Thermal Management of Concentrated Multi-Junction Solar Cells with Graphene-Enhanced Thermal Interface Materials

Total Page:16

File Type:pdf, Size:1020Kb

Thermal Management of Concentrated Multi-Junction Solar Cells with Graphene-Enhanced Thermal Interface Materials applied sciences Article Thermal Management of Concentrated Multi-Junction Solar Cells with Graphene-Enhanced Thermal Interface Materials Mohammed Saadah 1,2, Edward Hernandez 2,3 and Alexander A. Balandin 1,2,3,* 1 Nano-Device Laboratory (NDL), Department of Electrical and Computer Engineering, University of California, Riverside, CA 92521, USA; [email protected] 2 Phonon Optimized Engineered Materials (POEM) Center, Bourns College of Engineering, University of California, Riverside, CA 92521, USA; [email protected] 3 Materials Science and Engineering Program, University of California, Riverside, CA 92521, USA * Correspondence: [email protected]; Tel.: +1-951-827-2351 Academic Editor: Philippe Lambin Received: 20 May 2017; Accepted: 3 June 2017; Published: 7 June 2017 Abstract: We report results of experimental investigation of temperature rise in concentrated multi-junction photovoltaic solar cells with graphene-enhanced thermal interface materials. Graphene and few-layer graphene fillers, produced by a scalable environmentally-friendly liquid-phase exfoliation technique, were incorporated into conventional thermal interface materials. Graphene-enhanced thermal interface materials have been applied between a solar cell and heat sink to improve heat dissipation. The performance of the multi-junction solar cells has been tested using an industry-standard solar simulator under a light concentration of up to 2000 suns. It was found that the application of graphene-enhanced thermal interface materials allows one to reduce the solar cell temperature and increase the open-circuit voltage. We demonstrated that the use of graphene helps in recovering a significant amount of the power loss due to solar cell overheating. The obtained results are important for the development of new technologies for thermal management of concentrated photovoltaic solar cells. Keywords: graphene; thermal interface materials; solar cells; thermal management 1. Introduction The interest to photovoltaic (PV) solar cells as a source of energy for a variety of applications has been rapidly increasing in recent years [1–10]. Improving solar cell performance is an important issue, and the efforts have been mostly aimed at increasing power conversion efficiency and reducing manufacturing costs. Crystalline silicon (Si) is the most commonly used material in manufacturing solar cells, occupying more than 90% of the market [10,11]. Conventional solar cells, manufactured using two-decades-old technology, are capable of converting about 20% of absorbed light energy into electricity [11,12]. Solar cell panels that employ optical concentrators can convert more than ~30% of absorbed light into electricity [13]. Most of the remaining 70% of absorbed energy is turned into heat inside the solar cell [14]. While Si PV cells remain the most common and affordable for commercial use for power generation, there is a strong motivation for development of higher efficiency multi-junction PV cells with concentrators. The concentrator multi-junction solar cells can find applications in aerospace and other technologies where efficiency and smaller size are more important considerations than cost [15]. One of the problems in developing the concentrator multi-junction PV technology is thermal management of the solar cells. Concentration of solar light into a small area, increase in the energy absorption, and layered structure of the multi-junction cells result in significant temperature increase Appl. Sci. 2017, 7, 589; doi:10.3390/app7060589 www.mdpi.com/journal/applsci Appl. Sci. 2017, 7, 589 2 of 13 Appl. Sci. 2017, 7, 589 2 of 13 during the cell’s operation [16]. [16]. The The increase in th thee PV cell temperature negatively affects its power conversion efficiency,efficiency, and and it it can can damage damage the the solar solar cell overcell over time time [17]. Therefore,[17]. Therefore, it is important it is important to control to controlsolar cell solar temperature cell temperature by effectively by effectively removing remo the unwantedving the heat.unwanted Temperature heat. Temperature effects on performance effects on performanceof conventional of solarconventional cells have solar been cells the have subject been ofmany the subject reported of ma studiesny reported [18–27]. studies One can [18–27]. distinguish One cantwo distinguish main methods two of main thermal methods management of thermal of solar manage cells:ment active of coolingsolar cells: and active passive cooling cooling. and The passive active cooling.cooling involvesThe active a coolingcooling medium,involves a e.g., cooling air or medi water,um, and e.g., uses air fansor water, or water and pumpsuses fans to pushor water the pumpsmedium to through push the the medium heated surfaces.through Passivethe heated cooling surfaces. uses aPassive heat sink cooling that dissipates uses a heat heat sink without that dissipatespushing a heat cooling without medium pushing through a cooling it. Most medium solar th cellsrough utilize it. Most passive solar cooling cells utilize technologies passive cooling [28,29]. technologiesA basic heat sink[28,29]. can A reduce basic heat the temperature sink can reduce of a standardthe temperature Si solar of cell, a standard under one Si sunsolar illumination, cell, under oneby aboutsun illumination, 15 ◦C, which by increasesabout 15 °C, the which output increases power bythe6% output [30]. powerWhen by a heat6% [30].sink When is attached a heat sink to a issolar attached cell, a to thermal a solar cell, resistance a thermal between resistance the two between interfaces the two can interfaces limit the can amount limit ofthe heat amount transferred of heat transferredbetween the between solar cell the and solar the cell heat and sink the [31 heat]. This sink resistance [31]. This is resistance a result of is small a result air gapsof small between air gaps the betweentwo joined the surfaces, two joined which surfaces, are caused which by are the caused surfaces by the microscopic surfaces microscopic imperfections imperfections [32]. Since air[32]. is Sincea poor air thermal is a poor conductor, thermal it mustconductor, be replaced it must by be a materialreplaced that by hasa material better thermal that has conductivity better thermal (see conductivityFigure1). The (see thickness Figure of 1). this The material, thickness referred of this to material, as bond linereferred thickness to as (BLT),bond shouldline thickness be kept (BLT), small shouldto minimize be kept the small overall to minimize thermal resistancethe overall oftherma the connectedl resistance surfaces. of the connected One should surfaces. note that,One should even if notethe joined that, even surfaces if the are joined polished surfaces to perfection, are polished the to thermal perfection, boundary the thermal resistance boundary (TBR) resistance will still exist (TBR) at willthe interfacestill exist of at two the materials interface owingof two to materials the mismatch owing in to their the acoustic mismatch phonon in their properties. acoustic Thermalphonon properties.interface materials Thermal (TIMs) interface or thermalmaterials phase (TIMs) change or thermal materials phase (PCMs) change perform materials the (PCMs) task of reducingperform thethermal task of resistance reducing between thermal two resistance surfaces between and facilitating two surfaces heat and transfer facilitating between heat the transfer heat generating between thedevice heat and generating a heat sink device [33– and40]. a heat sink [33–40]. Figure 1. IllustrationIllustration of of the the function function of of the the thermal thermal interface interface materials materials for for heat heat removal removal from from the the solar solar cell under concentrated light. InIn this this paper, paper, we demonstrate demonstrate that that the the thermal thermal management management of of concentrat concentratoror multi-junction multi-junction solar cells can bebe substantiallysubstantially improved improved by by enhancing enhancing properties properties of TIMsof TIMs via via incorporation incorporation of graphene of graphene [41]. [41].Conventional Conventional TIMs TIMs are typically are typically made ofmade polymeric of polymeric or grease or base grease material base loaded material with loaded conductive with conductivematerials such materials as silver such or as ceramic silver particlesor ceramic [42 pa].rticles The amount [42]. The of variousamount fillersof various in the fillers commercial in the commercialTIMs can be TIMs high, can reaching be high, the reaching loading the volume loading fractions volumef ~70% fractions [43]. f ~70% The approach [43]. The ofapproach increasing of increasingthe filler loading the filler fraction loadingf for fraction higher f thermalfor higher conductivity thermal conductivity of the resulting of the composite resulting hascomposite limitations. has limitations.Higher loadings Higher may loadings result in may the result uneven in dispersionthe uneven of dispersion the fillers, of their the agglomeration, fillers, their agglomeration, air gaps, and airincreases gaps, inand the increases TIM cost in [44 the,45 ].TIM Our cost results [44,45]. indicate Our that results the use indicate of low loadingthat the fractionsuse of low of graphene loading fractionsas an additional of graphene filler toas commercialan additional TIMs filler can to be commercial an effective TIMs strategy can forbe decreasingan effective the strategy operation for decreasingtemperature the of operation multi-junction
Recommended publications
  • Research Into Fabrication and Popularization of Organic Thin Film Solar Cells, Chemical Engineering Transactions, 55, 25-30 DOI:10.3303/CET1655005 26
    25 A publication of CHEMICAL ENGINEERING TRANSACTIONS VOL. 55, 2016 The Italian Association of Chemical Engineering Online at www.aidic.it/cet Guest Editors: Tichun Wang, Hongyang Zhang, Lei Tian Copyright © 2016, AIDIC Servizi S.r.l., ISBN 978-88-95608-46-4; ISSN 2283-9216 DOI: 10.3303/CET1655005 Research into Fabrication and Popularization of Organic Thin Film Solar Cells Bin Zhang*a, Yan Lia, Shanlin Qiaob, Le Lic, Zhanwen Wanga a Hebei Chemical & Pharmaceutical College, No. 88 Fangxing Road, Shijiazhuang, Hebei Province, China; b Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao, Shandong Province, China c Shijiazhuang Naienph Chemical Technology Co., Ltd, No. 12 Shifang Road, Shijiazhuang, Hebei Province, China. [email protected] An analysis was conducted herein on the research status of several popular solar cells at the present stage, including silicon solar cell, thin film photovoltaic cell, and dye-sensitized solar cell (DSSC). In doing so, we concluded that the current situations provide a favorable objective environment for the popularization of organic thin film solar cells. Finally, we reviewed the merits and demerits of the organic thin film solar cell together with the major research focus on and progress of it, and summarized obstacles to and development trails of the popularization of organic thin film solar cells. 1. Introduction As the energy crisis further deepens in the 21st century, the existing development level for solar cells has already failed to satisfy increasing social demands for energy. This phenomenon is mainly reflected in the costly high-purity silicon solar panels, in the defects at new amorphous silicon (a-Si) during energy conversion, and in the limited theoretical energy conversion efficiency (around 25%) of silicon solar panels as well.
    [Show full text]
  • Encapsulation of Organic and Perovskite Solar Cells: a Review
    Review Encapsulation of Organic and Perovskite Solar Cells: A Review Ashraf Uddin *, Mushfika Baishakhi Upama, Haimang Yi and Leiping Duan School of Photovoltaic and Renewable Energy Engineering, University of New South Wales, Sydney 2052, Australia; [email protected] (M.B.U.); [email protected] (H.Y.); [email protected] (L.D.) * Correspondence: [email protected] Received: 29 November 2018; Accepted: 21 January 2019; Published: 23 January 2019 Abstract: Photovoltaic is one of the promising renewable sources of power to meet the future challenge of energy need. Organic and perovskite thin film solar cells are an emerging cost‐effective photovoltaic technology because of low‐cost manufacturing processing and their light weight. The main barrier of commercial use of organic and perovskite solar cells is the poor stability of devices. Encapsulation of these photovoltaic devices is one of the best ways to address this stability issue and enhance the device lifetime by employing materials and structures that possess high barrier performance for oxygen and moisture. The aim of this review paper is to find different encapsulation materials and techniques for perovskite and organic solar cells according to the present understanding of reliability issues. It discusses the available encapsulate materials and their utility in limiting chemicals, such as water vapour and oxygen penetration. It also covers the mechanisms of mechanical degradation within the individual layers and solar cell as a whole, and possible obstacles to their application in both organic and perovskite solar cells. The contemporary understanding of these degradation mechanisms, their interplay, and their initiating factors (both internal and external) are also discussed.
    [Show full text]
  • Thin Film Cdte Photovoltaics and the U.S. Energy Transition in 2020
    Thin Film CdTe Photovoltaics and the U.S. Energy Transition in 2020 QESST Engineering Research Center Arizona State University Massachusetts Institute of Technology Clark A. Miller, Ian Marius Peters, Shivam Zaveri TABLE OF CONTENTS Executive Summary .............................................................................................. 9 I - The Place of Solar Energy in a Low-Carbon Energy Transition ...................... 12 A - The Contribution of Photovoltaic Solar Energy to the Energy Transition .. 14 B - Transition Scenarios .................................................................................. 16 I.B.1 - Decarbonizing California ................................................................... 16 I.B.2 - 100% Renewables in Australia ......................................................... 17 II - PV Performance ............................................................................................. 20 A - Technology Roadmap ................................................................................. 21 II.A.1 - Efficiency ........................................................................................... 22 II.A.2 - Module Cost ...................................................................................... 27 II.A.3 - Levelized Cost of Energy (LCOE) ....................................................... 29 II.A.4 - Energy Payback Time ........................................................................ 32 B - Hot and Humid Climates ...........................................................................
    [Show full text]
  • Crystalline-Silicon Solar Cells for the 21St Century
    May 1999 • NREL/CP-590-26513 Crystalline-Silicon Solar Cells for the 21st Century Y.S. Tsuo, T.H. Wang, and T.F. Ciszek Presented at the Electrochemical Society Annual Meeting Seattle, Washington May 3, 1999 National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401-3393 NREL is a U.S. Department of Energy Laboratory Operated by Midwest Research Institute ••• Battelle ••• Bechtel Contract No. DE-AC36-98-GO10337 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or any agency thereof. Available to DOE and DOE contractors from: Office of Scientific and Technical Information (OSTI) P.O. Box 62 Oak Ridge, TN 37831 Prices available by calling 423-576-8401 Available to the public from: National Technical Information Service (NTIS) U.S. Department of Commerce 5285 Port Royal Road Springfield, VA 22161 703-605-6000 or 800-553-6847 or DOE Information Bridge http://www.doe.gov/bridge/home.html Printed on paper containing at least 50% wastepaper, including 20% postconsumer waste CRYSTALLINE-SILICON SOLAR CELLS FOR THE 21ST CENTURY Y.S.
    [Show full text]
  • Crystalline Silicon Photovoltaic Module Manufacturing
    Crystalline Silicon Photovoltaic Module Manufacturing Costs and Sustainable Pricing: 1H 2018 Benchmark and Cost Reduction Road Map Michael Woodhouse, Brittany Smith, Ashwin Ramdas, and Robert Margolis National Renewable Energy Laboratory NREL is a national laboratory of the U.S. Department of Energy Technical Report Office of Energy Efficiency & Renewable Energy NREL/TP-6A20-72134 Operated by the Alliance for Sustainable Energy, LLC Revised February 2020 This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications. Contract No. DE-AC36-08GO28308 Crystalline Silicon Photovoltaic Module Manufacturing Costs and Sustainable Pricing: 1H 2018 Benchmark and Cost Reduction Road Map Michael Woodhouse, Brittany Smith, Ashwin Ramdas, and Robert Margolis National Renewable Energy Laboratory Suggested Citation Woodhouse, Michael. Brittany Smith, Ashwin Ramdas, and Robert Margolis. 2019. Crystalline Silicon Photovoltaic Module Manufacturing Costs and Sustainable Pricing: 1H 2018 Benchmark and Cost Reduction Roadmap. Golden, CO: National Renewable Energy Laboratory. https://www.nrel.gov/docs/fy19osti/72134.pdf. NREL is a national laboratory of the U.S. Department of Energy Technical Report Office of Energy Efficiency & Renewable Energy NREL/TP-6A20-72134 Operated by the Alliance for Sustainable Energy, LLC Revised February 2020 This report is available at no cost from the National Renewable Energy National Renewable Energy Laboratory Laboratory (NREL) at www.nrel.gov/publications. 15013 Denver West Parkway Golden, CO 80401 Contract No. DE-AC36-08GO28308 303-275-3000 • www.nrel.gov NOTICE This work was authored by the National Renewable Energy Laboratory, operated by Alliance for Sustainable Energy, LLC, for the U.S. Department of Energy (DOE) under Contract No.
    [Show full text]
  • (2020) How Solar Cell Efficiency Is Governed by the Αμτ Product
    PHYSICAL REVIEW RESEARCH 2, 023109 (2020) How solar cell efficiency is governed by the αμτ product Pascal Kaienburg ,1,2,* Lisa Krückemeier ,1 Dana Lübke ,1 Jenny Nelson ,3 Uwe Rau,1 and Thomas Kirchartz 1,4,† 1IEK5-Photovoltaics, Forschungszentrum Jülich, 52425 Jülich, Germany 2Clarendon Laboratory, Department of Physics, University of Oxford, Parks Road, OX1 3PU Oxford, United Kingdom 3Department of Physics and Centre for Plastic Electronics, Imperial College London, London SW7 2AZ, United Kingdom 4Faculty of Engineering and CENIDE, University of Duisburg-Essen, Carl-Benz-Strasse 199, 47057 Duisburg, Germany (Received 18 September 2019; accepted 15 March 2020; published 30 April 2020) The interplay of light absorption, charge-carrier transport, and charge-carrier recombination determines the performance of a photovoltaic absorber material. Here we analyze the influence on the solar-cell efficiency of the absorber material properties absorption coefficient α, charge-carrier mobility μ, and charge-carrier lifetime τ, for different scenarios. We combine analytical calculations with numerical drift-diffusion simulations to understand the relative importance of these three quantities. Whenever charge collection is a limiting factor, the αμτ product is a good figure of merit (FOM) to predict solar-cell efficiency, while for sufficiently high mobilities, the relevant FOM is reduced to the ατ product. We find no fundamental difference between simulations based on monomolecular or bimolecular recombination, but strong surface-recombination affects the maximum efficiency in the high-mobility limit. In the limiting case of high μ and high surface-recombination velocity S,theα/S ratio is the relevant FOM. Subsequently, we apply our findings to organic solar cells which tend to suffer from inefficient charge-carrier collection and whose absorptivity is influenced by interference effects.
    [Show full text]
  • Low Efficiency of the Photovoltaic Cells: Causes and Impacts
    International Journal of Scientific & Engineering Research Volume 8, Issue 11, November-2017 1201 ISSN 2229-5518 Low Efficiency of the Photovoltaic Cells: Causes and Impacts Fazal Muhammad, Muhammad Waleed Raza, Surat Khan, Aziz Ahmed Abstract— Solar cell converts visible light into Direct current (DC) electric power. The DC output of the solar cell depends on multiple factors that affect its efficiency i.e. solar irradiation falling over the cell, direct air around cell called local air temperature, cable thickness connected to solar panel, wave length of the photons falling, Ambient temperature, Shading effect, direct recombination of holes and electrons, Reflection of irradiation, Types of least efficient invertor, Batteries and charger controller used with solar cells panel. Any abnormality or deviation from reference level regarding these entire factors, limit the efficiency of the solar photovoltaic cells. This research paper presents the significant causes that affect efficiency of photovoltaic cells. Improving the said factors will increase the efficiency of the photovoltaic cells. Low efficiency reduces the output of solar cell and enhances the levelized cost respectively. Index Terms— Amorphous silicon solar cell (a-Si), Efficiency of solar cell, Maximum power point tracker (MPPT), Monocrystalline solar cell (MCSC), Polycrystalline solar cell (PCSC), Standard Test Conditions (STC), Thin film solar cell. —————————— —————————— 1 INTRODUCTION They are made from a very pure type of silicon which makes them most unique. The material is most efficient Most abundant and pollution free energy is solar energy. when it is pure; it is pure when the alignment is regular. It utilizes sunlight to give heat, bright light and electricity They are most efficient in their output so they are also most to industrial and domestic users.
    [Show full text]
  • Sliver Cells in Thermophotovoltaic Systems
    Sliver Cells in Thermophotovoltaic Systems Niraj Lal A thesis submitted for the degree of Bachelor of Science with Honours in Physics at The Australian National University May, 2007 ii Declaration This thesis is an account of research undertaken between July 2006 and May 2007 at the Centre for Sustainable Energy Systems and the Department of Physics, The Australian National University, Canberra, Australia. Except where acknowledged in the customary manner, the material presented in this thesis is, to the best of my knowledge, original and has not been submitted in whole or part for a degree in any university. Niraj Lal May, 2007 iii iv Acknowledgements There are a number of many people without whom this thesis would not have been possible. First and foremost I would like to thank my supervisor Professor Andrew Blakers, for giving me the freedom to go ‘where the science took me’, for being extremely generous with his knowledge, and for his advice to go for a run when writing got difficult. Learning about solar energy from Andrew has been an inspiring experience. I would also like to acknowledge the support of the ANU Angus Nicholson Honours Scholarship for passion in science. I hope that this work can, in some way, honour the memory and passion of Dr. Nicholson. Thankyou to all of the friendly solar community at ANU, in particular Dr. Evan Franklin who introduced me to the wonderful world of programming. To the DE PhD students, thankyou (I think) for making me a better kicker player. Thanks also to my friendly Swiss officemate Lukas who helped me with Matlab.
    [Show full text]
  • Spectral Response of Polycrystalline Silicon Photovoltaic Cells Under Real-Use Conditions
    energies Article Spectral Response of Polycrystalline Silicon Photovoltaic Cells under Real-Use Conditions Evaldo C. Gouvêa *, Pedro M. Sobrinho and Teófilo M. Souza Renewable Energy Center, School of Engineering, São Paulo State University (UNESP), Guaratinguetá, Avenida Ariberto Pereira da Cunha 333, Guaratinguetá 12516-410, São Paulo, Brazil; [email protected] (P.M.S.); teofi[email protected] (T.M.S.) * Correspondence: [email protected]; Tel.: +55-12-3123-2777 Received: 11 May 2017; Accepted: 2 August 2017; Published: 10 August 2017 Abstract: The standard test conditions for photovoltaic modules are not capable of reproducing the environmental variations to which the modules are subjected under real operating conditions. The objective of this experimental work is to be an initial study on how the electric energy generation of photovoltaic cells varies according to the different wavelength ranges of the solar light spectrum under real operating conditions. Two modules were installed outdoors; color filters, which allow the passage of light at specific wavelengths, were installed on one of them. The amount of energy produced by the module with the filter was compared to the reference module, and the relative efficiency of each filter was defined. As a result, it was found that crystalline silicon modules do not respond uniformly to sunlight, being more sensitive to the red band (relative efficiency of 23.83%) and less sensitive to the green band (19.15%). The infrared contributes to a significant portion of energy production (relative efficiency of 13.56%), overcoming its negative effect of reducing energy generation capacity due to high photovoltaic cell temperature.
    [Show full text]
  • Improving the Efficiency of Organic Solar Cells by Varying the Material Concentration in the Photoactive Layer
    Old Dominion University ODU Digital Commons Electrical & Computer Engineering Theses & Dissertations Electrical & Computer Engineering Summer 2011 Improving the Efficiency of ganicOr Solar Cells by Varying the Material Concentration in the Photoactive Layer Kevin Anthony Latimer Old Dominion University Follow this and additional works at: https://digitalcommons.odu.edu/ece_etds Part of the Oil, Gas, and Energy Commons, and the Power and Energy Commons Recommended Citation Latimer, Kevin A.. "Improving the Efficiency of ganicOr Solar Cells by Varying the Material Concentration in the Photoactive Layer" (2011). Master of Science (MS), Thesis, Electrical & Computer Engineering, Old Dominion University, DOI: 10.25777/8pnq-ka57 https://digitalcommons.odu.edu/ece_etds/103 This Thesis is brought to you for free and open access by the Electrical & Computer Engineering at ODU Digital Commons. It has been accepted for inclusion in Electrical & Computer Engineering Theses & Dissertations by an authorized administrator of ODU Digital Commons. For more information, please contact [email protected]. IMPROVING THE EFFICIENCY OF ORGANIC SOLAR CELLS BY VARYING THE MATERIAL CONCENTRATION IN THE PHOTOACTIVE LAYER by Kevin Anthony Latimer B.S. August 2010, Old Dominion University A Thesis Submitted to the Faculty of Old Dominion University in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE ELECTRICAL AND COMPUTER ENGINEERING OLD DOMINION UNIVERSITY August 2011 Approved by: Gon Namkoong (Director) Helmut Baumgart (Member) Sylvain Marsillac (Member) ABSTRACT IMPROVING THE EFFICIENCY OF ORGANIC SOLAR CELLS BY VARYING THE MATERIAL CONCENTRATION IN THE PHOTOACTIVE LAYER Kevin Anthony Latimer Old Dominion University, 2011 Director: Dr. Gon Namkoong Polymer-fullerene bulk heterojunction solar cells have been a rapidly improving technology over the past decade.
    [Show full text]
  • Today's Need & Importance Role of Solar Based Automobile System
    IJIRST –International Journal for Innovative Research in Science & Technology| Volume 5 | Issue 5 | October 2018 ISSN (online): 2349-6010 Today's Need & Importance Role of Solar based Automobile System Arjun Kumar Gupta Shamasher Sharma Student Student Department of Mechanical Engineering Department of Mechanical Engineering Rajarshi Rananjay Sinh Institute of Management & Rajarshi Rananjay Sinh Institute of Management & Technology, Amethi 227405, Utter Pradesh, India Technology, Amethi 227405, Utter Pradesh, India Santosh Yadav Abhinav Student Student Department of Mechanical Engineering Department of Mechanical Engineering Rajarshi Rananjay Sinh Institute of Management & Rajarshi Rananjay Sinh Institute of Management & Technology, Amethi 227405, Utter Pradesh, India Technology, Amethi 227405, Utter Pradesh, India Mohd Saharyar Student Department of Mechanical Engineering Rajarshi Rananjay Sinh Institute of Management & Technology, Amethi 227405, Utter Pradesh, India Abstract As the world population increases, so does the demand for transportation. Automobiles, being the most common means of transportation, are one of the main sources of pollution. Therefore, in order to meet the needs of the society and to protect the environment, scientists began looking for a new solution to this problem. Before they suggested any answers, the scientists first looked at all aspects surrounding the issue. Solar energy is produced when sunlight strikes the photovoltaic cell. This energizes any electrical or battery found along the way. Developing solar cells to produce electricity has several big challenges, especially in solar cars. The first obstacle that has remained all intrusive in this quest is predicting the sun's availability. The second obstacle is to find an effective method of capturing, converting, and storing the sun energy when it is available.
    [Show full text]
  • Efficiency of a Solar Cell Objective Theory
    Experiment #4: Efficiency of a solar cell Objective How efficient is a solar cell at converting the sun’s energy into power? How much power does a solar cell produce? The objective of this experiment is to explore solar cells as renewable energy sources and test their efficiency in converting solar radiation to electrical power. Theory Solar Power The sun produces 3.9 × 1026 watts of energy every second. Of that amount, 1,386 watts fall on a square meter of Earth’s atmosphere and even less reaches Earth’s surface. This energy can be used to generate electricity without producing pollution or dangerous wastes. Solar cells generate electrical power by converting solar radiation into direct current electricity. Currently solar cells generate a tiny fraction of the total global power-generating capacity from all sources. However, it is one of the fastest growing power-generation technologies in the world. Developing solar power is a critical part of sustainable energy policy, particularly as the costs and consequences of burning fossil fuels increase. Figure 1: Solar cell Solar cell uses the energy in a photon of sunlight to separate a positive charge from a negative charge. It collects those positive and negative charges on two different terminals so they can be used to do work in an electric circuit. Solar cell efficiency Solar cell efficiency is the ratio of the electrical output of a solar cell to the incident energy in the form of sunlight. The energy conversion efficiency (η) of a solar cell is the percentage of the solar energy to which the cell is exposed that is converted into electrical energy.
    [Show full text]