Solar Cell Temperature Dependent Efficiency and Very High Temperature Efficiency Limits John Robert Wilcox Purdue University

Total Page:16

File Type:pdf, Size:1020Kb

Solar Cell Temperature Dependent Efficiency and Very High Temperature Efficiency Limits John Robert Wilcox Purdue University Purdue University Purdue e-Pubs Open Access Dissertations Theses and Dissertations Fall 2013 Solar Cell Temperature Dependent Efficiency and Very High Temperature Efficiency Limits John Robert Wilcox Purdue University Follow this and additional works at: https://docs.lib.purdue.edu/open_access_dissertations Part of the Electrical and Electronics Commons, Nanoscience and Nanotechnology Commons, and the Oil, Gas, and Energy Commons Recommended Citation Wilcox, John Robert, "Solar Cell Temperature Dependent Efficiency and Very High Temperature Efficiency Limits" (2013). Open Access Dissertations. 19. https://docs.lib.purdue.edu/open_access_dissertations/19 This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact [email protected] for additional information. SOLAR CELL TEMPERATURE DEPENDENT EFFICIENCY AND VERY HIGH TEMPERATURE EFFICIENCY LIMITS A Dissertation Submitted to the Faculty of Purdue University by John R. Wilcox In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy December 2013 Purdue University West Lafayette, Indiana ii To my loving wife Amy T. Wilcox and wonderful family. Many wonderful educators and friends that have inspired me. This great country. iii ACKNOWLEDGMENTS I would like to thank Professors Jeffery Gray and Richard Schwartz for their excellent guidance and instruction. They have been wonderful mentors. I would also like to thank Professors Mark Lundstrom, Ashraf Alam and Rakesh Agrawal for serving on my thesis committee, and Dr. Alex Haas, for his collaboration and research. Many thanks to Dr. Allen Gray, Dr. Myles Steiner, Dr. Mark Osowski, Dr. James McCambridge and JP Whitlock, their feedback and measurements have been invaluable. I appreciate the superb learning opportunities available at Purdue University. This work was supported the by the Very High Efficiency Solar Cell project, Advanced Research Projects Agency-Energy and Semiconductor Research Corporation through the Network for Photovoltaic Technology. Facilities and computer resources have been provided by Purdue’s Birck Nanotechnology Center, Network for Computational Nanotechnology, Engineering Computer Network and the School of Electrical and Computer Engineering . iv TABLE OF CONTENTS Page LIST OF TABLES .............................................................................................................. x LIST OF FIGURES .......................................................................................................... xii LIST OF SYMBOLS ..................................................................................................... xxiii NOMENCLATURE ...................................................................................................... xxxi ABSTRACT ................................................................................................................. xxxiv 1. INTRODUCTION ........................................................................................................ 1 1.1 The Value of Solar Energy ................................................................................... 1 1.2 Reducing the Cost of Solar Energy ...................................................................... 2 1.2.1 Solar Cell Research .................................................................................. 2 1.2.2 Solar Cell Modeling ................................................................................. 3 1.3 Increasing the Value of Solar Energy ................................................................... 4 1.4 Operating Temperature ......................................................................................... 6 1.5 Dissertation Synopsis ........................................................................................... 7 1.5.1 Detailed Balance Limited Very High Temperature Terminal Characteristics .......................................................................................... 9 1.5.2 Recombination Limited Very High Temperature Terminal Characteristics .......................................................................................... 9 1.5.3 Temperature Dependent Resistive Losses .............................................. 10 1.5.4 Temperature Dependent Numerical Model ............................................ 11 2. LITERATURE REVIEW ........................................................................................... 13 2.1 Solar Cell History ............................................................................................... 13 2.2 Solar Cell Fundamentals ..................................................................................... 15 2.3 Modeling Solar Cells .......................................................................................... 16 2.4 Simple Solar Cell Models ................................................................................... 17 2.4.1 Linear Temperature Dependent Curve-fits ............................................. 17 v Page 2.4.2 Ideal Diode With Resistance .................................................................. 18 2.4.3 Two or More Diode Model ..................................................................... 19 2.4.4 Other Temperature Dependent Solar Cell Models ................................. 19 2.4.5 Summary of Analytical Solar Cell Models ............................................ 20 2.5 Detailed Numerical Models of Semiconductor Devices .................................... 21 2.5.1 Detailed Modeling Programs .................................................................. 21 2.5.2 Temperature Dependent Solar Cell Modeling ........................................ 22 2.5.3 Compare Modeled and Measured Temperature Coefficients ................. 24 2.6 Related Work ...................................................................................................... 24 2.6.1 Simulating the Recombination Limited Terminal Characteristics at Very High Temperatures .................................................................... 24 2.6.2 Calculating the Series Resistance and Bias Point Losses ....................... 25 2.6.3 Detailed Numerical Modeling Temperature Dependencies ................... 26 2.7 Uncertainty in Temperature Dependent Measurements ..................................... 27 3. DETAILED BALANCE LIMITED VERY HIGH TEMPERATURE TERMINAL CHARACTERISTICS .......................................................................... 29 3.1 Terminal Characteristics ..................................................................................... 30 3.1.1 Temperature Dependent Terminal Characteristics ................................. 31 3.1.2 Temperature Dependent Terminal J-V Relationship .............................. 33 3.1.3 Bandgap Energy ..................................................................................... 34 3.1.4 Short Circuit Current .............................................................................. 38 3.1.5 Recombination Current Density ............................................................. 44 3.1.6 Open Circuit Voltage .............................................................................. 49 3.1.7 Fill Factor ............................................................................................... 54 3.1.8 Conversion Efficiency ............................................................................ 58 3.2 Real Semiconductor Materials ........................................................................... 63 3.2.1 Extrapolating the Temperature Coefficients .......................................... 63 3.2.2 Finding the Optimal Material ................................................................. 67 3.2.3 Improving the Temperature Coefficients ............................................... 70 3.2.4 3-D effects .............................................................................................. 73 3.3 Summary and Conclusions ................................................................................. 74 vi Page 3.3.1 Future Work ............................................................................................ 75 4. RECOMBINATION LIMITED VERY HIGH TEMPERATURE TERMINAL CHARACTERISTICS .......................................................................... 77 4.1 Terminal Characteristics ..................................................................................... 77 4.1.1 Multiple Diode Equation ........................................................................ 78 4.1.2 Recombination Current Density ............................................................. 79 4.1.3 Low-level Injection Limit ....................................................................... 81 4.1.4 High-level Injection Limit ...................................................................... 82 4.1.5 Theoretical Recombination Current Density .......................................... 83 4.2 Semiconductor Material Parameters ................................................................... 86 4.2.1 Intrinsic Carrier Concentration over Bandgap Fit .................................. 87 4.2.2 Recombination Coefficients ................................................................... 92 4.2.3 Shockley Hall Read Recombination ....................................................... 98 4.3 Analytical Simulations ..................................................................................... 102 4.3.1 Bandgap Optimization Over a Range of Temperatures
Recommended publications
  • A Review Paper Ondevelopment in Material Used in Solar Pannel As
    SSRG International Journal of Mechanical Engineering Volume 6 Issue 6, 35-41, June 2019 ISSN: 2348–8360 /doi: 10.14445/23488360/IJME-V6I6P107 © 2019 Seventh Sense Research Group® A Review Paper on Development in Material Used in Solar Pannel as Solar Cell Material Ankur Kumar Bansal, Dinesh Kumar, Dr. Mukesh Kumar M.tech Mechanical, AKTU Lucknow, India Abstract electron flow when photons from sunlight absorbed In the present era, While seeing the increasing and ejected electrons, leaving a hole that is further demand for energy and depletion of resources from filled by the surrounding electrons. This phenomenon which we obtained energy, solar energy suggest as is called the photovoltaic effect. The PV cell directs the best alternative energy resource. The light from the electrons in one direction, which gives rise to the the sun is not only a non-vanishing resource of flow of current. The amount of current is directly energy but also it is an Eco- Friendly resource of proportional to the humble of absorbed photons. So it energy(free from the environment pollution and can be easily said that PV cells are a variable current noise). It can easily compensate for the energy source. The first solar cell was built by Charles Fritts requirements fulfilled by the other resources, which in 1883 by the use of a thin layer of gold, and a are depleting and environment challenges, such as coating of selenium formed a junction. In the starting Fossil Fuel and petroleum deposits. era, the PCE was very low, about 1% only, but Basically, we receive solar energy from the further improvements make it increase.
    [Show full text]
  • Encapsulation of Organic and Perovskite Solar Cells: a Review
    Review Encapsulation of Organic and Perovskite Solar Cells: A Review Ashraf Uddin *, Mushfika Baishakhi Upama, Haimang Yi and Leiping Duan School of Photovoltaic and Renewable Energy Engineering, University of New South Wales, Sydney 2052, Australia; [email protected] (M.B.U.); [email protected] (H.Y.); [email protected] (L.D.) * Correspondence: [email protected] Received: 29 November 2018; Accepted: 21 January 2019; Published: 23 January 2019 Abstract: Photovoltaic is one of the promising renewable sources of power to meet the future challenge of energy need. Organic and perovskite thin film solar cells are an emerging cost‐effective photovoltaic technology because of low‐cost manufacturing processing and their light weight. The main barrier of commercial use of organic and perovskite solar cells is the poor stability of devices. Encapsulation of these photovoltaic devices is one of the best ways to address this stability issue and enhance the device lifetime by employing materials and structures that possess high barrier performance for oxygen and moisture. The aim of this review paper is to find different encapsulation materials and techniques for perovskite and organic solar cells according to the present understanding of reliability issues. It discusses the available encapsulate materials and their utility in limiting chemicals, such as water vapour and oxygen penetration. It also covers the mechanisms of mechanical degradation within the individual layers and solar cell as a whole, and possible obstacles to their application in both organic and perovskite solar cells. The contemporary understanding of these degradation mechanisms, their interplay, and their initiating factors (both internal and external) are also discussed.
    [Show full text]
  • Thin Film Cdte Photovoltaics and the U.S. Energy Transition in 2020
    Thin Film CdTe Photovoltaics and the U.S. Energy Transition in 2020 QESST Engineering Research Center Arizona State University Massachusetts Institute of Technology Clark A. Miller, Ian Marius Peters, Shivam Zaveri TABLE OF CONTENTS Executive Summary .............................................................................................. 9 I - The Place of Solar Energy in a Low-Carbon Energy Transition ...................... 12 A - The Contribution of Photovoltaic Solar Energy to the Energy Transition .. 14 B - Transition Scenarios .................................................................................. 16 I.B.1 - Decarbonizing California ................................................................... 16 I.B.2 - 100% Renewables in Australia ......................................................... 17 II - PV Performance ............................................................................................. 20 A - Technology Roadmap ................................................................................. 21 II.A.1 - Efficiency ........................................................................................... 22 II.A.2 - Module Cost ...................................................................................... 27 II.A.3 - Levelized Cost of Energy (LCOE) ....................................................... 29 II.A.4 - Energy Payback Time ........................................................................ 32 B - Hot and Humid Climates ...........................................................................
    [Show full text]
  • Solar Cells They Rely on Are Notoriously Expensive to Produce
    THE PRESENT PROBLEM WITH SOLAR POWER is price. Ironically, sunlight, which is abundant beyond the energy needs of the entire human race and completely free, is frequently deemed too expensive to harness. Photovoltaic panels, systems to make them compatible with grid electricity, and batteries to squirrel away energy for when it’s cloudy—all these add cost. And while such hardware and installation costs will continue to diminish over time, the standard silicon solar cells they rely on are notoriously expensive to produce. Naturally, the scientific community has taken great interest in identifying alternative materials for solar cells. Solar-harvesting materials under development at Los Alamos and elsewhere include specialized thin films, organic layers, semi- conductor nanodevices, and others. Each has promise, and each has drawbacks. But a new class of challengers emerged a few years ago and has been improving with surprising speed since then. Known as perovskites, they are any crystalline material with the same broad class of chemical structure as a natural mineral of the same name. Perovskite solar cells are generally easy to work with, easy to adjust for improved performance, and very easy to afford. And in recent experi- mentation at Los Alamos, a particular recipe has been shown to reliably generate perovskite crystals that exhibit solar conversion efficiencies comparable to those of silicon. “Silicon solar cells are still the gold standard. They’re reliable and efficient, and they’ve been thoroughly demonstrated in the field,” says Los Alamos materials scientist Aditya Mohite. “I can’t wait to render them obsolete.” Anatomy of a cell A standard solar cell contains an active layer, usually silicon, sandwiched between two electrode layers.
    [Show full text]
  • Thermal Management of Concentrated Multi-Junction Solar Cells with Graphene-Enhanced Thermal Interface Materials
    applied sciences Article Thermal Management of Concentrated Multi-Junction Solar Cells with Graphene-Enhanced Thermal Interface Materials Mohammed Saadah 1,2, Edward Hernandez 2,3 and Alexander A. Balandin 1,2,3,* 1 Nano-Device Laboratory (NDL), Department of Electrical and Computer Engineering, University of California, Riverside, CA 92521, USA; [email protected] 2 Phonon Optimized Engineered Materials (POEM) Center, Bourns College of Engineering, University of California, Riverside, CA 92521, USA; [email protected] 3 Materials Science and Engineering Program, University of California, Riverside, CA 92521, USA * Correspondence: [email protected]; Tel.: +1-951-827-2351 Academic Editor: Philippe Lambin Received: 20 May 2017; Accepted: 3 June 2017; Published: 7 June 2017 Abstract: We report results of experimental investigation of temperature rise in concentrated multi-junction photovoltaic solar cells with graphene-enhanced thermal interface materials. Graphene and few-layer graphene fillers, produced by a scalable environmentally-friendly liquid-phase exfoliation technique, were incorporated into conventional thermal interface materials. Graphene-enhanced thermal interface materials have been applied between a solar cell and heat sink to improve heat dissipation. The performance of the multi-junction solar cells has been tested using an industry-standard solar simulator under a light concentration of up to 2000 suns. It was found that the application of graphene-enhanced thermal interface materials allows one to reduce the solar cell temperature and increase the open-circuit voltage. We demonstrated that the use of graphene helps in recovering a significant amount of the power loss due to solar cell overheating. The obtained results are important for the development of new technologies for thermal management of concentrated photovoltaic solar cells.
    [Show full text]
  • Summary of the High-Efficiency Crystalline Solar Cell Research Forum
    SUMMARY OF THE HIGH-EFFICIENCY CRYSTALLINE SOLAR CELL RESEARCH FORUM UNIVERSITY OF PENNSYLVANIA M. Wolf Session I: OVERVIEW P. Landsberg Some Aspects of the Minority Carrier Lifetime in Silicon. C.T. Sah Review of Recombination Phenomena in Righ- Efficiency Solar Cells. Session 11: EGR EFFICIENCY CONCEPTS n. Wolf Silicon Solar Cell Efficiency Improvement: Status and Outlook. Some Practical Considerattons far Econoaical Back Contact Fovaaaticn on High-Efficiency Solar Cells. High-Efficiency Cell Concepts on Low-Cost Silicon Sheet. R, Swanson High Lifetime Silicon Processing. L. Olsen Silicon HINP Solar Cells. Session 111: SURFACE/INTERFACE EFFECTS D. Chadi Atomic Structure of the Annealed Si (111) Surface. L. Kazaerski Surface and Interface Characteristics, S. Lai Nitridation of SiO2 for Surface Passivatfon. S. Panash Surface Passivation and Junction Formation Using Low-Energy Hydrogen Implants. P, Grunthaner Chemical Structure of Interfaces. PLENARY SESS!ONS Session IV: BULK BPFRCTS E. Sirtl Structural Defects in Crystalline Silicon. C. Pierce Oxygen and Carbon Impurities and Related Defects in Silicon. T. Tan Current Understanding of Point Defects and Diffusion Processes in Silicon. G. Schwuttke Defects in Web Dendrite Silicon Ribbon Crystals and Their Influences on Hinority Carrier Lifetime. J. Hanoka EBLC Characterization and dydrogen Passivation in Silicon Sheet. A. Neugrsschel Measurement of Electrical Parameters and Current Components in the Bulk of Silicon Solar Cells. Session V: MODEL-- I NG - R. Schwartz Current Status of One and Two Dimensional Numer- ical Models: Successes and Limitations. M. Lamorte Application of Closed-Form Solution Using Re- cursion Relationship in Silicon Solar Cells. P. Lindholm PIenomena Simulation for Heavy Doping and Surface ! Recombination Velocity.
    [Show full text]
  • Hybrid Nanocomposite Thin Films for Photovoltaic Applications: a Review
    nanomaterials Review Hybrid Nanocomposite Thin Films for Photovoltaic Applications: A Review Marcela Socol *,† and Nicoleta Preda *,† National Institute of Materials Physics, 405A Atomistilor Street, P.O. Box MG-7, 077125 Magurele, Romania * Correspondence: marcela.socol@infim.ro (M.S.); nicol@infim.ro (N.P.) † These authors contributed equally. Abstract: Continuing growth in global energy consumption and the growing concerns regarding climate change and environmental pollution are the strongest drivers of renewable energy deploy- ment. Solar energy is the most abundant and cleanest renewable energy source available. Nowadays, photovoltaic technologies can be regarded as viable pathways to provide sustainable energy genera- tion, the achievement attained in designing nanomaterials with tunable properties and the progress made in the production processes having a major impact in their development. Solar cells involving hybrid nanocomposite layers have, lately, received extensive research attention due to the possibility to combine the advantages derived from the properties of both components: flexibility and process- ability from the organic part and stability and optoelectronics features from the inorganic part. Thus, this review provides a synopsis on hybrid solar cells developed in the last decade which involve composite layers deposited by spin-coating, the most used deposition method, and matrix-assisted pulsed laser evaporation, a relatively new deposition technique. The overview is focused on the hybrid nanocomposite films that can use conducting polymers and metal phthalocyanines as p-type materials, fullerene derivatives and non-fullerene compounds as n-type materials, and semiconductor nanostructures based on metal oxide, chalcogenides, and silicon. A survey regarding the influence of various factors on the hybrid solar cell efficiency is given in order to identify new strategies for Citation: Socol, M.; Preda, N.
    [Show full text]
  • Vince Thesis Online
    KELVIN PROBE EXAMINATION OF ORGANIC/METALLIC SEMICONDUCTORS ______________________________________ A Thesis Presented to The Honors Tutorial College Ohio University ______________________________________ In Partial Fulfillment of the Requirements for Graduation from the Honors Tutorial College with the degree of Bachelor of Science in Physics ______________________________________ By Vincent Roberts June 2012 Table of Contents I. Introduction 4 A. An Energy Crisis 4 B. The Advent of the Solar Cell 6 II. Background and Theory 8 A. Solar Cell Technology: The Photoelectric . 8 B. Work Function and Charge Transfer . 11 C. Background on Kelvin Probe 15 D. “Seeing” at the Quantum Level 18 E. Principles of the Kelvin Method 19 III. Molecules and Preparation 25 A. Organic Molecule F4-TCNQ 25 B. Zinc Oxide 29 C. Sample Substrate Preparation 32 D. F4-TCNQ Preparation 34 IV. Data Collection 35 A. Kelvin Probe Preparation 35 B. Sample Probing 37 --2-- C. Data Collection Parameters 41 D. Discerning Between Good and Bad Data 42 V. Results and Conclusions 45 A. Discussion 45 B. Conclusions 50 C. Suggestion for Further Experimentation 54 Acknowledgements 56 References 57 --3-- I. Introduction An Energy Crisis Nano- and quantum technology are terms often used in science- fiction during the past several decades. They have become very much akin to “buzz” words of modern-day companies and technologies. The world is in the midst of a technological boom, yet it is also in a severe energy crisis. It’s no exaggeration to say that fossil fuels will be running short in the foreseeable future, and the call by environmentalists to save the planet have only added flames to the proverbial fire regarding the question of humanity’s sustainable energy dilemma.
    [Show full text]
  • Advances in Cost-Efficient Thin-Film Photovoltaics Based on Cu(In,Ga)Se2
    Engineering 3 (2017) 445–451 Contents lists available at ScienceDirect Engineering journal homepage: www.elsevier.com/locate/eng Research Clean Energy—Review Advances in Cost-Efficient Thin-Film Photovoltaics Based on Cu(In,Ga)Se2 Michael Powalla*, Stefan Paetel, Dimitrios Hariskos, Roland Wuerz, Friedrich Kessler, Peter Lechner, Wiltraud Wischmann, Theresa Magorian Friedlmeier Centre for Solar Energy and Hydrogen Research Baden-Württemberg (ZSW), Stuttgart 70563, Germany a r t i c l e i n f o a b s t r a c t Article history: In this article, we discuss the leading thin-film photovoltaic (PV) technology based on the Cu(In,Ga)Se2 (CIGS) Received 3 May 2017 compound semiconductor. This contribution includes a general comparison with the conventional Si-wafer- Revised 9 July 2017 based PV technology and discusses the basics of the CIGS technology as well as advances in world- Accepted 10 July 2017 record-level conversion efficiency, production, applications, stability, and future developments with respect Available online 11 August 2017 to a flexible product. Once in large-scale mass production, the CIGS technology has the highest potential of all PV technologies for cost-efficient clean energy generation. Keywords: © 2017 THE AUTHORS. Published by Elsevier LTD on behalf of the Chinese Academy of Engineering and Thin-film photovoltaics Higher Education Press Limited Company. This is an open access article under the CC BY-NC-ND Solar energy license (http://creativecommons.org/licenses/by-nc-nd/4.0/). Flexible Cu(In,Ga)Se2 1. Introduction 2. General comparison of CIGS-based thin-film and Si-wafer- based PV technologies Photovoltaic (PV) technology, which directly generates electricity from sunlight, is quickly becoming a major player in the future clean A solar cell is basically a large-area semiconductor diode.
    [Show full text]
  • (2020) How Solar Cell Efficiency Is Governed by the Αμτ Product
    PHYSICAL REVIEW RESEARCH 2, 023109 (2020) How solar cell efficiency is governed by the αμτ product Pascal Kaienburg ,1,2,* Lisa Krückemeier ,1 Dana Lübke ,1 Jenny Nelson ,3 Uwe Rau,1 and Thomas Kirchartz 1,4,† 1IEK5-Photovoltaics, Forschungszentrum Jülich, 52425 Jülich, Germany 2Clarendon Laboratory, Department of Physics, University of Oxford, Parks Road, OX1 3PU Oxford, United Kingdom 3Department of Physics and Centre for Plastic Electronics, Imperial College London, London SW7 2AZ, United Kingdom 4Faculty of Engineering and CENIDE, University of Duisburg-Essen, Carl-Benz-Strasse 199, 47057 Duisburg, Germany (Received 18 September 2019; accepted 15 March 2020; published 30 April 2020) The interplay of light absorption, charge-carrier transport, and charge-carrier recombination determines the performance of a photovoltaic absorber material. Here we analyze the influence on the solar-cell efficiency of the absorber material properties absorption coefficient α, charge-carrier mobility μ, and charge-carrier lifetime τ, for different scenarios. We combine analytical calculations with numerical drift-diffusion simulations to understand the relative importance of these three quantities. Whenever charge collection is a limiting factor, the αμτ product is a good figure of merit (FOM) to predict solar-cell efficiency, while for sufficiently high mobilities, the relevant FOM is reduced to the ατ product. We find no fundamental difference between simulations based on monomolecular or bimolecular recombination, but strong surface-recombination affects the maximum efficiency in the high-mobility limit. In the limiting case of high μ and high surface-recombination velocity S,theα/S ratio is the relevant FOM. Subsequently, we apply our findings to organic solar cells which tend to suffer from inefficient charge-carrier collection and whose absorptivity is influenced by interference effects.
    [Show full text]
  • DESIGN and ANALYSIS of HIGH EFFICIENCY MULTI-JUNCTION SOLAR CELLS with TUNNEL JUNCTIONS Vijaya Lekshmi R
    DESIGN AND ANALYSIS OF HIGH EFFICIENCY MULTI-JUNCTION SOLAR CELLS WITH TUNNEL JUNCTIONS Vijaya Lekshmi R. M1, Vidya V. Sankar2 1 Assistant professor on contract, Department of Physics, Sree Narayana College Kollam, (India) 2 FDP substitute lecturer, Department of Physics, Mahatma Gandhi College, Trivandrum,(India) ABSTRACT Multi-junction solar cells (MJSC) are the future of renewable energy production. MJSC have rapidly gone laboratory cells, to large-area, high-efficiency manufacturing cells. The introduction of wide-bandgap tunnel junctions between the sub-cells in MJSC has made these devices a super-efficient energy producing device. In this paper we have discussed the important aspects of MJSC design and manufacturing. Device examples are presented. Recent advances and future challenges in multi-junction solar cells are summarized. Keywords: Metal Organic Vapor Phase Epitaxy, Multi-Junction Solar Cells, Tunnel Junction I. INTRODUCTION Energy is very important to our day-to-day life. Future development of humans very much depends on the availability of energy sources that are dependable, safe, and environmental friendly. There is an increased demand for renewable energy sources due to concern over global climatic change and over dependence on non- renewable fossil fuel reserves. The Photovoltaic (PV) solar energy is an important contribution to a future sustainable non-polluting energy supply for mankind. In 2013, the world photovoltaic power capacity reached 136 GW with Germany leading in solar electricity production. Concentrator photovoltaic technology helps to keep the cost of solar power to be lower than 1$/W [1]. Multi-junction solar cells (MJSC) are cell modules with multiple p–n junctions made to absorb different wavelengths of light, corresponding to their bandgaps, to create electric current.
    [Show full text]
  • 25Th Space Photovoltaic Research and Technology Conference
    NASA/CP—2019-220051 25th Space Photovoltaic Research and Technology Conference Jeremiah S. McNatt, Compiler Glenn Research Center, Cleveland, Ohio February 2019 NASA STI Program . in Profi le Since its founding, NASA has been dedicated • CONTRACTOR REPORT. Scientifi c and to the advancement of aeronautics and space science. technical fi ndings by NASA-sponsored The NASA Scientifi c and Technical Information (STI) contractors and grantees. Program plays a key part in helping NASA maintain this important role. • CONFERENCE PUBLICATION. Collected papers from scientifi c and technical conferences, symposia, seminars, or other The NASA STI Program operates under the auspices meetings sponsored or co-sponsored by NASA. of the Agency Chief Information Offi cer. It collects, organizes, provides for archiving, and disseminates • SPECIAL PUBLICATION. Scientifi c, NASA’s STI. The NASA STI Program provides access technical, or historical information from to the NASA Technical Report Server—Registered NASA programs, projects, and missions, often (NTRS Reg) and NASA Technical Report Server— concerned with subjects having substantial Public (NTRS) thus providing one of the largest public interest. collections of aeronautical and space science STI in the world. Results are published in both non-NASA • TECHNICAL TRANSLATION. English- channels and by NASA in the NASA STI Report language translations of foreign scientifi c and Series, which includes the following report types: technical material pertinent to NASA’s mission. • TECHNICAL PUBLICATION. Reports of For more information about the NASA STI completed research or a major signifi cant phase program, see the following: of research that present the results of NASA programs and include extensive data or theoretical • Access the NASA STI program home page at analysis.
    [Show full text]