Sunlight to Electricity: Navigating the Field

Total Page:16

File Type:pdf, Size:1020Kb

Sunlight to Electricity: Navigating the Field Sunlight to Electricity: Navigating the Field An Energy Technology Distillate of the Andlinger Center for Energy and the Environment Princeton University Contributors Barry P. Rand, Forrest Meggers, William C. Witt, Manali Gokhale, Samantha Walter, Robert Socolow August 2017 Table of Contents Acknowledgements .............................................................................................................................. page 2 Article 1: Overview ............................................................................................................................... page 3 Article 2: Key Concepts and Vocabulary ............................................................................................. page 6 Article 3: From the Sun to the Solar Project ....................................................................................... page 9 A. The Sun and the Earth ............................................................................................................. page 9 B. The scale of current solar power ...........................................................................................page 11 C. Solar energy projects .............................................................................................................page 14 D. Distributed generation ...........................................................................................................page 15 E. Balance of system .................................................................................................................. page 16 F. Building-integrated photovoltaics ..........................................................................................page 18 Article 4: Solar Cell Technology .........................................................................................................page 20 A. The solar cell ..........................................................................................................................page 20 B. Today’s technologies ..............................................................................................................page 23 C. The photovoltaic frontier ........................................................................................................ page 27 D. Energy and greenhouse gas performance indices, materials scarcity, toxicity, end of useful life.. ......................................................................page 29 Article 5: Grid Integration and Policy ................................................................................................ page 31 A. Grid integration and supply variability .................................................................................. page 31 B. Enabling policy .......................................................................................................................page 35 Appendix 1: The Princeton University Solar Project .........................................................................page 40 1 Acknowledgements Ted Borer was a valuable guide to the Princeton University case study. William Hackett, Anne Hoskins, Benjamin Scott Hunter, Ralph Izzo, Tom Kreutz, Tom Leyden, Andrew Mills, and Michael Winka provided insights into enabling policy and commercialization. We benefited from the summer research of three Princeton undergraduates: Angelo Campus, Lindsey Conlan, and Isabella Douglas. An intermediate version of this report was critiqued by the eight graduate students in a Policy Workshop at Princeton University on community solar power taught by Anne Hoskins and Jeanne Fox. Stephen Lassiter, one of these students, judiciously combined his comments with the others – from Vivian Chang, Cara Goldenberg, Jack Hoskins, Zhongshu Li, Eri Nakatani, Sheree Oluwafemi, and Hannah Safford. We also benefited from comments on early drafts from Emily Carter, Philip Chew, Phillip Hannam, David Kanter, Elena Krieger, Eric Larson, Nicolas Lefevre, and Sigurd Wagner. A late draft was helpfully reviewed by Joe Berry, Michael McGehee, Cliff Rechtschaffen, Lenny Tinker, and Jessika Trancik. The production of this report was guided diligently and creatively by Nari Baughman, Darcy Cotten, Joel Oullette, and Jennifer Poacelli. At every stage, our revisions were propelled by Lynn Loo’s commitment to clear and effective communication. The Andlinger Center for Energy and the Environment is grateful to the High Meadows Foundation, the Nicholas Family, and an anonymous donor whose gifts are helping to advance public understanding of critical issues related to energy and the environment through this Energy Technology Distillate. 2 Article 1: Overview The goal of this Distillate is to enable the reader to understand the state of solar energy today and to develop his or her own views of some of the key issues that loom over solar power’s future. Today, for the first time in human history, a commercially 2. How much can balance-of-system costs be significant quantity of solar energy is being turned reduced? The principal challenge of past decades directly into electricity. Global capacity to produce solar was reducing the cost of the solar cell and electricity was about 50 times greater in 2016 than 10 the solar panel that houses the cell. Now, years earlier. Solar power has grown rapidly in Europe, “balance-of-system” costs are emerging as Asia, and North America. the principal cost concerns. The balance of system, here, is all of a solar power project except No one knows how long future solar growth will for the solar panels: the land, the structure that resemble the past. It is conceivable but far from certain holds the panel, any tracking hardware, the that solar power will dominate the global electricity inverters that change the direct current (DC) system by mid-century. There is still a long way to go. In produced by the cell into the alternating current 2016 only about 1.5 percent of total global electricity (AC) required by the user, installation at the site, came from solar power. In the U.S. the percentage was interconnection to the grid, and business costs nearly the same, even though one million U.S. homes such as financing, permitting, and insurance. have solar panels on their roofs and several of the world’s largest solar installations are in the deserts of 3. Will crystalline silicon remain the workhorse the southwestern U.S. of solar power? Today, crystalline silicon has 90 percent of the solar cell market. Can any of This Distillate explores five open questions related to the new thin-film technologies challenge silicon’s solar power’s future: dominance, now that the silicon cell industry has developed so much infrastructure and 1. Will distributed and centralized deployment experience? The crystalline silicon solar cell has both flourish? Solar cell technology is the limitation (thus far) of being available only as spectacularly modular: a solar cell will convert a rigid structure, which limits potential sunlight into electricity whether on a rooftop or in applications. Its competitors are thin films, a multi-thousand-acre field, and assemblages of whose versatility assures that there will be at these cells are housed in panels that are least niche markets for some of them, even if they essentially the same wherever they are used. do not become significant producers of solar Due to this modularity, the plummeting costs electricity. To enter the market, a thin film will of solar cell technology have had a dramatic, need to convert sunlight to electricity at positive impact on the growth of solar power substantially higher efficiency than the at all scales. Future deployment could tilt toward crystalline solar cell, demonstrate stability very large projects because of economies and ease of manufacture, and avoid scarce of scale: large projects have substantially lower or toxic materials. construction costs than small projects, for the same amount of electricity generated. 4. Will solar power subsidies disappear? However, distributed electricity generation, Government policies favorable to solar electricity especially if accompanied by distributed electricity are called “incentives” by their proponents and storage, may enable innovative grids that are “subsidies” by their detractors. Subsidies more flexible and resilient than the centralized have enabled solar energy to mature, and now grids of the past. If deep penetration of they are shrinking, both for centralized and distributed solar generation into electricity distributed generation, as solar power becomes markets is achieved, political support for pro-solar increasingly competitive. The system costs of policy will strengthen, to the likely benefit of incentives for distributed generation were small centralized solar power as well. The path forward when they were paid only to “early adopters,” may well feature parallel development at large but as the fraction of beneficiaries in an eligible and small scale – with much geographical group grows, the non-adopters bear more variation in the mix of the two scales. noticeable costs and push back. 3 On the other side of the argument, those who favor incentives stress their direct Roadmap environmental benefits, including cleaner air and less rapid climate change. Specific to We have endeavored to treat technology and policy distributed generation, they also note that with equal seriousness. We have written for the reader producing electricity closer to the point of use, who has little technical background but an appetite especially in combination with
Recommended publications
  • A HISTORY of the SOLAR CELL, in PATENTS Karthik Kumar, Ph.D
    A HISTORY OF THE SOLAR CELL, IN PATENTS Karthik Kumar, Ph.D., Finnegan, Henderson, Farabow, Garrett & Dunner, LLP 901 New York Avenue, N.W., Washington, D.C. 20001 [email protected] Member, Artificial Intelligence & Other Emerging Technologies Committee Intellectual Property Owners Association 1501 M St. N.W., Suite 1150, Washington, D.C. 20005 [email protected] Introduction Solar cell technology has seen exponential growth over the last two decades. It has evolved from serving small-scale niche applications to being considered a mainstream energy source. For example, worldwide solar photovoltaic capacity had grown to 512 Gigawatts by the end of 2018 (representing 27% growth from 2017)1. In 1956, solar panels cost roughly $300 per watt. By 1975, that figure had dropped to just over $100 a watt. Today, a solar panel can cost as little as $0.50 a watt. Several countries are edging towards double-digit contribution to their electricity needs from solar technology, a trend that by most accounts is forecast to continue into the foreseeable future. This exponential adoption has been made possible by 180 years of continuing technological innovation in this industry. Aided by patent protection, this centuries-long technological innovation has steadily improved solar energy conversion efficiency while lowering volume production costs. That history is also littered with the names of some of the foremost scientists and engineers to walk this earth. In this article, we review that history, as captured in the patents filed contemporaneously with the technological innovation. 1 Wiki-Solar, Utility-scale solar in 2018: Still growing thanks to Australia and other later entrants, https://wiki-solar.org/library/public/190314_Utility-scale_solar_in_2018.pdf (Mar.
    [Show full text]
  • Chapter 16 the Sun and Stars
    Chapter 16 The Sun and Stars Stargazing is an awe-inspiring way to enjoy the night sky, but humans can learn only so much about stars from our position on Earth. The Hubble Space Telescope is a school-bus-size telescope that orbits Earth every 97 minutes at an altitude of 353 miles and a speed of about 17,500 miles per hour. The Hubble Space Telescope (HST) transmits images and data from space to computers on Earth. In fact, HST sends enough data back to Earth each week to fill 3,600 feet of books on a shelf. Scientists store the data on special disks. In January 2006, HST captured images of the Orion Nebula, a huge area where stars are being formed. HST’s detailed images revealed over 3,000 stars that were never seen before. Information from the Hubble will help scientists understand more about how stars form. In this chapter, you will learn all about the star of our solar system, the sun, and about the characteristics of other stars. 1. Why do stars shine? 2. What kinds of stars are there? 3. How are stars formed, and do any other stars have planets? 16.1 The Sun and the Stars What are stars? Where did they come from? How long do they last? During most of the star - an enormous hot ball of gas day, we see only one star, the sun, which is 150 million kilometers away. On a clear held together by gravity which night, about 6,000 stars can be seen without a telescope.
    [Show full text]
  • A Review Paper Ondevelopment in Material Used in Solar Pannel As
    SSRG International Journal of Mechanical Engineering Volume 6 Issue 6, 35-41, June 2019 ISSN: 2348–8360 /doi: 10.14445/23488360/IJME-V6I6P107 © 2019 Seventh Sense Research Group® A Review Paper on Development in Material Used in Solar Pannel as Solar Cell Material Ankur Kumar Bansal, Dinesh Kumar, Dr. Mukesh Kumar M.tech Mechanical, AKTU Lucknow, India Abstract electron flow when photons from sunlight absorbed In the present era, While seeing the increasing and ejected electrons, leaving a hole that is further demand for energy and depletion of resources from filled by the surrounding electrons. This phenomenon which we obtained energy, solar energy suggest as is called the photovoltaic effect. The PV cell directs the best alternative energy resource. The light from the electrons in one direction, which gives rise to the the sun is not only a non-vanishing resource of flow of current. The amount of current is directly energy but also it is an Eco- Friendly resource of proportional to the humble of absorbed photons. So it energy(free from the environment pollution and can be easily said that PV cells are a variable current noise). It can easily compensate for the energy source. The first solar cell was built by Charles Fritts requirements fulfilled by the other resources, which in 1883 by the use of a thin layer of gold, and a are depleting and environment challenges, such as coating of selenium formed a junction. In the starting Fossil Fuel and petroleum deposits. era, the PCE was very low, about 1% only, but Basically, we receive solar energy from the further improvements make it increase.
    [Show full text]
  • Demonstrating Solar Conversion Using Natural Dye Sensitizers
    Demonstrating Solar Conversion Using Natural Dye Sensitizers Subject Area(s) Science & Technology, Physical Science, Environmental Science, Physics, Biology, and Chemistry Associated Unit Renewable Energy Lesson Title Dye Sensitized Solar Cell (DSSC) Grade Level (11th-12th) Time Required 3 hours / 3 day lab Summary Students will analyze the use of solar energy, explore future trends in solar, and demonstrate electron transfer by constructing a dye-sensitized solar cell using vegetable and fruit products. Students will analyze how energy is measured and test power output from their solar cells. Engineering Connection and Tennessee Careers An important aspect of building solar technology is the study of the type of materials that conduct electricity and understanding the reason why they conduct electricity. Within the TN-SCORE program Chemical Engineers, Biologist, Physicist, and Chemists are working together to provide innovative ways for sustainable improvements in solar energy technologies. The lab for this lesson is designed so that students apply their scientific discoveries in solar design. Students will explore how designing efficient and cost effective solar panels and fuel cells will respond to the social, political, and economic needs of society today. Teachers can use the Metropolitan Policy Program Guide “Sizing The Clean Economy: State of Tennessee” for information on Clean Economy Job Growth, TN Clean Economy Profile, and Clean Economy Employers. www.brookings.edu/metro/clean_economy.aspx Keywords Photosynthesis, power, electricity, renewable energy, solar cells, photovoltaic (PV), chlorophyll, dye sensitized solar cells (DSSC) Page 1 of 10 Next Generation Science Standards HS.ESS-Climate Change and Human Sustainability HS.PS-Chemical Reactions, Energy, Forces and Energy, and Nuclear Processes HS.ETS-Engineering Design HS.ETS-ETSS- Links Among Engineering, Technology, Science, and Society Pre-Requisite Knowledge Vocabulary: Catalyst- A substance that increases the rate of reaction without being consumed in the reaction.
    [Show full text]
  • Encapsulation of Organic and Perovskite Solar Cells: a Review
    Review Encapsulation of Organic and Perovskite Solar Cells: A Review Ashraf Uddin *, Mushfika Baishakhi Upama, Haimang Yi and Leiping Duan School of Photovoltaic and Renewable Energy Engineering, University of New South Wales, Sydney 2052, Australia; [email protected] (M.B.U.); [email protected] (H.Y.); [email protected] (L.D.) * Correspondence: [email protected] Received: 29 November 2018; Accepted: 21 January 2019; Published: 23 January 2019 Abstract: Photovoltaic is one of the promising renewable sources of power to meet the future challenge of energy need. Organic and perovskite thin film solar cells are an emerging cost‐effective photovoltaic technology because of low‐cost manufacturing processing and their light weight. The main barrier of commercial use of organic and perovskite solar cells is the poor stability of devices. Encapsulation of these photovoltaic devices is one of the best ways to address this stability issue and enhance the device lifetime by employing materials and structures that possess high barrier performance for oxygen and moisture. The aim of this review paper is to find different encapsulation materials and techniques for perovskite and organic solar cells according to the present understanding of reliability issues. It discusses the available encapsulate materials and their utility in limiting chemicals, such as water vapour and oxygen penetration. It also covers the mechanisms of mechanical degradation within the individual layers and solar cell as a whole, and possible obstacles to their application in both organic and perovskite solar cells. The contemporary understanding of these degradation mechanisms, their interplay, and their initiating factors (both internal and external) are also discussed.
    [Show full text]
  • Surfing on a Flash of Light from an Exploding Star ______By Abraham Loeb on December 26, 2019
    Surfing on a Flash of Light from an Exploding Star _______ By Abraham Loeb on December 26, 2019 A common sight on the beaches of Hawaii is a crowd of surfers taking advantage of a powerful ocean wave to reach a high speed. Could extraterrestrial civilizations have similar aspirations for sailing on a powerful flash of light from an exploding star? A light sail weighing less than half a gram per square meter can reach the speed of light even if it is separated from the exploding star by a hundred times the distance of the Earth from the Sun. This results from the typical luminosity of a supernova, which is equivalent to a billion suns shining for a month. The Sun itself is barely capable of accelerating an optimally designed sail to just a thousandth of the speed of light, even if the sail starts its journey as close as ten times the Solar radius – the closest approach of the Parker Solar Probe. The terminal speed scales as the square root of the ratio between the star’s luminosity over the initial distance, and can reach a tenth of the speed of light for the most luminous stars. Powerful lasers can also push light sails much better than the Sun. The Breakthrough Starshot project aims to reach several tenths of the speed of light by pushing a lightweight sail for a few minutes with a laser beam that is ten million times brighter than sunlight on Earth (with ten gigawatt per square meter). Achieving this goal requires a major investment in building the infrastructure needed to produce and collimate the light beam.
    [Show full text]
  • Thin Film Cdte Photovoltaics and the U.S. Energy Transition in 2020
    Thin Film CdTe Photovoltaics and the U.S. Energy Transition in 2020 QESST Engineering Research Center Arizona State University Massachusetts Institute of Technology Clark A. Miller, Ian Marius Peters, Shivam Zaveri TABLE OF CONTENTS Executive Summary .............................................................................................. 9 I - The Place of Solar Energy in a Low-Carbon Energy Transition ...................... 12 A - The Contribution of Photovoltaic Solar Energy to the Energy Transition .. 14 B - Transition Scenarios .................................................................................. 16 I.B.1 - Decarbonizing California ................................................................... 16 I.B.2 - 100% Renewables in Australia ......................................................... 17 II - PV Performance ............................................................................................. 20 A - Technology Roadmap ................................................................................. 21 II.A.1 - Efficiency ........................................................................................... 22 II.A.2 - Module Cost ...................................................................................... 27 II.A.3 - Levelized Cost of Energy (LCOE) ....................................................... 29 II.A.4 - Energy Payback Time ........................................................................ 32 B - Hot and Humid Climates ...........................................................................
    [Show full text]
  • Sludgefinder 2 Sixth Edition Rev 1
    SludgeFinder 2 Instruction Manual 2 PULSAR MEASUREMENT SludgeFinder 2 (SIXTH EDITION REV 1) February 2021 Part Number M-920-0-006-1P COPYRIGHT © Pulsar Measurement, 2009 -21. All rights reserved. No part of this publication may be reproduced, transmitted, transcribed, stored in a retrieval system, or translated into any language in any form without the written permission of Pulsar Process Measurement Limited. WARRANTY AND LIABILITY Pulsar Measurement guarantee for a period of 2 years from the date of delivery that it will either exchange or repair any part of this product returned to Pulsar Process Measurement Limited if it is found to be defective in material or workmanship, subject to the defect not being due to unfair wear and tear, misuse, modification or alteration, accident, misapplication, or negligence. Note: For a VT10 or ST10 transducer the period of time is 1 year from date of delivery. DISCLAIMER Pulsar Measurement neither gives nor implies any process guarantee for this product and shall have no liability in respect of any loss, injury or damage whatsoever arising out of the application or use of any product or circuit described herein. Every effort has been made to ensure accuracy of this documentation, but Pulsar Measurement cannot be held liable for any errors. Pulsar Measurement operates a policy of constant development and improvement and reserves the right to amend technical details, as necessary. The SludgeFinder 2 shown on the cover of this manual is used for illustrative purposes only and may not be representative
    [Show full text]
  • Solar Cells They Rely on Are Notoriously Expensive to Produce
    THE PRESENT PROBLEM WITH SOLAR POWER is price. Ironically, sunlight, which is abundant beyond the energy needs of the entire human race and completely free, is frequently deemed too expensive to harness. Photovoltaic panels, systems to make them compatible with grid electricity, and batteries to squirrel away energy for when it’s cloudy—all these add cost. And while such hardware and installation costs will continue to diminish over time, the standard silicon solar cells they rely on are notoriously expensive to produce. Naturally, the scientific community has taken great interest in identifying alternative materials for solar cells. Solar-harvesting materials under development at Los Alamos and elsewhere include specialized thin films, organic layers, semi- conductor nanodevices, and others. Each has promise, and each has drawbacks. But a new class of challengers emerged a few years ago and has been improving with surprising speed since then. Known as perovskites, they are any crystalline material with the same broad class of chemical structure as a natural mineral of the same name. Perovskite solar cells are generally easy to work with, easy to adjust for improved performance, and very easy to afford. And in recent experi- mentation at Los Alamos, a particular recipe has been shown to reliably generate perovskite crystals that exhibit solar conversion efficiencies comparable to those of silicon. “Silicon solar cells are still the gold standard. They’re reliable and efficient, and they’ve been thoroughly demonstrated in the field,” says Los Alamos materials scientist Aditya Mohite. “I can’t wait to render them obsolete.” Anatomy of a cell A standard solar cell contains an active layer, usually silicon, sandwiched between two electrode layers.
    [Show full text]
  • Pulsar's PVT Measures Astronaut's Behavioral Alertness While on The
    Pulsar’s PVT measures astronaut’s behavioral alertness while on the ISS Dec 2012 R&D Case Studies Challenges The demands placed on an astronaut—who must both subsist in an artificial environment and carry out mission objectives—require that he or she operate at peak alertness. Long-distant verbal check- ins with medical personnel are not sufficient to provide timely, quantitative measurements of an astronaut’s vigilance. Pulsar’s president and CEO Daniel Mollicone trained with Dinges at the university en route to earning his doctorate in Improve the overall health biomedical engineering. In 2006 Dinges asked Mollicone, who and performance of our astronauts. had worked on NASA projects in the past, if the company could develop the software for ISS. Products and services Solution PVT For astronauts working aboard the International Space Station (ISS) in low-Earth orbit, getting adequate sleep is a challenge. For one, there’s that demanding and often unpredictable schedule. Maybe there’s an experiment needing attention one minute, a vehicle docking the next, followed by unexpected station repairs that need immediate attention. Next among sleep inhibitors is the catalogue of microgravityrelated ailments, such as aching joints and backs, motion sickness, and uncomfortable sleeping positions. “When people get high And then there is the body’s thrown-off perception of time. Because on the ISS the Sun rises and sets every 45 fatigue scores on the minutes, the body’s circadian rhythm—the internal clock that, among its functions, regulates the sleep cycle PVT they always say, based on Earth’s 24-hour rotation—falls out of sync.
    [Show full text]
  • Fabrication Procedure of Dye-Sensitized Solar Cells
    Fabrication procedure of dye-sensitized solar cells K.Takechi, R.Muszynski and P.V.Kamat Materials - ITO(Indium doped Tin Oxide) glass (2 x 2 cm, 2 slides for 1 cell) - Dye (Eosin Y, Eosin B, etc.) - Ethanol - TiO2 paste ¾ Suspend 3.5g of TiO2 nano-powder P25 in 15ml of ethanol. ¾ Sonicate it at least for 30 min. ¾ Add 0.5ml of titanium(IV) tetraisopropoxide into the suspension. ¾ Mix until the suspension is uniform. (D.S. Zhang, T. Yoshida, T. Oekermann, K. Furuta, H. Minoura, Adv. Functional Mater., 16, 1228(2006).) - Spacer ¾ Cut a plastic film (like as Parafilm or Scotch tape) having dimensions of 1.5 cm by 2 cm. ¾ Make a hole(s) on the film. 2 cm (Example) 1 cm 1.5 cm Hole 0.6 cm - Liquid electrolyte ¾ 0.5M lithium iodide and 0.05M iodine in acetonitrile. γ-Butyrolactone or 3-methoxypropionitrile is also recommended as a solvent to improve its volatility. - Binder clips (small, 2 pieces for 1 cell) Tools - Hot plate - Pipets - Tweezers - Spatulas - Scotch tape 1. Put Scotch tape on the conducting side of ITO glass. about 10 mm 2. Put TiO2 paste and flatten it with a razor blade on the same side of the ITO glass. 3. Put this electrode on top of a hot plate and heat it at approximately 150 °C for 10 min. 4. Prepare a dye solution. (Ex. 20mL of 1 mM eosin Y in ethanol) Eosin Y Eosin B Eosin B in ethanol (Mw=691.85) (Mw=624.06) 5. Dip the TiO2 electrode into the dye solution for 10 min.
    [Show full text]
  • Thermal Management of Concentrated Multi-Junction Solar Cells with Graphene-Enhanced Thermal Interface Materials
    applied sciences Article Thermal Management of Concentrated Multi-Junction Solar Cells with Graphene-Enhanced Thermal Interface Materials Mohammed Saadah 1,2, Edward Hernandez 2,3 and Alexander A. Balandin 1,2,3,* 1 Nano-Device Laboratory (NDL), Department of Electrical and Computer Engineering, University of California, Riverside, CA 92521, USA; [email protected] 2 Phonon Optimized Engineered Materials (POEM) Center, Bourns College of Engineering, University of California, Riverside, CA 92521, USA; [email protected] 3 Materials Science and Engineering Program, University of California, Riverside, CA 92521, USA * Correspondence: [email protected]; Tel.: +1-951-827-2351 Academic Editor: Philippe Lambin Received: 20 May 2017; Accepted: 3 June 2017; Published: 7 June 2017 Abstract: We report results of experimental investigation of temperature rise in concentrated multi-junction photovoltaic solar cells with graphene-enhanced thermal interface materials. Graphene and few-layer graphene fillers, produced by a scalable environmentally-friendly liquid-phase exfoliation technique, were incorporated into conventional thermal interface materials. Graphene-enhanced thermal interface materials have been applied between a solar cell and heat sink to improve heat dissipation. The performance of the multi-junction solar cells has been tested using an industry-standard solar simulator under a light concentration of up to 2000 suns. It was found that the application of graphene-enhanced thermal interface materials allows one to reduce the solar cell temperature and increase the open-circuit voltage. We demonstrated that the use of graphene helps in recovering a significant amount of the power loss due to solar cell overheating. The obtained results are important for the development of new technologies for thermal management of concentrated photovoltaic solar cells.
    [Show full text]