Vince Thesis Online

Total Page:16

File Type:pdf, Size:1020Kb

Vince Thesis Online KELVIN PROBE EXAMINATION OF ORGANIC/METALLIC SEMICONDUCTORS ______________________________________ A Thesis Presented to The Honors Tutorial College Ohio University ______________________________________ In Partial Fulfillment of the Requirements for Graduation from the Honors Tutorial College with the degree of Bachelor of Science in Physics ______________________________________ By Vincent Roberts June 2012 Table of Contents I. Introduction 4 A. An Energy Crisis 4 B. The Advent of the Solar Cell 6 II. Background and Theory 8 A. Solar Cell Technology: The Photoelectric . 8 B. Work Function and Charge Transfer . 11 C. Background on Kelvin Probe 15 D. “Seeing” at the Quantum Level 18 E. Principles of the Kelvin Method 19 III. Molecules and Preparation 25 A. Organic Molecule F4-TCNQ 25 B. Zinc Oxide 29 C. Sample Substrate Preparation 32 D. F4-TCNQ Preparation 34 IV. Data Collection 35 A. Kelvin Probe Preparation 35 B. Sample Probing 37 --2-- C. Data Collection Parameters 41 D. Discerning Between Good and Bad Data 42 V. Results and Conclusions 45 A. Discussion 45 B. Conclusions 50 C. Suggestion for Further Experimentation 54 Acknowledgements 56 References 57 --3-- I. Introduction An Energy Crisis Nano- and quantum technology are terms often used in science- fiction during the past several decades. They have become very much akin to “buzz” words of modern-day companies and technologies. The world is in the midst of a technological boom, yet it is also in a severe energy crisis. It’s no exaggeration to say that fossil fuels will be running short in the foreseeable future, and the call by environmentalists to save the planet have only added flames to the proverbial fire regarding the question of humanity’s sustainable energy dilemma. Green technology is now the hot field in the energy market, and solar power seems to be the next logical step in the crisis, but current solar panels operate at only less than 30% efficiency [1]. Traditionally, silicon has been the main source of solar cells. However, silicon semiconductors seem to have reached their limit in the field, and now there is a push to examine new unique materials, utilizing the contemporary concept of charge transfer between organic and metallic semiconductor materials to perhaps find a more efficient solar cell candidate. A prominent semiconducting-like organic material has come to the forefront: 2,3,5,6-Tetrafluoro-7,7,8,8-tetracyanoquinodimethane, or, --4-- simply, F4-TNCQ. Since it is a novel organic molecule, not much research has been conducted on it in combination with metallic semiconductors. There have been a few instances of work function being [2] increased on ITO samples, increases of at least 0.6 eV . Since F4-TCNQ can cause an increase in work function in semiconductors, a preferable condition in solar cells, it is being tested on many other materials. The focus of this paper is on the new organic material F4-TNCQ and its bonding properties to metallic semiconducting substrate, Zinc Oxide (ZnO). F4-TNCQ has had interesting reactions with ITO in previous studies, successfully bonding and altering the work function of the materials; therefore, it can be postulated that it will have a similar effect with another metallic oxide such as ZnO. In order to make accurate measurements of the material work functions in an applicable setting, the sample was measured inside of a Kelvin Probe, which is able to make work function measurements at room temperature and at atmospheric pressure. Real solar cells must function in such conditions, so all data taken is done at a directly applicable level. --5-- The Advent of the Solar Cell While solar cells may seem like a relatively new innovation, specific to the green technology era, the photovoltaic effect (the working principle of the solar cell) was first discovered nearly 200 years ago by physicist Edmond Becquerel [1]. Extensive work on the photovoltaic effect was later done at the turn of the 20th Century by Albert Einstein, whose connection of quantum mechanics to work function of the photoelectric effect won him his only Nobel Prize. Much later, in the 1950’s, silicon became the most popular semiconducting material. Silicon became the main source of diodes in electronics, most specifically in the form of photovoltaic (PV) diodes [1]. Ecological crisis of the 1990’ss and 2000’s, especially CO2-based global warming, have pushed sustainable energy science back towards solar power. Since the 1990’s, there has been continuing progress in the field of solar energy. Commercial prices in solar modules have shown a sustained average reduction of 7.5% per year, while global production of modules has increased on average 18% per year, with both expected to rise in the future [1]. However, despite trends of increases in production and lowering of manufacturing prices, the cost of installation of solar generating modules has remained high, approximately an order of magnitude higher than current prices of non-solar energies, e.g. hydro, nuclear, and fossil fuels [1]. --6-- Importantly, current solar cell technology is not a sufficient producer of energy. Lower-end solar modules used today are only efficient in energy conversion at about 15% [1]. As a result, more area, wiring, supports, and substrates are needed to provide enough energy for the modern energy driven way of life. Beyond the issue of low energy efficiency, there is a problematic artifact of production. While the use of solar cells does not produce CO2 or other pollutants, their production generates pollutants and requires large amounts of energy during their manufacture [1]. This begs the question of how well the benefits of solar technology balance with their manufacturing on an ecological basis. --7-- II. Background and Theory Solar Cell Technology: The Photoelectric Effect The foundation of solar cell technology began at the turn of the 20th century with physicist Albert Einstein. In his Nobel Prize winning research, he revealed the basis of the photoelectric effect using newly founded principles of quantum physics developed by Planck [3]. The photoelectric effect is the observation that when a metal surface is bombarded with incident light, electrons from the metal may be ejected [3]. In order to explain this effect, Einstein focused on the localized packets of light energy, called photons, and their interactions with the metal. In this case, the photon packets were directly interacting with the electrons in the metal, giving them energy and causing them to be ejected from the metal surface [3]. In such a metal, electrons with energy to escape this well can be disassociated from the parent atom. This “escape energy” is known as the work function ϕ [3]. Energy must be conserved in this process, therefore the energy of an ejected electron by a photon must be: E = hν – ϕ [3]. Whenever an electron is ejected by a photon, a positively charged “hole” is left where the electron formerly was [3]. In a solar cell, the free electrons are captured via a voltage source, and the positive holes are --8-- moved to the other side of the cell. This separation of charge creates a capacitor type structure in the solar material, with positive holes opposing the negatively charged electrons [1][4]. Such a capacitor builds up charge continuously as photons strike the surface, and thus energy is stored. Once the separation of holes and electrons is removed, there is a flow of charge, i.e. current, creating the wanted electricity [1][4]. Therefore, the basic solar cell is simply a semiconducting diode, a photovoltaic silicon diode being a common example [1]. A semiconducting material absorbs incident photons from a light source and then converts it to an electron-hole pair [1]. The main energy parameter comes from the work function of the solar material, specifically in the energy between band gaps, i.e. the valence and conduction bands [1][2]. Due to quantum mechanics, a photon with energy less than the band gap will not contribute to the photogeneration, but a photon with energy of the band gap or higher will contribute, with any extra energy rapidly lost [1]. Therefore, the maximum current density J is given by the flux of photons with energy greater than the band gap [1]. Similarly, current density J will decrease with an increasing energy gap. However, not every photon that strikes the cell surface will contribute to charge separation of the electron-hole pairs. Solar cell efficiency is characterized by how many photons contribute to charge separation divided by the total number of incident photons. In theory --9-- there can only be a maximum efficiency related to band gap and electron charge [1][4], yet nice solar films that have good quality can greatly enhance the efficiency. With many current models of solar cells, there are only efficiencies up to and approaching 30%, and most materials such as gallium arsenide, indium phosphide, Fig. 1: The standard solar cell uses and cadmium telluride are common silicon in order to reach energy efficiency 15-20%. much too costly for widespread application [1][4]. Some crystalline silicon cells reach an efficiency of 25%, but they are too sophisticated and too expensive for widespread industrial use [4]. Cheap modules that can be produced in large quantities rarely exceed an efficiency of 15% [1]. Therefore, there is a quest to find better materials to increase efficiencies. Research and use of silicon seems to have reached a limit, and more work is being done on other semiconductors. Organic semiconductors are also under scrutiny due to their easy availability and low cost [1][5]. --10-- Work Function and Charge Transfer in Organic Semiconductors By measuring the current over changes in voltage, dI/dV curves, energy spectra of the sample can be measured around its Fermi level at low temperatures [5].
Recommended publications
  • A Review Paper Ondevelopment in Material Used in Solar Pannel As
    SSRG International Journal of Mechanical Engineering Volume 6 Issue 6, 35-41, June 2019 ISSN: 2348–8360 /doi: 10.14445/23488360/IJME-V6I6P107 © 2019 Seventh Sense Research Group® A Review Paper on Development in Material Used in Solar Pannel as Solar Cell Material Ankur Kumar Bansal, Dinesh Kumar, Dr. Mukesh Kumar M.tech Mechanical, AKTU Lucknow, India Abstract electron flow when photons from sunlight absorbed In the present era, While seeing the increasing and ejected electrons, leaving a hole that is further demand for energy and depletion of resources from filled by the surrounding electrons. This phenomenon which we obtained energy, solar energy suggest as is called the photovoltaic effect. The PV cell directs the best alternative energy resource. The light from the electrons in one direction, which gives rise to the the sun is not only a non-vanishing resource of flow of current. The amount of current is directly energy but also it is an Eco- Friendly resource of proportional to the humble of absorbed photons. So it energy(free from the environment pollution and can be easily said that PV cells are a variable current noise). It can easily compensate for the energy source. The first solar cell was built by Charles Fritts requirements fulfilled by the other resources, which in 1883 by the use of a thin layer of gold, and a are depleting and environment challenges, such as coating of selenium formed a junction. In the starting Fossil Fuel and petroleum deposits. era, the PCE was very low, about 1% only, but Basically, we receive solar energy from the further improvements make it increase.
    [Show full text]
  • Solar Cells They Rely on Are Notoriously Expensive to Produce
    THE PRESENT PROBLEM WITH SOLAR POWER is price. Ironically, sunlight, which is abundant beyond the energy needs of the entire human race and completely free, is frequently deemed too expensive to harness. Photovoltaic panels, systems to make them compatible with grid electricity, and batteries to squirrel away energy for when it’s cloudy—all these add cost. And while such hardware and installation costs will continue to diminish over time, the standard silicon solar cells they rely on are notoriously expensive to produce. Naturally, the scientific community has taken great interest in identifying alternative materials for solar cells. Solar-harvesting materials under development at Los Alamos and elsewhere include specialized thin films, organic layers, semi- conductor nanodevices, and others. Each has promise, and each has drawbacks. But a new class of challengers emerged a few years ago and has been improving with surprising speed since then. Known as perovskites, they are any crystalline material with the same broad class of chemical structure as a natural mineral of the same name. Perovskite solar cells are generally easy to work with, easy to adjust for improved performance, and very easy to afford. And in recent experi- mentation at Los Alamos, a particular recipe has been shown to reliably generate perovskite crystals that exhibit solar conversion efficiencies comparable to those of silicon. “Silicon solar cells are still the gold standard. They’re reliable and efficient, and they’ve been thoroughly demonstrated in the field,” says Los Alamos materials scientist Aditya Mohite. “I can’t wait to render them obsolete.” Anatomy of a cell A standard solar cell contains an active layer, usually silicon, sandwiched between two electrode layers.
    [Show full text]
  • Summary of the High-Efficiency Crystalline Solar Cell Research Forum
    SUMMARY OF THE HIGH-EFFICIENCY CRYSTALLINE SOLAR CELL RESEARCH FORUM UNIVERSITY OF PENNSYLVANIA M. Wolf Session I: OVERVIEW P. Landsberg Some Aspects of the Minority Carrier Lifetime in Silicon. C.T. Sah Review of Recombination Phenomena in Righ- Efficiency Solar Cells. Session 11: EGR EFFICIENCY CONCEPTS n. Wolf Silicon Solar Cell Efficiency Improvement: Status and Outlook. Some Practical Considerattons far Econoaical Back Contact Fovaaaticn on High-Efficiency Solar Cells. High-Efficiency Cell Concepts on Low-Cost Silicon Sheet. R, Swanson High Lifetime Silicon Processing. L. Olsen Silicon HINP Solar Cells. Session 111: SURFACE/INTERFACE EFFECTS D. Chadi Atomic Structure of the Annealed Si (111) Surface. L. Kazaerski Surface and Interface Characteristics, S. Lai Nitridation of SiO2 for Surface Passivatfon. S. Panash Surface Passivation and Junction Formation Using Low-Energy Hydrogen Implants. P, Grunthaner Chemical Structure of Interfaces. PLENARY SESS!ONS Session IV: BULK BPFRCTS E. Sirtl Structural Defects in Crystalline Silicon. C. Pierce Oxygen and Carbon Impurities and Related Defects in Silicon. T. Tan Current Understanding of Point Defects and Diffusion Processes in Silicon. G. Schwuttke Defects in Web Dendrite Silicon Ribbon Crystals and Their Influences on Hinority Carrier Lifetime. J. Hanoka EBLC Characterization and dydrogen Passivation in Silicon Sheet. A. Neugrsschel Measurement of Electrical Parameters and Current Components in the Bulk of Silicon Solar Cells. Session V: MODEL-- I NG - R. Schwartz Current Status of One and Two Dimensional Numer- ical Models: Successes and Limitations. M. Lamorte Application of Closed-Form Solution Using Re- cursion Relationship in Silicon Solar Cells. P. Lindholm PIenomena Simulation for Heavy Doping and Surface ! Recombination Velocity.
    [Show full text]
  • Hybrid Nanocomposite Thin Films for Photovoltaic Applications: a Review
    nanomaterials Review Hybrid Nanocomposite Thin Films for Photovoltaic Applications: A Review Marcela Socol *,† and Nicoleta Preda *,† National Institute of Materials Physics, 405A Atomistilor Street, P.O. Box MG-7, 077125 Magurele, Romania * Correspondence: marcela.socol@infim.ro (M.S.); nicol@infim.ro (N.P.) † These authors contributed equally. Abstract: Continuing growth in global energy consumption and the growing concerns regarding climate change and environmental pollution are the strongest drivers of renewable energy deploy- ment. Solar energy is the most abundant and cleanest renewable energy source available. Nowadays, photovoltaic technologies can be regarded as viable pathways to provide sustainable energy genera- tion, the achievement attained in designing nanomaterials with tunable properties and the progress made in the production processes having a major impact in their development. Solar cells involving hybrid nanocomposite layers have, lately, received extensive research attention due to the possibility to combine the advantages derived from the properties of both components: flexibility and process- ability from the organic part and stability and optoelectronics features from the inorganic part. Thus, this review provides a synopsis on hybrid solar cells developed in the last decade which involve composite layers deposited by spin-coating, the most used deposition method, and matrix-assisted pulsed laser evaporation, a relatively new deposition technique. The overview is focused on the hybrid nanocomposite films that can use conducting polymers and metal phthalocyanines as p-type materials, fullerene derivatives and non-fullerene compounds as n-type materials, and semiconductor nanostructures based on metal oxide, chalcogenides, and silicon. A survey regarding the influence of various factors on the hybrid solar cell efficiency is given in order to identify new strategies for Citation: Socol, M.; Preda, N.
    [Show full text]
  • Advances in Cost-Efficient Thin-Film Photovoltaics Based on Cu(In,Ga)Se2
    Engineering 3 (2017) 445–451 Contents lists available at ScienceDirect Engineering journal homepage: www.elsevier.com/locate/eng Research Clean Energy—Review Advances in Cost-Efficient Thin-Film Photovoltaics Based on Cu(In,Ga)Se2 Michael Powalla*, Stefan Paetel, Dimitrios Hariskos, Roland Wuerz, Friedrich Kessler, Peter Lechner, Wiltraud Wischmann, Theresa Magorian Friedlmeier Centre for Solar Energy and Hydrogen Research Baden-Württemberg (ZSW), Stuttgart 70563, Germany a r t i c l e i n f o a b s t r a c t Article history: In this article, we discuss the leading thin-film photovoltaic (PV) technology based on the Cu(In,Ga)Se2 (CIGS) Received 3 May 2017 compound semiconductor. This contribution includes a general comparison with the conventional Si-wafer- Revised 9 July 2017 based PV technology and discusses the basics of the CIGS technology as well as advances in world- Accepted 10 July 2017 record-level conversion efficiency, production, applications, stability, and future developments with respect Available online 11 August 2017 to a flexible product. Once in large-scale mass production, the CIGS technology has the highest potential of all PV technologies for cost-efficient clean energy generation. Keywords: © 2017 THE AUTHORS. Published by Elsevier LTD on behalf of the Chinese Academy of Engineering and Thin-film photovoltaics Higher Education Press Limited Company. This is an open access article under the CC BY-NC-ND Solar energy license (http://creativecommons.org/licenses/by-nc-nd/4.0/). Flexible Cu(In,Ga)Se2 1. Introduction 2. General comparison of CIGS-based thin-film and Si-wafer- based PV technologies Photovoltaic (PV) technology, which directly generates electricity from sunlight, is quickly becoming a major player in the future clean A solar cell is basically a large-area semiconductor diode.
    [Show full text]
  • DESIGN and ANALYSIS of HIGH EFFICIENCY MULTI-JUNCTION SOLAR CELLS with TUNNEL JUNCTIONS Vijaya Lekshmi R
    DESIGN AND ANALYSIS OF HIGH EFFICIENCY MULTI-JUNCTION SOLAR CELLS WITH TUNNEL JUNCTIONS Vijaya Lekshmi R. M1, Vidya V. Sankar2 1 Assistant professor on contract, Department of Physics, Sree Narayana College Kollam, (India) 2 FDP substitute lecturer, Department of Physics, Mahatma Gandhi College, Trivandrum,(India) ABSTRACT Multi-junction solar cells (MJSC) are the future of renewable energy production. MJSC have rapidly gone laboratory cells, to large-area, high-efficiency manufacturing cells. The introduction of wide-bandgap tunnel junctions between the sub-cells in MJSC has made these devices a super-efficient energy producing device. In this paper we have discussed the important aspects of MJSC design and manufacturing. Device examples are presented. Recent advances and future challenges in multi-junction solar cells are summarized. Keywords: Metal Organic Vapor Phase Epitaxy, Multi-Junction Solar Cells, Tunnel Junction I. INTRODUCTION Energy is very important to our day-to-day life. Future development of humans very much depends on the availability of energy sources that are dependable, safe, and environmental friendly. There is an increased demand for renewable energy sources due to concern over global climatic change and over dependence on non- renewable fossil fuel reserves. The Photovoltaic (PV) solar energy is an important contribution to a future sustainable non-polluting energy supply for mankind. In 2013, the world photovoltaic power capacity reached 136 GW with Germany leading in solar electricity production. Concentrator photovoltaic technology helps to keep the cost of solar power to be lower than 1$/W [1]. Multi-junction solar cells (MJSC) are cell modules with multiple p–n junctions made to absorb different wavelengths of light, corresponding to their bandgaps, to create electric current.
    [Show full text]
  • 25Th Space Photovoltaic Research and Technology Conference
    NASA/CP—2019-220051 25th Space Photovoltaic Research and Technology Conference Jeremiah S. McNatt, Compiler Glenn Research Center, Cleveland, Ohio February 2019 NASA STI Program . in Profi le Since its founding, NASA has been dedicated • CONTRACTOR REPORT. Scientifi c and to the advancement of aeronautics and space science. technical fi ndings by NASA-sponsored The NASA Scientifi c and Technical Information (STI) contractors and grantees. Program plays a key part in helping NASA maintain this important role. • CONFERENCE PUBLICATION. Collected papers from scientifi c and technical conferences, symposia, seminars, or other The NASA STI Program operates under the auspices meetings sponsored or co-sponsored by NASA. of the Agency Chief Information Offi cer. It collects, organizes, provides for archiving, and disseminates • SPECIAL PUBLICATION. Scientifi c, NASA’s STI. The NASA STI Program provides access technical, or historical information from to the NASA Technical Report Server—Registered NASA programs, projects, and missions, often (NTRS Reg) and NASA Technical Report Server— concerned with subjects having substantial Public (NTRS) thus providing one of the largest public interest. collections of aeronautical and space science STI in the world. Results are published in both non-NASA • TECHNICAL TRANSLATION. English- channels and by NASA in the NASA STI Report language translations of foreign scientifi c and Series, which includes the following report types: technical material pertinent to NASA’s mission. • TECHNICAL PUBLICATION. Reports of For more information about the NASA STI completed research or a major signifi cant phase program, see the following: of research that present the results of NASA programs and include extensive data or theoretical • Access the NASA STI program home page at analysis.
    [Show full text]
  • Production Alternatives to Screen Printing for Dye Sensitized Solar Cells in Laboratory Settings
    PRODUCTION ALTERNATIVES TO SCREEN PRINTING FOR DYE SENSITIZED SOLAR CELLS IN LABORATORY SETTINGS A Thesis by Holly Haynes Bachelor of Science, Wichita State University, 2007 Submitted to the Department of Mechanical Engineering and the faculty of the Graduate School of Wichita State University in partial fulfillment of the requirements for the degree of Master of Science December 2010 © Copyright 2010 by Holly Haynes All Rights Reserved PRODUCTION ALTERNATIVES TO SCREEN PRINTING FOR DYE SENSITIZED SOLAR CELLS IN LABORATORY SETTINGS The following faculty members have examined the final copy of this thesis for form and content, and recommend that it be accepted in partial fulfillment of the requirement for the degree of Master of Science with a major in Mechanical Engineering. __________________________________________ Ramazan Asmatulu, Committee Chair __________________________________________ Hamid Lankarani, Committee Member __________________________________________ Paul Rillema, Committee Member iii DEDICATION To my family and friends. iv Experience: that most brutal of teachers. But you learn, my God do you learn. v ACKNOWLEDGMENTS I would like to thank my advisor and committee chair, Dr. Ramazan Asmatulu, for his unfailing support and guidance throughout this project. I would also like to extend my gratitude to the members of my committee, Dr. Hamid Lankarani and Dr. Paul Rillema, for their helpful comments and suggestions on this project. Dr. Francis D‟Souza and Navaneetha Subbaiyan of the Chemistry Department of Wichita State University provided invaluable help in the form of information and access to testing facilities used in this project. I must express my thanks to Dr. Nurxat Nuraje of the Department of Materials Science and Engineering at MIT for advice and testing, to Dr.
    [Show full text]
  • Solar Cell Temperature Dependent Efficiency and Very High Temperature Efficiency Limits John Robert Wilcox Purdue University
    Purdue University Purdue e-Pubs Open Access Dissertations Theses and Dissertations Fall 2013 Solar Cell Temperature Dependent Efficiency and Very High Temperature Efficiency Limits John Robert Wilcox Purdue University Follow this and additional works at: https://docs.lib.purdue.edu/open_access_dissertations Part of the Electrical and Electronics Commons, Nanoscience and Nanotechnology Commons, and the Oil, Gas, and Energy Commons Recommended Citation Wilcox, John Robert, "Solar Cell Temperature Dependent Efficiency and Very High Temperature Efficiency Limits" (2013). Open Access Dissertations. 19. https://docs.lib.purdue.edu/open_access_dissertations/19 This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact [email protected] for additional information. SOLAR CELL TEMPERATURE DEPENDENT EFFICIENCY AND VERY HIGH TEMPERATURE EFFICIENCY LIMITS A Dissertation Submitted to the Faculty of Purdue University by John R. Wilcox In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy December 2013 Purdue University West Lafayette, Indiana ii To my loving wife Amy T. Wilcox and wonderful family. Many wonderful educators and friends that have inspired me. This great country. iii ACKNOWLEDGMENTS I would like to thank Professors Jeffery Gray and Richard Schwartz for their excellent guidance and instruction. They have been wonderful mentors. I would also like to thank Professors Mark Lundstrom, Ashraf Alam and Rakesh Agrawal for serving on my thesis committee, and Dr. Alex Haas, for his collaboration and research. Many thanks to Dr. Allen Gray, Dr. Myles Steiner, Dr. Mark Osowski, Dr. James McCambridge and JP Whitlock, their feedback and measurements have been invaluable. I appreciate the superb learning opportunities available at Purdue University.
    [Show full text]
  • Solar Cell Research and Its Application
    International Journal of Scientific Engineering and Science Volume 4, Issue 8, pp. 67-69, 2020. ISSN (Online): 2456-7361 Solar Cell Research and Its Application Fitria Hidayanti1, Kreshna Agusta Mulyo Adi2 1, 2Engineering Physics Department, Universitas Nasional, Pasar Minggu, Jakarta 12520, Indonesia. Email address: 1fitriahidayanti @ gmail.com Abstract—In modern times, it is indicated that renewable energy will meet energy needs to support human activities in the near future. But renewable energy sources are still dependent on the weather and climate which is certainly uncertain and will have a lot of variability making renewable energy still doubtful to be sufficient to meet the energy demand that humans need, especially in a modern living culture which very dependent to electricity in many aspects, including the future of human transportation. To overcome the uncertainty problem of renewable energy, a hybrid power plant is created by combining solar, hydro and wind energy. Given the importance of solving these problems, this paper review begins with a brief of the research that have been made, formulates detailed definitions and key concepts, summarizes the direction of current research and ends with views on prospective research in the future. Keywords— Solar Cell, Application, Research, Renewable Energy. TABLE I. Comparison of Solar Cell Efficiency [7]. I. INTRODUCTION Experimental Real Production Material Efficiency Efficiency In recent times the term variable renewable energy sources Monocrystalline Silicon 24% 14%-17% (VRES) can appear which can be used as an alternative to Polycrystalline Silicon 18% 13%-15% being a supplier of additional energy power to the human Amorphous Silicon 13% 5%-7% electricity grid.
    [Show full text]
  • Nanotechnology for Single Crystalline Silicon Solar Cell Applications
    Nanotechnology for single crystalline silicon solar cell applications by Shuyu Ding, B. Eng A thesis submitted to the Faculty of Graduate and Postdoctoral Affairs in partial fulfillment of the requirements for the degree of Master of Applied Science in Electrical and Computer Engineering Ottawa-Carleton Institute for Electrical and Computer Engineering Department of Electronics Carleton University Ottawa, Ontario May, 2015 © Copyright, Shuyu Ding, 2015 The undersigned hereby recommends to the Faculty of Graduate and Postdoctoral Affairs acceptance of the thesis Nanotechnology for single crystalline silicon solar cell applications Submitted by Shuyu Ding, B. Eng in partial fulfillment of the requirements for the degree of Master of Applied Science in Electrical and Computer Engineering . Professor Winnie N. Ye, Thesis Supervisor . Professor Niall Tait, Chair, Department of Electrical and Computer Engineering Ottawa-Carleton Institute for Electrical and Computer Engineering Department of Electronics Carleton University May, 2015 ii Abstract Solar cells are receiving a lot of attention due to the ongoing climate debate and attempts to implement more green energy sources to reduce the CO2 emissions in the atmosphere. Single crystalline silicon (c-Si) solar cells with better stability over a long time period compared to other silicon based solar cells have taken a main position in the solar cell market. As new solar cell technology continually develops, the disadvantage of the relatively high cost of electricity generated related to low cell efficiency becomes one of top issues with c-Si solar cells. The purpose of this thesis is to investigate the effectiveness of nanotechnologies, in particular plasmonic metal nanoparticles (MNPs), black silicon (b-Si) nanostructures and horizontally-grown silicon nanowires (SiNWs) structures, for cell efficiency enhancement of c-Si solar cells through numerical simulation and experimental demonstrations.
    [Show full text]
  • Contact Angle Measurements in Solar Cell Industry This Application Note Describes How Optical Tensiometers Are Utilized in Solar Cell Industry
    [Application Note] 14 Contact angle measurements in solar cell industry This application note describes how optical tensiometers are utilized in solar cell industry. Introduction Solar cell (also called photovoltaic cell) is an electrical device that converts the energy of light directly into electricity by photovoltaic effect (see Figure 1.). There are several types of solar cells available, the most common one being fabricated on silicon wafer [1]. Other solar cell types include thin film [2], dye-sensitized [3] and organic/polymer solar cells [4]. Although, silicon solar cells are by far mostly used with their over 80 % market share, due to simple fabrication process, other solar cell types offer some additional advantages such as flexibility. There are currently many research groups active in the field of photovoltaics in universities and research institutes around the world. This research can be roughly divided into three areas; • Making current technology solar cells cheaper and/or more efficient to compete with other energy sources. • Developing new technologies based on new solar cell architectural designs. suitable surface properties of the wafers at different stages of the fabrication process. In thin film solar cells, a thin layer of material • Developing new materials to serve as light absorbers and like copper indium gallium selenide (CIGS) works as a photovoltaic charge carriers. material. Tensiometers have been utilized to study the efficiency Although, photovoltaic research is done around the world, of these photovoltaic layers. Traditionally the top layer of solar China is by far the biggest solar cell manufacturer. Solar cells are cell is a thin cover glass, coated with some anti-reflection then connected together to form ready solar panels.
    [Show full text]