LESSON 4, STARS Objectives

Total Page:16

File Type:pdf, Size:1020Kb

LESSON 4, STARS Objectives Chapter 8, Astronomy LESSON 4, STARS Objectives . Define some of the properties of stars. Compare the evolutionary paths of star types. Main Idea . Stars vary in their size, their brightness, and their distance from Earth. Vocabulary . star a large, hot ball of gases, which is held together by gravity and gives off its own light . constellation a group of stars that appears to form a pattern . parallax the apparent shift in an objects position when viewed from two locations. light-year . nebula . supernova . black hole What are stars? . A star is a large, hot ball of gases, held together by gravity, that gives off its own light. A constellation is a group of stars that appear to form a pattern. As Earth revolves, different constellations can be seen, like Orion, which is a winter constellation in the Northern Hemisphere. Constellations are classified by the seasons they appear in. Finding the Big Dipper in Ursa Major, the Great Bear, can help you find Polaris, the North Star. If you are unsure of directions, the North Star can help you. Because of our perspective, the stars in the sky form pictures, as we look at them from Earth. If we looked at the same stars from outside our solar system, the pictures would not look the same. Finding the Distance to a Star . Viewed from different points in Earth’s orbit, some stars seem to change position slightly compared to stars farther away. The apparent shift in an objects position when viewed from two locations is called parallax. Astronomers use parallax to find the distance of a star from Earth. When astronomers measure the distance from Earth to a star, even a kilometer is too short. They use a measurement of distance called a light year, the distance that light travels in one year. One light year is more than 9 trillion kilometers (6 trillion miles). The nearest star, Alpha Centauri, is about 4.3 light years away from Earth. The light we see when we look at Alpha Centauri left that star about 4.3 years ago. Quick Check Compare and Contrast How are the constellations alike? How are they different? The constellations all suggest patterns and consists of clusters of stars. The constellations have different numbers of stars and are positioned at varying distances from Earth. Critical Thinking It takes sunlight about 8 minutes to reach Earth. Is the Sun more than or less than a light year away? Explain. The Sun is far less than a light year away. The reason is that a light year is the distance that light travels in a year. Light from the Sun takes 8 minutes to reach Earth, which is much less than a year. What are some properties of stars? . Some stars are brighter than others. Stars appear less bright the farther they are from Earth. Sirius seems brighter than Rigel. However, Rigel is brighter than Sirius. Color is one of a star’s properties, it tells you the stars temperature. Red and orange colors indicate cooler stars. Yellow indicates hotter stars. Blue – white indicates the hottest stars. Stars come in different sizes. Red supergiants are the biggest. Our sun is average. A white dwarf is the smallest. Brightness and Temperature . Astronomers, Ejnar Hertzsprung and Henry Norris Russell looked for similarities between a star’s brightness and temperature. They found that stars appear in groups. To read an H-R diagram start near the lower left corner. The stars near here are very dim but very hot. In the lower right corner are dim, very cool stars. Diagonally up and to the left from the lower right corner is a long band. Most stars here are main–sequence stars. On the top of the scale of absolute magnitude are supergiants. Giants are dimmer than supergiants. The giants are just below supergiants in the chart. Quick Check . Compare and Contrast How are absolute magnitude and apparent magnitude similar? . Both types of magnitude are a measurement of brightness. Absolute magnitude describes the actual brightness of a star, not just how it appears from Earth. Apparent magnitude describes how a star looks to us on Earth. Critical Thinking What are three properties that all stars have and how do they relate to one another? . All stars have magnitude, temperature, and size. Size and temperature both affect absolute magnitude. How do stars develop? . Stars are born, they mature, grow older, and finally they die. The main factor that affects how a star goes through this cycle of development is the star’s mass. Protostars . Every star begins as a nebula, a huge cloud of gas and dust in space. As a cloud shrinks, it heats up and becomes a protostar or a young star. Protostars continue to gain mass because of its gravitational pull. Main-Sequence Stars . Eventually the center of a protostar reaches a temperature of millions of degrees Celsius and a nuclear reaction starts. Hydrogen atoms fuse and forms helium atoms releasing large amounts of energy. Stars spend most of their time as main- sequence stars. Red Giants and Supergiants . As the star expands, its surface becomes cooler and its color becomes redder. The star becomes a red giant or a supergiant, depending on its mass. Final Stages . The final stages of a star’s life depends on its mass. Stars up to ten times the mass of the Sun become red giants. Nuclear reactions give off energy causing the star to release huge clouds of gas. A layer of gases, called a planetary nebula, forms around the star. Its surface becomes white-hot, forming a white dwarf. A white dwarf is so hot that it gives off enough radiation to make its surrounding shell of gas and dust glow. When the shell glows brightly enough, we see it as a planetary nebula. A white dwarf may take billions of years to cool off. When it cools off, it will become a black dwarf. Stars with masses greater than ten times the mass of the Sun follow a different path. These large stars become supergiants. They use up energy at a fantastic rate, giving off very large amounts of energy. In a relatively short amount of time, the star can no longer fuse atoms and give off energy at the same rate. When a supergiant can no longer produce enough energy, it collapses and then explodes. This is called a supernova. The next stage depends on the star’s mass. What remains of a supernova becomes a neutron star, made of neutrons. As they rotate they blink like a lighthouse beacon. This is a pulsar. If a star is very massive, the supernova does not become a neutron star. Instead, the core collapses and it becomes a tiny but very massive object called a black hole. Black holes are detected by the effect they have on other objects. Often, gasses form a nearby companion that is pulled in by the intense gravity of the black hole. When the gasses approach they emit x-rays. Quick Check . Compare and Contrast Compare the development of a less- massive star with that of a more-massive star. A less-massive star: begins as a nebula, becomes a protostar, a main-sequence star, a red giant, and finally, a white dwarf. A more-massive star: begins as a nebula, becomes a protostar, a main-sequence star, a very massive star, a supergiant, a supernova, and finally, either a neutron star (pulsar) or a black hole. Critical Thinking Why will the Sun not become a black hole someday? . The Sun does not have enough mass to become a black hole. What kind of star is the Sun? . The Sun is a main-sequence star in the middle of the H-R diagram. The Sun has been shining for 5 billion years and will continue for another 5 billion, until it becomes a red giant. The Sun contains 99.9% of the solar system’s mass. It is 92% hydrogen. Its hydrogen is being changed into helium by nuclear reactions. Quick Check . Compare and Contrast How is the Sun like other stars? . Like other stars the Sun is very hot and gaseous. Nuclear reactions occur in its core and large amounts of energy are released. Critical Thinking Do you think the Sun is less massive or more massive than other stars? Why? . Because of its position on the main sequence, it is probably average. The Sun is probably neither less massive nor more massive and is most likely an average-size star. .
Recommended publications
  • Plasma Physics and Pulsars
    Plasma Physics and Pulsars On the evolution of compact o bjects and plasma physics in weak and strong gravitational and electromagnetic fields by Anouk Ehreiser supervised by Axel Jessner, Maria Massi and Li Kejia as part of an internship at the Max Planck Institute for Radioastronomy, Bonn March 2010 2 This composition was written as part of two internships at the Max Planck Institute for Radioastronomy in April 2009 at the Radiotelescope in Effelsberg and in February/March 2010 at the Institute in Bonn. I am very grateful for the support, expertise and patience of Axel Jessner, Maria Massi and Li Kejia, who supervised my internship and introduced me to the basic concepts and the current research in the field. Contents I. Life-cycle of stars 1. Formation and inner structure 2. Gravitational collapse and supernova 3. Star remnants II. Properties of Compact Objects 1. White Dwarfs 2. Neutron Stars 3. Black Holes 4. Hypothetical Quark Stars 5. Relativistic Effects III. Plasma Physics 1. Essentials 2. Single Particle Motion in a magnetic field 3. Interaction of plasma flows with magnetic fields – the aurora as an example IV. Pulsars 1. The Discovery of Pulsars 2. Basic Features of Pulsar Signals 3. Theoretical models for the Pulsar Magnetosphere and Emission Mechanism 4. Towards a Dynamical Model of Pulsar Electrodynamics References 3 Plasma Physics and Pulsars I. The life-cycle of stars 1. Formation and inner structure Stars are formed in molecular clouds in the interstellar medium, which consist mostly of molecular hydrogen (primordial elements made a few minutes after the beginning of the universe) and dust.
    [Show full text]
  • Exploring Pulsars
    High-energy astrophysics Explore the PUL SAR menagerie Astronomers are discovering many strange properties of compact stellar objects called pulsars. Here’s how they fit together. by Victoria M. Kaspi f you browse through an astronomy book published 25 years ago, you’d likely assume that astronomers understood extremely dense objects called neutron stars fairly well. The spectacular Crab Nebula’s central body has been a “poster child” for these objects for years. This specific neutron star is a pulsar that I rotates roughly 30 times per second, emitting regular appar- ent pulsations in Earth’s direction through a sort of “light- house” effect as the star rotates. While these textbook descriptions aren’t incorrect, research over roughly the past decade has shown that the picture they portray is fundamentally incomplete. Astrono- mers know that the simple scenario where neutron stars are all born “Crab-like” is not true. Experts in the field could not have imagined the variety of neutron stars they’ve recently observed. We’ve found that bizarre objects repre- sent a significant fraction of the neutron star population. With names like magnetars, anomalous X-ray pulsars, soft gamma repeaters, rotating radio transients, and compact Long the pulsar poster child, central objects, these bodies bear properties radically differ- the Crab Nebula’s central object is a fast-spinning neutron star ent from those of the Crab pulsar. Just how large a fraction that emits jets of radiation at its they represent is still hotly debated, but it’s at least 10 per- magnetic axis. Astronomers cent and maybe even the majority.
    [Show full text]
  • Brochure Pulsar Multifunction Spectroscopy Service Complete Cased Hole Formation Evaluation and Reservoir Saturation Monitoring from A
    Pulsar Multifunction spectroscopy service Introducing environment-independent, stand-alone cased hole formation evaluation and saturation monitoring 1 APPLICATIONS FEATURES AND BENEFITS ■ Stand-alone formation evaluation for diagnosis of bypassed ■ Environment-independent reservoir saturation monitoring ■ High-performance pulsed neutron generator (PNG) hydrocarbons, depleted reservoirs, and gas zones in any formation water salinity ● Optimized pulsing scheme with multiple square and short ● Differentiation of gas-filled porosity from very low porosity ● Production fluid profile determination for any well pulses for clean separation in measuring both inelastic and formations by using neutron porosity and fast neutron cross inclination: horizontal, deviated, and vertical capture gamma rays 8 section (FNXS) measurements ● Detection of water entry and flow behind casing ● High neutron output of 3.5 × 10 neutron/s for greater ■ measurement precision Petrophysical evaluation with greater accuracy by accounting ● Gravel-pack quality determination by using for grain density and mineral properties in neutron porosity elemental spectroscopy ■ State-of-the-art detectors ■ Total organic carbon (TOC) quantified as the difference ■ Metals for mining exploration ● Near and far detectors: cerium-doped lanthanum bromide between the measured total carbon and inorganic carbon ■ High-resolution determination of reservoir quality (RQ) (LaBr3:Ce) ■ Oil volume from TOC and completion quality (CQ) for formation evaluation ● Deep detector: yttrium aluminum perovskite
    [Show full text]
  • XIII Publications, Presentations
    XIII Publications, Presentations 1. Refereed Publications E., Kawamura, A., Nguyen Luong, Q., Sanhueza, P., Kurono, Y.: 2015, The 2014 ALMA Long Baseline Campaign: First Results from Aasi, J., et al. including Fujimoto, M.-K., Hayama, K., Kawamura, High Angular Resolution Observations toward the HL Tau Region, S., Mori, T., Nishida, E., Nishizawa, A.: 2015, Characterization of ApJ, 808, L3. the LIGO detectors during their sixth science run, Classical Quantum ALMA Partnership, et al. including Asaki, Y., Hirota, A., Nakanishi, Gravity, 32, 115012. K., Espada, D., Kameno, S., Sawada, T., Takahashi, S., Ao, Y., Abbott, B. P., et al. including Flaminio, R., LIGO Scientific Hatsukade, B., Matsuda, Y., Iono, D., Kurono, Y.: 2015, The 2014 Collaboration, Virgo Collaboration: 2016, Astrophysical Implications ALMA Long Baseline Campaign: Observations of the Strongly of the Binary Black Hole Merger GW150914, ApJ, 818, L22. Lensed Submillimeter Galaxy HATLAS J090311.6+003906 at z = Abbott, B. P., et al. including Flaminio, R., LIGO Scientific 3.042, ApJ, 808, L4. Collaboration, Virgo Collaboration: 2016, Observation of ALMA Partnership, et al. including Asaki, Y., Hirota, A., Nakanishi, Gravitational Waves from a Binary Black Hole Merger, Phys. Rev. K., Espada, D., Kameno, S., Sawada, T., Takahashi, S., Kurono, Lett., 116, 061102. Y., Tatematsu, K.: 2015, The 2014 ALMA Long Baseline Campaign: Abbott, B. P., et al. including Flaminio, R., LIGO Scientific Observations of Asteroid 3 Juno at 60 Kilometer Resolution, ApJ, Collaboration, Virgo Collaboration: 2016, GW150914: Implications 808, L2. for the Stochastic Gravitational-Wave Background from Binary Black Alonso-Herrero, A., et al. including Imanishi, M.: 2016, A mid-infrared Holes, Phys.
    [Show full text]
  • White Dwarfs
    Chandra X-Ray Observatory X-Ray Astronomy Field Guide White Dwarfs White dwarfs are among the dimmest stars in the universe. Even so, they have commanded the attention of astronomers ever since the first white dwarf was observed by optical telescopes in the middle of the 19th century. One reason for this interest is that white dwarfs represent an intriguing state of matter; another reason is that most stars, including our sun, will become white dwarfs when they reach their final, burnt-out collapsed state. A star experiences an energy crisis and its core collapses when the star's basic, non-renewable energy source - hydrogen - is used up. A shell of hydrogen on the edge of the collapsed core will be compressed and heated. The nuclear fusion of the hydrogen in the shell will produce a new surge of power that will cause the outer layers of the star to expand until it has a diameter a hundred times its present value. This is called the "red giant" phase of a star's existence. A hundred million years after the red giant phase all of the star's available energy resources will be used up. The exhausted red giant will puff off its outer layer leaving behind a hot core. This hot core is called a Wolf-Rayet type star after the astronomers who first identified these objects. This star has a surface temperature of about 50,000 degrees Celsius and is A composite furiously boiling off its outer layers in a "fast" wind traveling 6 million image of the kilometers per hour.
    [Show full text]
  • Exors and the Stellar Birthline Mackenzie S
    A&A 600, A133 (2017) Astronomy DOI: 10.1051/0004-6361/201630196 & c ESO 2017 Astrophysics EXors and the stellar birthline Mackenzie S. L. Moody1 and Steven W. Stahler2 1 Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544, USA e-mail: [email protected] 2 Astronomy Department, University of California, Berkeley, CA 94720, USA e-mail: [email protected] Received 6 December 2016 / Accepted 23 February 2017 ABSTRACT We assess the evolutionary status of EXors. These low-mass, pre-main-sequence stars repeatedly undergo sharp luminosity increases, each a year or so in duration. We place into the HR diagram all EXors that have documented quiescent luminosities and effective temperatures, and thus determine their masses and ages. Two alternate sets of pre-main-sequence tracks are used, and yield similar results. Roughly half of EXors are embedded objects, i.e., they appear observationally as Class I or flat-spectrum infrared sources. We find that these are relatively young and are located close to the stellar birthline in the HR diagram. Optically visible EXors, on the other hand, are situated well below the birthline. They have ages of several Myr, typical of classical T Tauri stars. Judging from the limited data at hand, we find no evidence that binarity companions trigger EXor eruptions; this issue merits further investigation. We draw several general conclusions. First, repetitive luminosity outbursts do not occur in all pre-main-sequence stars, and are not in themselves a sign of extreme youth. They persist, along with other signs of activity, in a relatively small subset of these objects.
    [Show full text]
  • The Formation of Brown Dwarfs 459
    Whitworth et al.: The Formation of Brown Dwarfs 459 The Formation of Brown Dwarfs: Theory Anthony Whitworth Cardiff University Matthew R. Bate University of Exeter Åke Nordlund University of Copenhagen Bo Reipurth University of Hawaii Hans Zinnecker Astrophysikalisches Institut, Potsdam We review five mechanisms for forming brown dwarfs: (1) turbulent fragmentation of molec- ular clouds, producing very-low-mass prestellar cores by shock compression; (2) collapse and fragmentation of more massive prestellar cores; (3) disk fragmentation; (4) premature ejection of protostellar embryos from their natal cores; and (5) photoerosion of pre-existing cores over- run by HII regions. These mechanisms are not mutually exclusive. Their relative importance probably depends on environment, and should be judged by their ability to reproduce the brown dwarf IMF, the distribution and kinematics of newly formed brown dwarfs, the binary statis- tics of brown dwarfs, the ability of brown dwarfs to retain disks, and hence their ability to sustain accretion and outflows. This will require more sophisticated numerical modeling than is presently possible, in particular more realistic initial conditions and more realistic treatments of radiation transport, angular momentum transport, and magnetic fields. We discuss the mini- mum mass for brown dwarfs, and how brown dwarfs should be distinguished from planets. 1. INTRODUCTION form a smooth continuum with those of low-mass H-burn- ing stars. Understanding how brown dwarfs form is there- The existence of brown dwarfs was first proposed on the- fore the key to understanding what determines the minimum oretical grounds by Kumar (1963) and Hayashi and Nakano mass for star formation. In section 3 we review the basic (1963).
    [Show full text]
  • Supernovae Sparked by Dark Matter in White Dwarfs
    Supernovae Sparked By Dark Matter in White Dwarfs Javier F. Acevedog and Joseph Bramanteg;y gThe Arthur B. McDonald Canadian Astroparticle Physics Research Institute, Department of Physics, Engineering Physics, and Astronomy, Queen's University, Kingston, Ontario, K7L 2S8, Canada yPerimeter Institute for Theoretical Physics, Waterloo, Ontario, N2L 2Y5, Canada November 27, 2019 Abstract It was recently demonstrated that asymmetric dark matter can ignite supernovae by collecting and collapsing inside lone sub-Chandrasekhar mass white dwarfs, and that this may be the cause of Type Ia supernovae. A ball of asymmetric dark matter accumulated inside a white dwarf and collapsing under its own weight, sheds enough gravitational potential energy through scattering with nuclei, to spark the fusion reactions that precede a Type Ia supernova explosion. In this article we elaborate on this mechanism and use it to place new bounds on interactions between nucleons 6 16 and asymmetric dark matter for masses mX = 10 − 10 GeV. Interestingly, we find that for dark matter more massive than 1011 GeV, Type Ia supernova ignition can proceed through the Hawking evaporation of a small black hole formed by the collapsed dark matter. We also identify how a cold white dwarf's Coulomb crystal structure substantially suppresses dark matter-nuclear scattering at low momentum transfers, which is crucial for calculating the time it takes dark matter to form a black hole. Higgs and vector portal dark matter models that ignite Type Ia supernovae are explored. arXiv:1904.11993v3 [hep-ph] 26 Nov 2019 Contents 1 Introduction 2 2 Dark matter capture, thermalization and collapse in white dwarfs 4 2.1 Dark matter capture .
    [Show full text]
  • The Impact of the Astro2010 Recommendations on Variable Star Science
    The Impact of the Astro2010 Recommendations on Variable Star Science Corresponding Authors Lucianne M. Walkowicz Department of Astronomy, University of California Berkeley [email protected] phone: (510) 642–6931 Andrew C. Becker Department of Astronomy, University of Washington [email protected] phone: (206) 685–0542 Authors Scott F. Anderson, Department of Astronomy, University of Washington Joshua S. Bloom, Department of Astronomy, University of California Berkeley Leonid Georgiev, Universidad Autonoma de Mexico Josh Grindlay, Harvard–Smithsonian Center for Astrophysics Steve Howell, National Optical Astronomy Observatory Knox Long, Space Telescope Science Institute Anjum Mukadam, Department of Astronomy, University of Washington Andrej Prsa,ˇ Villanova University Joshua Pepper, Villanova University Arne Rau, California Institute of Technology Branimir Sesar, Department of Astronomy, University of Washington Nicole Silvestri, Department of Astronomy, University of Washington Nathan Smith, Department of Astronomy, University of California Berkeley Keivan Stassun, Vanderbilt University Paula Szkody, Department of Astronomy, University of Washington Science Frontier Panels: Stars and Stellar Evolution (SSE) February 16, 2009 Abstract The next decade of survey astronomy has the potential to transform our knowledge of variable stars. Stellar variability underpins our knowledge of the cosmological distance ladder, and provides direct tests of stellar formation and evolution theory. Variable stars can also be used to probe the fundamental physics of gravity and degenerate material in ways that are otherwise impossible in the laboratory. The computational and engineering advances of the past decade have made large–scale, time–domain surveys an immediate reality. Some surveys proposed for the next decade promise to gather more data than in the prior cumulative history of astronomy.
    [Show full text]
  • Protostars and Pre-Main-Sequence Stars Jeans' Mass
    Protostars and pre-main-sequence stars Jeans’ mass - minimum mass of a gas cloud of temperature T and density r that will collapse under gravity: 3 2 1 2 Ê Rg ˆ Ê 3 ˆ 3 2 -1 2 MJ = Á ˜ Á ˜ T r Ë mG¯ Ë 4p ¯ Several stages of collapse: • Initial isothermal collapse - still optically thin • Collapse† slows or halts once gas becomes optically thick - heats up so pressure becomes important again • Second phase of free-fall collapse as hydrogen molecules are broken up - absorbs energy and robs cloud of pressure support • Finally forms protostar with radius of 5 - 10 Rsun All this happens very rapidly - not easy to observe ASTR 3730: Fall 2003 Observationally, classify young stellar objects (YSOs) by looking at their spectral energy distributions (SEDs). Four main classes of object have been identified: flux Class 0 source wavelength in microns 1 10 100 (10-6 m) Observationally, this is a source whose SED peaks in the far-infrared or mm part of the spectrum. No flux in the near-infrared (at a few microns). Effective temperature is several 10s of degrees Kelvin. ASTR 3730: Fall 2003 What are Class 0 sources? • Still very cool - not much hotter than molecular cloud cores. Implies extreme youth. • Deeply embedded in gas and dust, any shorter wavelength radiation is absorbed and reradiated at longer wavelengths before escaping. • Fairly small numbers - consistent with short duration of the initial collapse. • Outflows are seen - suggests a protostar is forming. Earliest observed stage of star formation… ASTR 3730: Fall 2003 Class 1 flux Very large infrared excess Protostellar black body emission wavelength in microns 1 10 100 (10-6 m) Class 1 sources also have SEDs that rise into the mid and far infrared.
    [Show full text]
  • Chapter 16 the Sun and Stars
    Chapter 16 The Sun and Stars Stargazing is an awe-inspiring way to enjoy the night sky, but humans can learn only so much about stars from our position on Earth. The Hubble Space Telescope is a school-bus-size telescope that orbits Earth every 97 minutes at an altitude of 353 miles and a speed of about 17,500 miles per hour. The Hubble Space Telescope (HST) transmits images and data from space to computers on Earth. In fact, HST sends enough data back to Earth each week to fill 3,600 feet of books on a shelf. Scientists store the data on special disks. In January 2006, HST captured images of the Orion Nebula, a huge area where stars are being formed. HST’s detailed images revealed over 3,000 stars that were never seen before. Information from the Hubble will help scientists understand more about how stars form. In this chapter, you will learn all about the star of our solar system, the sun, and about the characteristics of other stars. 1. Why do stars shine? 2. What kinds of stars are there? 3. How are stars formed, and do any other stars have planets? 16.1 The Sun and the Stars What are stars? Where did they come from? How long do they last? During most of the star - an enormous hot ball of gas day, we see only one star, the sun, which is 150 million kilometers away. On a clear held together by gravity which night, about 6,000 stars can be seen without a telescope.
    [Show full text]
  • Neutron Stars: End State of High-Mass Stars
    Chapter 13: The Stellar Graveyard 3/31/2009 Habbal Astro110http://chandra.harvard.edu/photo/2001/1227/index.html Chapter 13 Lecture 26 1 Low mass star High mass (>8 Msun) star Ends as a white dwarf. Ends in a supernova, leaving a neutron star or black hole 3/31/2009 Habbal Astro110 Chapter 13 Lecture 26 2 White dwarfs: end state of low-mass stars • Inert remaining cores of dead low-mass stars. • No internal energy generation: start hot and steadily cool off. Optical image X-ray image Sirius A Sirius A high mass star high mass star Sirius B Sirius B white dwarf white dwarf 3/31/2009 Habbal Astro110 Chapter 13 Lecture 26 3 White dwarfs are supported against gravitational collapse by electron degeneracy pressure 3/31/2009 Habbal Astro110 Chapter 13 Lecture 26 4 A 1 MSun white dwarf is about the same size as the Earth… ⇒ A teaspoon of white dwarf material would weight 10 tons! 3/31/2009 Habbal Astro110 Chapter 13 Lecture 26 5 More massive white dwarfs are smaller! Mass ⇒ gravitational compression ⇒ density ⇒ radius Chandrasekhar limit: white dwarfs cannot be more massive than 1.4 MSun 3/31/2009 Habbal Astro110 Chapter 13 Lecture 26 6 White dwarfs in binary systems • WDʼs gravity can accrete gas from companion star. • Accreted gas can erupt in a short modest burst of nuclear fusion: novae • However, WDs cannot BANG! be more than 1.4 MSun. • If WD accretes too much gas, it is destroyed in a white dwarf supernova 3/31/2009 Habbal Astro110 Chapter 13 Lecture 26 7 Nova: a nuclear explosion on the surface of a WD, gas is expelled and system returns to normal 3/31/2009 Habbal Astro110 Chapter 13 Lecture 26 8 One way to tell supernova types apart is with a light curve showing how the luminosity changes.
    [Show full text]