent with modification, the principle of divergence, and extinction in the only figure in On the Origin of Species (Fig. 1), showing the link between microevolution and macroevolution. The New Synthesis sought to distance itself from the ‘origin of species’ (= macroevolution) and concentrated instead on microevolution - variation within populations and reproductive isolation. “Darwin’s principle of divergence derives from what he thought to be one of the most potent components of the struggle for existence. He argued that the strongest interactions would be among individuals within a population or among closely related populations or species, because these organisms have the most similar requirements. Darwin’s principle of divergence predicts that the individuals, populations or species most likely to succeed in the struggle are those that differ most from their close relatives in the way they achieve their needs for survival and reproduction.” (Reznick & Ricklefs 2009. Nature 457) Macroevolution also fell into disfavor with its invocation for hopeful monsters in development as well as its implication in some Neo-Lamarckian theories. Interest in macroevolution revived by several paleontologists including Steven Stanley, Stephen Jay Gould and Niles Eldredge, the latter two in the context of punctuated equilibrium. They proposed that what happens in evolution beyond the species level is due to processes that operate beyond the level of populations – including species selection. Niles Eldredge, in particular, has written extensively on the macroevolutionary hierarchy.
    [Show full text]
  • Mammal Species Native to the USA and Canada for Which the MIL Has an Image (296) 31 July 2021
    Mammal species native to the USA and Canada for which the MIL has an image (296) 31 July 2021 ARTIODACTYLA (includes CETACEA) (38) ANTILOCAPRIDAE - pronghorns Antilocapra americana - Pronghorn BALAENIDAE - bowheads and right whales 1. Balaena mysticetus – Bowhead Whale BALAENOPTERIDAE -rorqual whales 1. Balaenoptera acutorostrata – Common Minke Whale 2. Balaenoptera borealis - Sei Whale 3. Balaenoptera brydei - Bryde’s Whale 4. Balaenoptera musculus - Blue Whale 5. Balaenoptera physalus - Fin Whale 6. Eschrichtius robustus - Gray Whale 7. Megaptera novaeangliae - Humpback Whale BOVIDAE - cattle, sheep, goats, and antelopes 1. Bos bison - American Bison 2. Oreamnos americanus - Mountain Goat 3. Ovibos moschatus - Muskox 4. Ovis canadensis - Bighorn Sheep 5. Ovis dalli - Thinhorn Sheep CERVIDAE - deer 1. Alces alces - Moose 2. Cervus canadensis - Wapiti (Elk) 3. Odocoileus hemionus - Mule Deer 4. Odocoileus virginianus - White-tailed Deer 5. Rangifer tarandus -Caribou DELPHINIDAE - ocean dolphins 1. Delphinus delphis - Common Dolphin 2. Globicephala macrorhynchus - Short-finned Pilot Whale 3. Grampus griseus - Risso's Dolphin 4. Lagenorhynchus albirostris - White-beaked Dolphin 5. Lissodelphis borealis - Northern Right-whale Dolphin 6. Orcinus orca - Killer Whale 7. Peponocephala electra - Melon-headed Whale 8. Pseudorca crassidens - False Killer Whale 9. Sagmatias obliquidens - Pacific White-sided Dolphin 10. Stenella coeruleoalba - Striped Dolphin 11. Stenella frontalis – Atlantic Spotted Dolphin 12. Steno bredanensis - Rough-toothed Dolphin 13. Tursiops truncatus - Common Bottlenose Dolphin MONODONTIDAE - narwhals, belugas 1. Delphinapterus leucas - Beluga 2. Monodon monoceros - Narwhal PHOCOENIDAE - porpoises 1. Phocoena phocoena - Harbor Porpoise 2. Phocoenoides dalli - Dall’s Porpoise PHYSETERIDAE - sperm whales Physeter macrocephalus – Sperm Whale TAYASSUIDAE - peccaries Dicotyles tajacu - Collared Peccary CARNIVORA (48) CANIDAE - dogs 1. Canis latrans - Coyote 2.
    [Show full text]
  • Comparative Evolution: Latent Potentials for Anagenetic Advance (Adaptive Shifts/Constraints/Anagenesis) G
    Proc. Natl. Acad. Sci. USA Vol. 85, pp. 5141-5145, July 1988 Evolution Comparative evolution: Latent potentials for anagenetic advance (adaptive shifts/constraints/anagenesis) G. LEDYARD STEBBINS* AND DANIEL L. HARTLtt *Department of Genetics, University of California, Davis, CA 95616; and tDepartment of Genetics, Washington University School of Medicine, Box 8031, 660 South Euclid Avenue, Saint Louis, MO 63110 Contributed by G. Ledyard Stebbins, April 4, 1988 ABSTRACT One of the principles that has emerged from genetic variation available for evolutionary changes (2), a experimental evolutionary studies of microorganisms is that major concern of modem evolutionists is explaining how the polymorphic alleles or new mutations can sometimes possess a vast amount of genetic variation that actually exists can be latent potential to respond to selection in different environ- maintained. Given the fact that in complex higher organisms ments, although the alleles may be functionally equivalent or most new mutations with visible effects on phenotype are disfavored under typical conditions. We suggest that such deleterious, many biologists, particularly Kimura (3), have responses to selection in microorganisms serve as experimental sought to solve the problem by proposing that much genetic models of evolutionary advances that occur over much longer variation is selectively neutral or nearly so, at least at the periods of time in higher organisms. We propose as a general molecular level. Amidst a background of what may be largely evolutionary principle that anagenic advances often come from neutral or nearly neutral genetic variation, adaptive evolution capitalizing on preexisting latent selection potentials in the nevertheless occurs. While much of natural selection at the presence of novel ecological opportunity.
    [Show full text]
  • Microevolution and the Genetics of Populations ​ ​ Microevolution Refers to Varieties Within a Given Type
    Chapter 8: Evolution Lesson 8.3: Microevolution and the Genetics of Populations ​ ​ Microevolution refers to varieties within a given type. Change happens within a group, but the descendant is clearly of the same type as the ancestor. This might better be called variation, or adaptation, but the changes are "horizontal" in effect, not "vertical." Such changes might be accomplished by "natural selection," in which a trait ​ ​ ​ ​ within the present variety is selected as the best for a given set of conditions, or accomplished by "artificial selection," such as when dog breeders produce a new breed of dog. Lesson Objectives ● Distinguish what is microevolution and how it affects changes in populations. ● Define gene pool, and explain how to calculate allele frequencies. ● State the Hardy-Weinberg theorem ● Identify the five forces of evolution. Vocabulary ● adaptive radiation ● gene pool ● migration ● allele frequency ● genetic drift ● mutation ● artificial selection ● Hardy-Weinberg theorem ● natural selection ● directional selection ● macroevolution ● population genetics ● disruptive selection ● microevolution ● stabilizing selection ● gene flow Introduction Darwin knew that heritable variations are needed for evolution to occur. However, he knew nothing about Mendel’s laws of genetics. Mendel’s laws were rediscovered in the early 1900s. Only then could scientists fully understand the process of evolution. Microevolution is how individual traits within a population change over time. In order for a population to change, some things must be assumed to be true. In other words, there must be some sort of process happening that causes microevolution. The five ways alleles within a population change over time are natural selection, migration (gene flow), mating, mutations, or genetic drift.
    [Show full text]
  • What Is Macroevolution?
    [Palaeontology, 2020, pp. 1–11] FRONTIERS IN PALAEONTOLOGY WHAT IS MACROEVOLUTION? by MICHAEL HAUTMANN Pal€aontologisches Institut und Museum, Universit€at Zurich,€ Karl-Schmid Strasse 4, 8006 Zurich,€ Switzerland; [email protected] Typescript received 14 June 2019; accepted in revised form 15 October 2019 Abstract: Definitions of macroevolution fall into three cat- intraspecific competition as a mediator between selective egories: (1) evolution of taxa of supraspecific rank; (2) evolu- agents and evolutionary responses. This mediating role of tion on the grand time-scale; and (3) evolution that is guided intraspecific competition occurs in the presence of sexual by sorting of interspecific variation (as opposed to sorting of reproduction and has therefore no analogue at the macroevo- intraspecific variation in microevolution). Here, it is argued lutionary level where species are the evolutionary units. Com- that only definition 3 allows for a consistent separation of petition between species manifests both on the macroevolution and microevolution. Using this definition, spe- microevolutionary and macroevolutionary level, but with dif- ciation has both microevolutionary and macroevolutionary ferent effects. In microevolution, interspecific competition aspects: the process of morphological transformation is spurs evolutionary divergence, whereas it is a potential driver microevolutionary, but the variation among species that it pro- of extinction at the macroevolutionary level. Recasting the Red duces is macroevolutionary, as is the rate at which speciation Queen hypothesis in a macroevolutionary framework suggests occurs. Selective agents may have differential effects on that the effects of interspecific competition result in a positive intraspecific and interspecific variation, with three possible sit- correlation between origination and extinction rates, confirm- uations: effect at one level only, effect at both levels with the ing empirical observations herein referred to as Stanley’s rule.
    [Show full text]
  • Uniting Micro- with Macroevolution Into an Extended Synthesis: Reintegrating Life’S Natural History Into Evolution Studies
    Uniting Micro- with Macroevolution into an Extended Synthesis: Reintegrating Life’s Natural History into Evolution Studies Nathalie Gontier Abstract The Modern Synthesis explains the evolution of life at a mesolevel by identifying phenotype–environmental interactions as the locus of evolution and by identifying natural selection as the means by which evolution occurs. Both micro- and macroevolutionary schools of thought are post-synthetic attempts to evolution- ize phenomena above and below organisms that have traditionally been conceived as non-living. Microevolutionary thought associates with the study of how genetic selection explains higher-order phenomena such as speciation and extinction, while macroevolutionary research fields understand species and higher taxa as biological individuals and they attribute evolutionary causation to biotic and abiotic factors that transcend genetic selection. The microreductionist and macroholistic research schools are characterized as two distinct epistemic cultures where the former favor mechanical explanations, while the latter favor historical explanations of the evolu- tionary process by identifying recurring patterns and trends in the evolution of life. I demonstrate that both cultures endorse radically different notions on time and explain how both perspectives can be unified by endorsing epistemic pluralism. Keywords Microevolution · Macroevolution · Origin of life · Evolutionary biology · Sociocultural evolution · Natural history · Organicism · Biorealities · Units, levels and mechanisms of evolution · Major transitions · Hierarchy theory But how … shall we describe a process which nobody has seen performed, and of which no written history gives any account? This is only to be investigated, first, in examining the nature of those solid bodies, the history of which we want to know; and 2dly, in exam- ining the natural operations of the globe, in order to see if there now actually exist such operations, as, from the nature of the solid bodies, appear to have been necessary to their formation.
    [Show full text]
  • •How Does Microevolution Add up to Macroevolution? •What Are Species
    Microevolution and Macroevolution • How does Microevolution add up to macroevolution? • What are species? • How are species created? • What are anagenesis and cladogenesis? 1 Sunday, March 6, 2011 Species Concepts • Biological species concept: Defines species as interbreeding populations reproductively isolated from other such populations. • Evolutionary species concept: Defines species as evolutionary lineages with their own unique identity. • Ecological species concept: Defines species based on the uniqueness of their ecological niche. • Recognition species concept: Defines species based on unique traits or behaviors that allow members of one species to identify each other for mating. 2 Sunday, March 6, 2011 Reproductive Isolating Mechanisms • Premating RIMs Habitat isolation Temporal isolation Behavioral isolation Mechanical incompatibility • Postmating RIMs Sperm-egg incompatibility Zygote inviability Embryonic or fetal inviability 3 Sunday, March 6, 2011 Modes of Evolutionary Change 4 Sunday, March 6, 2011 Cladogenesis 5 Sunday, March 6, 2011 6 Sunday, March 6, 2011 7 Sunday, March 6, 2011 Evolution is “the simple way by which species (populations) become exquisitely adapted to various ends” 8 Sunday, March 6, 2011 All characteristics are due to the four forces • Mutation creates new alleles - new variation • Genetic drift moves these around by chance • Gene flow moves these from one population to the next creating clines • Natural selection increases and decreases them in frequency through adaptation 9 Sunday, March 6, 2011 Clines
    [Show full text]
  • Macroevolution Spring 2002 Reading List and Syllabus I. Introduction
    Biology 4182 - Macroevolution Spring 2002 Reading List and Syllabus I. Introduction - Darwinism and Macroevolution 1. Mayr, E. 1982. The Growth of Biological Thought. Harvard Univ. Press. (Pp. 21-78) 2. Mayr, E. 1985. Darwin's five theories of evolution. Pp. 755- 772 in D. Kohn (ed.) The Darwinian Heritage. Princeton Univ. Press, Princeton. 3. Gould, S. J. 1995. Tempo and mode in the macroevolutionary reconstruction of Darwinism. Pp. 125-144 in W. M. Fitch and F. J. Ayala (eds.) Tempo and Mode in Evolution: Genetics and Paleontology 50 Years after Simpson. National Academy Press, Washington. (Pp. 125-134) 4. Simpson, G. G. 1944. Tempo and Mode in Evolution. Columbia Univ. Press, New York. (Pp. 197-217) II. Systematics I - Concepts of the Higher Taxa A. Evolutionary Taxonomy 5. Simpson, G. G. 1953. The Major Features of Evolution. Columbia Univ. Press, New York. (Pp. 199-212; 338-359) 6. Mayr, E. 1982. The Growth of Biological Thought. Harvard Univ. Press, Cambridge. (Pp. 614-616; 233-235) 7. Miller, A. H. 1949. Some ecologic and morphologic considerations in the evolution of higher taxonomic categories. Pp. 84-88 in E. Mayr and E. Schuz (eds.) Ornithologie als Biologische Wissenschaft. Carl Winter/Universitätsverlag, Heidelberg. B. Phenetic Taxonomy 8. Sneath, P. H. A. and R. R. Sokal. 1973. Numerical Taxonomy. W. H. Freeman and Co., San Francisco. (Pp. 5, 9-10, 27-30, 37- 40, 55-67). C. Cladistic Taxonomy 9. de Queiroz, K. 1988. Systematics and the Darwinian Revolution. Philosophy of Science 55:238-259. 10. Eldredge, N. and J. Cracraft. 1980. Phylogenetic Patterns and the Evolutionary Process.
    [Show full text]
  • Connecting Micro and Macroevolution Using Genetic Incompatibilities and Natural Selection On
    bioRxiv preprint doi: https://doi.org/10.1101/520809; this version posted January 16, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Connecting micro and macroevolution using genetic incompatibilities and natural selection on 2 additive genetic variance 3 Greg M. Walter1*, J. David Aguirre2, Melanie J Wilkinson1, Mark W. Blows1, Thomas J. Richards3 and 4 Daniel Ortiz-Barrientos1 5 1University of Queensland, School of Biological Sciences, St. Lucia QLD 4072, Australia 6 2Massey University, Institute of Natural and Mathematical Sciences, Auckland 0745, New Zealand 7 3Swedish University of Agricultural Science, Department of plant Biology, Uppsala, 75007, Sweden 8 * Corresponding Author: Greg M. Walter 9 Email: [email protected] 10 Address: School of Biological Sciences, Life Sciences Building 11 University of Bristol, Bristol, UK BS8 1TQ 12 Phone: +44 7377 074 175 13 Running head: Divergent natural selection on additive genetic variance 14 Data archiving: Data will be deposited in Dryad on acceptance. 15 Keywords: natural selection, trade-offs, additive genetic variance, selection gradient, response to 16 selection, adaptive divergence, adaptive radiation, genetic incompatibilities, reproductive isolation, 17 macroevolution 18 1 bioRxiv preprint doi: https://doi.org/10.1101/520809; this version posted January 16, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 19 Abstract 20 Evolutionary biologists have long sought to identify the links between micro and macroevolution to better 21 understand how biodiversity is created.
    [Show full text]
  • Speciation in Parasites: a Population Genetics Approach
    Review TRENDS in Parasitology Vol.21 No.10 October 2005 Speciation in parasites: a population genetics approach Tine Huyse1, Robert Poulin2 and Andre´ The´ ron3 1Parasitic Worms Division, Department of Zoology, The Natural History Museum, Cromwell Road, London, UK, SW7 5BD 2Department of Zoology, University of Otago, PO Box 56, Dunedin, New Zealand 3Parasitologie Fonctionnelle et Evolutive, UMR 5555 CNRS-UP, CBETM, Universite´ de Perpignan, 52 Avenue Paul Alduy, 66860 Perpignan Cedex, France Parasite speciation and host–parasite coevolution dynamics and their influence on population genetics. The should be studied at both macroevolutionary and first step toward identifying the evolutionary processes microevolutionary levels. Studies on a macroevolutionary that promote parasite speciation is to compare existing scale provide an essential framework for understanding studies on parasite populations. Crucial, and novel, to this the origins of parasite lineages and the patterns of approach is consideration of the various processes that diversification. However, because coevolutionary inter- function on each parasite population level separately actions can be highly divergent across time and space, (from infrapopulation to metapopulation). Patterns of it is important to quantify and compare the phylogeo- genetic differentiation over small spatial scales provide graphic variation in both the host and the parasite information about the mode of parasite dispersal and their throughout their geographical range. Furthermore, to evolutionary dynamics. Parasite population parameters evaluate demographic parameters that are relevant to inform us about the evolutionary potential of parasites, population genetics structure, such as effective popu- which affects macroevolutionary events. For example, lation size and parasite transmission, parasite popu- small effective population size (Ne) and vertical trans- lations must be studied using neutral genetic markers.
    [Show full text]
  • Macroevolution Macroevolution - Patterns in the History of Life
    macroevolution Macroevolution - patterns in the history of life There are several patterns we see when we look at the fossil record over geologic time 1. STASIS A species’ morphology does not change over time. The classic example of this is the “living fossil” the Coelocanth…a fish taxa (genus) that evolved in the Mesozoic, but is still alive today. 2. Characteristics change over time morphologies change over time, for example, increases in shell thickness or number of ribs on a shell or length/width ratios. Constructing phylogenies shows how different species alive at different 3. Speciation time intervals are related to one another. These 3 phylogenies show 3 different patterns. Clade A shows that speciation happened at several times in the past. Clade B shows stability in species over long periods of time, and Clade C shows two periods of time when speciation was focused. One mode of speciation is termed “phyletic gradualism” which is shown in the red line of gradual morphologic change over long periods of time in small, incremental steps. This is the pattern that Darwin was thinking of when he described the ‘transmutation” or change in species over time. Another form of speciation is termed “punctuated equilibrium” which is exhibited in all species in this diagram. For example, in species B (green) we see stasis in morphology over long periods of time, with a short interval of time in which morphologic change occurs. What is happening in this interval of time is “invasion” from a geographically isolated population whose gene pool has diverged. How phyletic gradualism happens: Incremental morphologic change over time.
    [Show full text]
  • Diet of the San Joaquin Antelope Squirrel in the Southern Portion of Its Range—John H
    WESTERN WILDLIFE THE JOURNAL OF THE WESTERN SECTION OF THE WILDLIFE SOCIETY Photo: John H. Harris VOLUME 6 • 2019 ONLINE ISSN: 2475-4250 PRINT ISSN: 2577-2147 EDITOR DAVID J. GERMANO ASSOCIATE EDITORS BRIAN L. CYPHER JEFFREY R. SINGLE PRODUCTION MANAGER HOWARD O. CLARK, JR. CONTENTS Range Extension of the Western Yellow Bat (Dasypterus xanthinus) in New Mexico—James E. Zabriskie, Patricia L. Cutler, and James N. Stuart……………………………………………………………………………………1 Survey of Potential Predators of the Endangered Amargosa Vole (Microtus californicus scirpensis)—Austin N. Roy, Deana L. Clifford, Anna D. Rivera Roy, Robert C. Klinger, Greta M. Wengert, Amanda M. Poulsen, and Janet Foley………………………………………………………………………………………...5 Wrestling for Real Estate: Male-male Interactions in Breeding Foothill Yellow-Legged Frogs (Rana boylii)— Jeffery T. Wilcox and Jeff A. Alvarez………………………………………………………………………14 Growth Curve of White-tailed Antelope Squirrels From Idaho—Roberto Refinetti…………………………18 Recent Observation of Kit Fox (Vulpes macrotis) Outside of Its Known Range in Oregon—Tim L. Hiller and Philip J. Milburn…………………………………………………………………………………………………..21 Diet of the San Joaquin Antelope Squirrel in the Southern Portion of its Range—John H. Harris……………23 Solar Energy Development and Endangered Species in the San Joaquin Valley, California: Identification of Conflict Zones—Scott E. Phillips and Brian L. Cypher……………………………………………………… 29 California Red-Legged Frog Response to Pond Restoration—David L. Riensche, Connor D. Tutino, and Leslie Koenig………………………………………………………………………………………………………………45
    [Show full text]