Pulsars and Supernova Remnants
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Exploring Pulsars
High-energy astrophysics Explore the PUL SAR menagerie Astronomers are discovering many strange properties of compact stellar objects called pulsars. Here’s how they fit together. by Victoria M. Kaspi f you browse through an astronomy book published 25 years ago, you’d likely assume that astronomers understood extremely dense objects called neutron stars fairly well. The spectacular Crab Nebula’s central body has been a “poster child” for these objects for years. This specific neutron star is a pulsar that I rotates roughly 30 times per second, emitting regular appar- ent pulsations in Earth’s direction through a sort of “light- house” effect as the star rotates. While these textbook descriptions aren’t incorrect, research over roughly the past decade has shown that the picture they portray is fundamentally incomplete. Astrono- mers know that the simple scenario where neutron stars are all born “Crab-like” is not true. Experts in the field could not have imagined the variety of neutron stars they’ve recently observed. We’ve found that bizarre objects repre- sent a significant fraction of the neutron star population. With names like magnetars, anomalous X-ray pulsars, soft gamma repeaters, rotating radio transients, and compact Long the pulsar poster child, central objects, these bodies bear properties radically differ- the Crab Nebula’s central object is a fast-spinning neutron star ent from those of the Crab pulsar. Just how large a fraction that emits jets of radiation at its they represent is still hotly debated, but it’s at least 10 per- magnetic axis. Astronomers cent and maybe even the majority. -
Brochure Pulsar Multifunction Spectroscopy Service Complete Cased Hole Formation Evaluation and Reservoir Saturation Monitoring from A
Pulsar Multifunction spectroscopy service Introducing environment-independent, stand-alone cased hole formation evaluation and saturation monitoring 1 APPLICATIONS FEATURES AND BENEFITS ■ Stand-alone formation evaluation for diagnosis of bypassed ■ Environment-independent reservoir saturation monitoring ■ High-performance pulsed neutron generator (PNG) hydrocarbons, depleted reservoirs, and gas zones in any formation water salinity ● Optimized pulsing scheme with multiple square and short ● Differentiation of gas-filled porosity from very low porosity ● Production fluid profile determination for any well pulses for clean separation in measuring both inelastic and formations by using neutron porosity and fast neutron cross inclination: horizontal, deviated, and vertical capture gamma rays 8 section (FNXS) measurements ● Detection of water entry and flow behind casing ● High neutron output of 3.5 × 10 neutron/s for greater ■ measurement precision Petrophysical evaluation with greater accuracy by accounting ● Gravel-pack quality determination by using for grain density and mineral properties in neutron porosity elemental spectroscopy ■ State-of-the-art detectors ■ Total organic carbon (TOC) quantified as the difference ■ Metals for mining exploration ● Near and far detectors: cerium-doped lanthanum bromide between the measured total carbon and inorganic carbon ■ High-resolution determination of reservoir quality (RQ) (LaBr3:Ce) ■ Oil volume from TOC and completion quality (CQ) for formation evaluation ● Deep detector: yttrium aluminum perovskite -
Thursday, September 17, 2009 First Exam, Week from Today Pic of The
Thursday, September 17, 2009 First exam, week from today Astronomy in the news - end of Ramadan with new Moon. Pic of the Day - Andromeda in the Ultraviolet What happens when two white dwarfs spiral together? Larger mass WD has smaller radius Smaller mass, Which WD has the smaller Roche lobe? Larger The smaller mass radius Larger mass, Which fills its Roche Lobe first? Smaller radius Must be the smaller mass As small mass WD loses mass, its radius gets larger, but its Roche Lobe gets smaller! Runaway mass transfer. Small mass WD transfers essentially all its mass to larger mass WD Could end up with one larger mass WD If larger mass hits Mch → could get explosion => Supernova First WD < 1.4 solar masses First WD gets to 1.4 solar masses Classical Nova Recurrent Nova Two WD EXPLOSION! Gravitational Radiation, in-spiral WDs coalesce < 1.4 solar masses > 1.4 solar masses One Big WD EXPLOSION! End of Material for Test 1 Reading for First Exam Chapter 1: 1.2.3, 1.2.4, 1.3.2 Chapter 2: 2.3 Chapter 3: 3.1, 3.2, 3.3, 3.4, 3.8, 3.9, 3.10 Chapter 4: 4.1, 4.2, 4.3, 4.4, 4.5 Chapter 5: ALL Sky Watch Extra Credit Due Thursday, in Class Must be typed on regular 8-1/2x11 paper See web site for more details, or ask! See web site for star charts to help guide you where and when to look. Part of the exercise is to learn how to orient yourself and recognize objects and patterns in the sky. -
EVOLUTION of the CRAB NEBULA in a LOW ENERGY SUPERNOVA Haifeng Yang and Roger A
Draft version August 23, 2018 Preprint typeset using LATEX style emulateapj v. 5/2/11 EVOLUTION OF THE CRAB NEBULA IN A LOW ENERGY SUPERNOVA Haifeng Yang and Roger A. Chevalier Department of Astronomy, University of Virginia, P.O. Box 400325, Charlottesville, VA 22904; [email protected], [email protected] Draft version August 23, 2018 ABSTRACT The nature of the supernova leading to the Crab Nebula has long been controversial because of the low energy that is present in the observed nebula. One possibility is that there is significant energy in extended fast material around the Crab but searches for such material have not led to detections. An electron capture supernova model can plausibly account for the low energy and the observed abundances in the Crab. Here, we examine the evolution of the Crab pulsar wind nebula inside a freely expanding supernova and find that the observed properties are most consistent with a low energy event. Both the velocity and radius of the shell material, and the amount of gas swept up by the pulsar wind point to a low explosion energy ( 1050 ergs). We do not favor a model in which circumstellar interaction powers the supernova luminosity∼ near maximum light because the required mass would limit the freely expanding ejecta. Subject headings: ISM: individual objects (Crab Nebula) | supernovae: general | supernovae: indi- vidual (SN 1054) 1. INTRODUCTION energy of 1050 ergs (Chugai & Utrobin 2000). However, SN 1997D had a peak absolute magnitude of 14, con- The identification of the supernova type of SN 1054, − the event leading to the Crab Nebula, has been an en- siderably fainter than SN 1054 at maximum. -
Central Engines and Environment of Superluminous Supernovae
Central Engines and Environment of Superluminous Supernovae Blinnikov S.I.1;2;3 1 NIC Kurchatov Inst. ITEP, Moscow 2 SAI, MSU, Moscow 3 Kavli IPMU, Kashiwa with E.Sorokina, K.Nomoto, P. Baklanov, A.Tolstov, E.Kozyreva, M.Potashov, et al. Schloss Ringberg, 26 July 2017 First Superluminous Supernova (SLSN) is discovered in 2006 -21 1994I 1997ef 1998bw -21 -20 56 2002ap Co to 2003jd 56 2007bg -19 Fe 2007bi -20 -18 -19 -17 -16 -18 Absolute magnitude -15 -17 -14 -13 -16 0 50 100 150 200 250 300 350 -20 0 20 40 60 Epoch (days) Superluminous SN of type II Superluminous SN of type I SN2006gy used to be the most luminous SN in 2006, but not now. Now many SNe are discovered even more luminous. The number of Superluminous Supernovae (SLSNe) discovered is growing. The models explaining those events with the minimum energy budget involve multiple ejections of mass in presupernova stars. Mass loss and build-up of envelopes around massive stars are generic features of stellar evolution. Normally, those envelopes are rather diluted, and they do not change significantly the light produced in the majority of supernovae. 2 SLSNe are not equal to Hypernovae Hypernovae are not extremely luminous, but they have high kinetic energy of explosion. Afterglow of GRB130702A with bumps interpreted as a hypernova. Alina Volnova, et al. 2017. Multicolour modelling of SN 2013dx associated with GRB130702A. MNRAS 467, 3500. 3 Our models of LC with STELLA E ≈ 35 foe. First year light ∼ 0:03 foe while for SLSNe it is an order of magnitude larger. -
Astrophysics VLT/UVES Spectroscopy of Wray 977, the Hypergiant
UvA-DARE (Digital Academic Repository) VLT/UVES spectroscopy of Wray 977, the hypergiant companion to the X-ray pulsar GX301-2 Kaper, L.; van der Meer, A.; Najarro, F. DOI 10.1051/0004-6361:20065393 Publication date 2006 Document Version Final published version Published in Astronomy & Astrophysics Link to publication Citation for published version (APA): Kaper, L., van der Meer, A., & Najarro, F. (2006). VLT/UVES spectroscopy of Wray 977, the hypergiant companion to the X-ray pulsar GX301-2. Astronomy & Astrophysics, 457(2), 595- 610. https://doi.org/10.1051/0004-6361:20065393 General rights It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons). Disclaimer/Complaints regulations If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible. UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl) Download date:02 Oct 2021 A&A 457, 595–610 (2006) Astronomy DOI: 10.1051/0004-6361:20065393 & c ESO 2006 Astrophysics VLT/UVES spectroscopy of Wray 977, the hypergiant companion to the X-ray pulsar GX301−2 L. -
G7. 7-3.7: a Young Supernova Remnant Probably Associated with the Guest
Draft version September 12, 2018 Typeset using LATEX twocolumn style in AASTeX62 G7.7-3.7: a young supernova remnant probably associated with the guest star in 386 CE (SN 386) Ping Zhou (hs),1, 2 Jacco Vink,1, 3, 4 Geng Li (Î耕),5, 6 and Vladim´ır Domcekˇ 1, 3 1Anton Pannekoek Institute for Astronomy, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands 2School of Astronomy and Space Science, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China 3GRAPPA, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands 4SRON, Netherlands Institute for Space Research, Sorbonnelaan 2, 3584 CA Utrecht, The Netherlands 5National Astronomical Observatories, Chinese Academy of Sciences, 20A Datun Road, Chaoyang District, Beijing 100101, China 6School of Astronomy and Space Science, University of Chinese Academy of Sciences, No.19A Yuquan Road, Shijingshan District, Beijing 100049, China Submitted to ApJL ABSTRACT Although the Galactic supernova rate is about 2 per century, only few supernova remnants are associated with historical records. There are a few ancient Chinese records of \guest stars" that are probably sightings of supernovae for which the associated supernova remnant is not established. Here we present an X-ray study of the supernova remnant G7.7−3:7, as observed by XMM-Newton, and discuss its probable association with the guest star of 386 CE. This guest star occurred in the ancient Chinese asterism Nan-Dou, which is part of Sagittarius. The X-ray morphology of G7.7−3:7 shows an arc-like feature in the SNR south, which is characterized by an under-ionized plasma with sub-solar abundances, a temperature of 0:4{0.8 keV, and a density of ∼ 0:5(d=4 kpc)−0:5 cm−3. -
(NASA/Chandra X-Ray Image) Type Ia Supernova Remnant – Thermonuclear Explosion of a White Dwarf
Stellar Evolution Card Set Description and Links 1. Tycho’s SNR (NASA/Chandra X-ray image) Type Ia supernova remnant – thermonuclear explosion of a white dwarf http://chandra.harvard.edu/photo/2011/tycho2/ 2. Protostar formation (NASA/JPL/Caltech/Spitzer/R. Hurt illustration) A young star/protostar forming within a cloud of gas and dust http://www.spitzer.caltech.edu/images/1852-ssc2007-14d-Planet-Forming-Disk- Around-a-Baby-Star 3. The Crab Nebula (NASA/Chandra X-ray/Hubble optical/Spitzer IR composite image) A type II supernova remnant with a millisecond pulsar stellar core http://chandra.harvard.edu/photo/2009/crab/ 4. Cygnus X-1 (NASA/Chandra/M Weiss illustration) A stellar mass black hole in an X-ray binary system with a main sequence companion star http://chandra.harvard.edu/photo/2011/cygx1/ 5. White dwarf with red giant companion star (ESO/M. Kornmesser illustration/video) A white dwarf accreting material from a red giant companion could result in a Type Ia supernova http://www.eso.org/public/videos/eso0943b/ 6. Eight Burst Nebula (NASA/Hubble optical image) A planetary nebula with a white dwarf and companion star binary system in its center http://apod.nasa.gov/apod/ap150607.html 7. The Carina Nebula star-formation complex (NASA/Hubble optical image) A massive and active star formation region with newly forming protostars and stars http://www.spacetelescope.org/images/heic0707b/ 8. NGC 6826 (Chandra X-ray/Hubble optical composite image) A planetary nebula with a white dwarf stellar core in its center http://chandra.harvard.edu/photo/2012/pne/ 9. -
Stellar Evolution
AccessScience from McGraw-Hill Education Page 1 of 19 www.accessscience.com Stellar evolution Contributed by: James B. Kaler Publication year: 2014 The large-scale, systematic, and irreversible changes over time of the structure and composition of a star. Types of stars Dozens of different types of stars populate the Milky Way Galaxy. The most common are main-sequence dwarfs like the Sun that fuse hydrogen into helium within their cores (the core of the Sun occupies about half its mass). Dwarfs run the full gamut of stellar masses, from perhaps as much as 200 solar masses (200 M,⊙) down to the minimum of 0.075 solar mass (beneath which the full proton-proton chain does not operate). They occupy the spectral sequence from class O (maximum effective temperature nearly 50,000 K or 90,000◦F, maximum luminosity 5 × 10,6 solar), through classes B, A, F, G, K, and M, to the new class L (2400 K or 3860◦F and under, typical luminosity below 10,−4 solar). Within the main sequence, they break into two broad groups, those under 1.3 solar masses (class F5), whose luminosities derive from the proton-proton chain, and higher-mass stars that are supported principally by the carbon cycle. Below the end of the main sequence (masses less than 0.075 M,⊙) lie the brown dwarfs that occupy half of class L and all of class T (the latter under 1400 K or 2060◦F). These shine both from gravitational energy and from fusion of their natural deuterium. Their low-mass limit is unknown. -
Neutron Stars to Open Their Heavy Hearts
NEWS IN FOCUS it arrives at the International Space Station, INSIDE A NEUTON STA NASA’s Neutron Star Interior Composition A NASA mission will use X-ray spectroscopy to gather clues about the interior of neutron Explorer (NICER), a washing-machine-sized stars — the Universe’s densest forms of matter. box, will use X-rays coming from hotspots at the spinning stars’ poles to calculate the size of the stars. Outer crust Size matters, because a bigger star suggests Atomic nuclei, free electrons a stiff core that is relatively able to withstand Inner crust gravity’s compression, which means that it is Heavier atomic nuclei, free probably tightly packed with neutrons jostling neutrons and electrons against each other at higher pressure than that SVS FROM NASA GODDARD SOURCE: ADAPTED Outer core in atomic nuclei. A smaller, more compact Quantum liquid where star, meanwhile, would mean a soft interior, neutrons, protons and electrons exist in a soup in which neutrons could be dissolved in a sea of their constituent quarks. Other, more exotic proposals include the core being made of Inner core ‘hyperons’, which incorporate heavier ‘strange’ Unknown ultra-dense matter. ? Neutrons and protons may quarks within them. remain as particles, break down NICER will pinpoint the stars’ radii by into their constituent quarks, or even become ‘hyperons’. studying how their huge gravitational fields bend the light they emit. Seen from the space station, the light is fainter when the beam points away, but remains visible because the star’s gravitational field diverts some of the light back this way. The extent to which the light dims when the beam faces away tells astrono- Atmosphere mers about this field, and consequently the Hydrogen, helium, carbon star’s mass-to-radius ratio. -
Cosmic Catastrophes Wheeler 309N Spring 2008 February 25, 2008 (49490) Review for Test #2 SUPERNOVAE
Cosmic Catastrophes Wheeler 309N Spring 2008 February 25, 2008 (49490) Review for Test #2 SUPERNOVAE Historical Supernovae in the Milky Way - several seen and recorded with naked eye in last 2000 years. SN 386 earliest on record, SN 1006 brightest, SN 1054, now the Crab Nebula, contains a rapidly rotating pulsar and suggestions of a jet. Tycho 1572, Kepler 1604. Cas A, not clearly seen about 1680, shows evidence for jets, and a dim compact object in the center. The events that show compact objects also seem to show evidence of “elongated” explosions or “jets.” SN1006, SN 1572 and SN 1604 were probably Type 1a. SN 1987A in a very nearby galaxy shows elongated ejecta, produced neutrinos so we know it was powered by core collapse. Extragalactic Supernovae - many, but dimmer, more difficult to study. Common elements produced in supernovae - carbon, oxygen, magnesium, silicon, sulfur, calcium - are built up by adding “building blocks” of helium nuclei consisting of four particles, 2 protons and 2 neutrons. Type I supernovae - no evidence for hydrogen in spectrum. Type II supernovae - definite evidence for hydrogen in spectrum. Type Ia supernovae - brightest, no hydrogen or helium, avoid spiral arms, occur in elliptical galaxies, origin in lower mass stars. Observe silicon early on, iron later. Unregulated burning, explosion in quantum pressure supported carbon/oxygen white dwarf of Chandrasekhar mass. Expected to occur in a binary system so white dwarf can grow. Star is completely disrupted, no neutron star or black hole. Light curve shows peak lasting about a week. Type II Supernovae - explode in spiral arms, never occur in elliptical galaxies, normal hydrogen, massive stars, recently born, short lived. -
The Electron-Capture Origin of Supernova 2018Zd
The electron-capture origin of supernova 2018zd Daichi Hiramatsu1;2∗, D. Andrew Howell1;2, Schuyler D. Van Dyk3, Jared A. Goldberg2, Keiichi Maeda4;5, Takashi J. Moriya6;7, Nozomu Tominaga8;5, Ken’ichi Nomoto5, Griffin Hosseinzadeh9, Iair Arcavi10;11, Curtis McCully1;2, Jamison Burke1;2, K. Azalee Bostroem12, Stefano Valenti12, Yize Dong12, Peter J. Brown13, Jennifer E. Andrews14, Christopher Bilinski14, G. Grant Williams14;15, Paul S. Smith14, Nathan Smith14, David J. Sand14, Gagandeep S. Anand16;17, Chengyuan Xu18, Alexei V.Filippenko19;20, Melina C. Bersten21;22;5, Gaston´ Folatelli21;22;5, Patrick L. Kelly23, Toshi- hide Noguchi24 & Koichi Itagaki25 *Corresponding author. Email: [email protected] 1Las Cumbres Observatory, 6740 Cortona Drive, Suite 102, Goleta, CA 93117-5575, USA 2Department of Physics, University of California, Santa Barbara, CA 93106-9530, USA 3Caltech/Spitzer Science Center, Caltech/IPAC, Mailcode 100-22, Pasadena, CA 91125, USA 4Department of Astronomy, Kyoto University, Kitashirakawa-Oiwake-cho, Sakyo-ku, Kyoto 606- 8502, Japan 5Kavli Institute for the Physics and Mathematics of the Universe (WPI), The University of Tokyo Institutes for Advanced Study, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277- 8583, Japan arXiv:2011.02176v1 [astro-ph.HE] 4 Nov 2020 6National Astronomical Observatory of Japan, National Institutes of Natural Sciences, 2-21-1 Os- awa, Mitaka, Tokyo 181-8588, Japan 7School of Physics and Astronomy, Faculty of Science, Monash University, Clayton, Victoria 1 3800, Australia