Volatile Sulfur Compounds in Coastal Acid Sulfate Soils, Northern N.S.W

Total Page:16

File Type:pdf, Size:1020Kb

Volatile Sulfur Compounds in Coastal Acid Sulfate Soils, Northern N.S.W VOLATILE SULFUR COMPOUNDS IN COASTAL ACID SULFATE SOILS, NORTHERN N.S.W Andrew Stephen Kinsela A thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy School of Biological, Earth & Environmental Sciences THE UNIVERSITY OF NEW SOUTH WALES, AUSTRALIA 2007 DECLARATION ORIGINALITY STATEMENT ‘I hereby declare that this submission is my own work and to the best of my knowledge it contains no materials previously published or written by another person, or substantial proportions of material which have been accepted for the award of any other degree or diploma at UNSW or any other educational institution, except where due acknowledgement is made in the thesis. Any contribution made to the research by others, with whom I have worked at UNSW or elsewhere, is explicitly acknowledged in the thesis. I also declare that the intellectual content of this thesis is the product of my own work, except to the extent that assistance from others in the project's design and conception or in style, presentation and linguistic expression is acknowledged.’ Signed ………………………………………………… Date …………………………………………………… iii ACKNOWLEDGEMENTS There are numerous people who have assisted me throughout the course of my thesis. I therefore want to take this opportunity to thank a few of those who contributed appreciably, both directly and indirectly. First of all, I would like to express my heartfelt gratitude to my supervisor, Associate Professor Mike Melville. Mike’s initial teachings as part of my undergraduate studies first sparked my interest in soils. Since then his continued enthusiasm on the subject has helped shape the way I approach my own work. His dedicated support on both an intellectual and personal level has provided much of the driving force behind the completion of my thesis. The group of academics surrounding me throughout my candidature has made completing my project that little bit easier and a lot more enjoyable. Dr Ben Macdonald from the Australian National University (ANU) has been an excellent source of support, particularly regarding the friendship and assistance provided during fieldwork missions, but also with the numerous discussions about the direction of my thesis. Along with Dr Macdonald, the unsurpassed expertise in micrometeorological techniques provided by Dr Tom Denmead (CSIRO Land & Water) made large sections of my project possible. Initial meetings and advice within the early stages of my thesis with Professors Ian White (ANU) and David Waite (UNSW) largely shaped the direction my thesis, of which I am greatly appreciative. Being part of a school that was not all that encouraging to the research undertaken by my supervisor I am also indebted to the support provided by my fellow acid sulfate soil doctoral researcher at UNSW, Jason Reynolds. Our frequent discussions on aspects of our projects and general philosophising were both a valuable asset to the advancement of my project as well as a welcome diversion from it. I also wish to thank my fellow PhD students that I have worked with over the course of my project, again particularly for their assistance in the field and laboratory; Mira Dürr Acknowledgments v and Richard Reilly from ANU and Dr Jodie Smith from UNSW. Similarly, those students who were not necessarily involved with my project (either in the former School of Geography or within BEES) were also important in preserving my sanity. The technical support provided, especially by Dorothy Yu, but also Irene Wainwright, Dr Gautam Chattopathy and Dr Richard Stuertz (all of UNSW) was also much appreciated; along with the administrative support provided almost single-handedly in BEES by Dr Louise Mazarolli. Finally, I could not have completed my thesis without the love and support that I have received from my family; Mum, Dad and my sister Rebecca. I also particularly want to thank my girlfriend Ana Markovic, who has (foolishly?) stuck by me for the entire duration of my PhD, whilst undertaking the same painful experience in completing her own doctorate. The highs and lows that we have both experienced together in our respective fields will never be forgotten (no matter how much electro-shock therapy is endured). Acknowledgments vi PUBLICATIONS / CONFERENCES Much of the work has been published in refereed journal articles and conference proceedings, or presented at national and international conferences, listed below; REFEREED PUBLICATIONS Kinsela AS, Melville MD (2004) Mechanisms of acid sulfate soil oxidation and leaching under sugarcane cropping. Australian Journal of Soil Research 42, 569- 578. Macdonald BCT, Smith J, Keene AF, Tunks M, Kinsela A, White I (2004) Impacts of runoff from sulfuric soils on sediment chemistry in an estuarine lake. Science of the Total Environment 329, 115-130. Dürr M, Kinsela A, Macdonald BCT, White I (2004) Influence of land use on the emission of sulfur dioxide from acid sulfate soils. In 'Supersoil 2004: Program and Abstracts for the 3rd Australian New Zealand Soils Conference', University of Sydney. (Ed B Singh). (The Regional Institute Ltd) Kinsela AS, Reynolds JK, Melville MD (2007) Agricultural acid sulfate soils: a potential source of volatile sulfur compounds? Environmental Chemistry 4, 18-25. BOOK CHAPTERS Macdonald BCT, White I, Heath L, Smith J, Keene AF, Tunks M, Kinsela A (2006) Tracing the outputs from drained acid sulphate floodplains to minimize threats to coastal lakes. In ‘Environment and Livelihoods in Tropical Coastal Zones: Managing Agriculture- Fishery-Aquaculture Conflicts’ (Eds CT Hoanh, TP Tuong, JW Gowing, B Hardy). (CABI, Wallingford, U.K.) PUBLICATIONS IN PROCESS Kinsela AS, Macdonald BCT, Melville MD, White I, Reynolds JK, Denmead OT (In prep.) Field measurements of sulfur gas emissions from an agricultural acid sulfate soil, Eastern Australia. Macdonald BCT, Denmead OT, White I, Melville MD, Kinsela AS (In prep.) Harmful gas emissions from coastal soils? Reynolds JK, Kinsela AS, Melville MD, White I, Macdonald BCT, Waite TD (In prep.) Iron, sulfur and manganese geochemistry in a coastal lowland sulfidic sediment. Reynolds JK, Kinsela AS, Macdonald BCT, Melville DM (In prep.) Acidity and nitrate relationships during a flood event, Tweed River floodplain, NSW, Australia. Publications / Conferences vii CONFERENCE PROCEEDINGS Quirk R, Melville MD, Waite TD, Desmier R, Kinsela AS, Reynolds J, Smith J, Keene A, Macdonald BCT, White I, Donner E (2005) Acid sulfate soils: their drainage, oxidation, and best management. In ‘Proceedings of American Association for the Advancement of Science First International Conference’, New Orleans, U.S.A. Denmead O, Macdonald B, White I, Reilly R, Kinsela A, Melville M, Griffith D, and Bryant G (2005) Acid sulfate soils: a new source of sulfur and greenhouse gases. In: Amstel, A. 4th International Symposium on non-CO2 greenhouse gases (NCGG-4), science, control, policy and implementation, 4-6 July 2005, Utrecht, Netherlands. Rotterdam, Netherlands: Millpress Science Publishers: 169-177. WORKSHOP PROCEEDINGS Denmead OT, Macdonald BCT, White I, Reilly R, Kinsela A, Melville MD, Griffith DWT, Bryant G. (2006) Impacts of Acid Sulfate Soils on Air Quality. In ‘Proceedings of the Workshop on Agricultural Air Quality: State of the Science, Potomac, U.S.A., June 5-8’, (Eds Aneja VP et al.) pp. 575-582. CONFERENCE PRESENTATIONS Kinsela AS, Melville MD, Macdonald BCT, White I, Denmead OT (2004) Sulfur gas emissions from coastal acid sulfate soils. Supersoil 2004: Proceedings of the 3rd Australian and New Zealand Soils Conference, University of Sydney, Australia, 5-9 December 2004. Kinsela AS, Reynolds JK, Melville MD (2006) Acid sulfate soils: a source of volatile sulfur compounds? Soil Science Solving Problems Proceedings of the 4th Australian and New Zealand Soils Conference, University of Adelaide, Australia, 3-7 December 2006. CONFERENCE ABSTRACTS/PRESENTATIONS (presented by others) Denmead OT, Macdonald BCT, Kinsela A, White I, Melville MD (2004) Emission of sulfur gases from acid sulfate soils. 26th Conference on Agricultural and Forest Meteorology, Vancouver, Canada. Donner E, Keene A, Kinsela A, Smith J, Desmier R, Reynolds J, Macdonald BCT, White I, Tunks M, Quirk R,. Melville MD (2004) Is artificial drainage the cause of acid sulfate soil profile oxidation? Supersoil 2004: Proceedings of the 3rd Australian New Zealand Soils Conference, University of Sydney, Australia, 5-9 December. Kinsela AS, Melville MD, Macdonald BCT, White I, Denmead OT (2005) Sulfur gas emissions from coastal acid sulfate soils. 1st International Conference on Environmental Science and Technology, New Orleans, U.S.A. Publications / Conferences viii Macdonald BCT, White I, Åström ME, Keene AF, Reynolds J, Kinsela A, Österholm P (2005) Acid and metal discharges from acid sulfate soils, eastern Australia and Finland. 1st International Conference on Environmental Science and Technology, New Orleans, U.S.A. Denmead OT, Macdonald BCT, White I, Reilly R, Kinsela A, Melville MD, Griffith DWT, Bryant G (2005) Acid sulfate soils: a new source of sulfur- and greenhouse-gases. Fourth International Symposium on Non-CO2 Greenhouse Gases (NCGG-4): Science, Control, Policy and Implementation (Ed. A. van Amstel), 4-6 July 2005, Utrecht, The Netherlands. Publications / Conferences ix ABSTRACT The cycling of biogenic volatile sulfur compounds (VSCs) within marine and terrestrial ecosystems has been shown to play an integral role in atmospheric chemistry; by influencing global climate change through the creation of cloud condensation nuclei and controlling
Recommended publications
  • Smith Bacterial SBP56 Identified As a Cu-Dependent Methanethiol
    Bacterial SBP56 identified as a Cu-dependent methanethiol oxidase widely distributed in the biosphere EYICE, Özge, MYRONOVA, Nataliia, POL, Arjan, CARRIÓN, Ornella, TODD, Jonathan D, SMITH, Thomas <http://orcid.org/0000-0002-4246-5020>, GURMAN, Stephen J, CUTHBERTSON, Adam, MAZARD, Sophie, MENNINK-KERSTEN, Monique Ash, BUGG, Timothy Dh, ANDERSSON, Karl Kristoffer, JOHNSTON, Andrew Wb, OP DEN CAMP, Huub Jm and SCHÄFER, Hendrik Available from Sheffield Hallam University Research Archive (SHURA) at: http://shura.shu.ac.uk/17252/ This document is the author deposited version. You are advised to consult the publisher's version if you wish to cite from it. Published version EYICE, Özge, MYRONOVA, Nataliia, POL, Arjan, CARRIÓN, Ornella, TODD, Jonathan D, SMITH, Thomas, GURMAN, Stephen J, CUTHBERTSON, Adam, MAZARD, Sophie, MENNINK-KERSTEN, Monique Ash, BUGG, Timothy Dh, ANDERSSON, Karl Kristoffer, JOHNSTON, Andrew Wb, OP DEN CAMP, Huub Jm and SCHÄFER, Hendrik (2018). Bacterial SBP56 identified as a Cu-dependent methanethiol oxidase widely distributed in the biosphere. The ISME journal, 1 (12), 145-160. Copyright and re-use policy See http://shura.shu.ac.uk/information.html Sheffield Hallam University Research Archive http://shura.shu.ac.uk OPEN The ISME Journal (2017), 1–16 www.nature.com/ismej ORIGINAL ARTICLE Bacterial SBP56 identified as a Cu-dependent methanethiol oxidase widely distributed in the biosphere Özge Eyice1,2,9, Nataliia Myronova1,9, Arjan Pol3, Ornella Carrión4, Jonathan D Todd4, Tom J Smith5, Stephen J Gurman6, Adam Cuthbertson1,
    [Show full text]
  • Protein Targets of Acetaminophen Covalent Binding in Rat and Mouse
    ORIGINAL RESEARCH published: XX XX 2021 doi: 10.3389/fchem.2021.736788 1 58 2 59 3 60 4 61 5 62 6 63 7 64 8 65 9 66 10 Protein Targets of Acetaminophen 67 11 68 12 Covalent Binding in Rat and Mouse 69 13 70 14 Q2 Liver Studied by LC-MS/MS 71 15 Q3 72 Q1 16 Timon Geib, Ghazaleh Moghaddam, Aimee Supinski, Makan Golizeh† and Lekha Sleno* Q4 73 17 Q5 74 18 Chemistry Department, Université du Québec à Montréal, Montréal, QC, Canada Q6 75 19 76 20 Acetaminophen (APAP) is a mild analgesic and antipyretic used commonly worldwide. 77 21 78 Although considered a safe and effective over-the-counter medication, it is also the leading 22 79 23 cause of drug-induced acute liver failure. Its hepatotoxicity has been linked to the covalent 80 24 binding of its reactive metabolite, N-acetyl p-benzoquinone imine (NAPQI), to proteins. The 81 Edited by: 25 aim of this study was to identify APAP-protein targets in both rat and mouse liver, and to 82 26 Marcus S Cooke, 83 University of South Florida, compare the results from both species, using bottom-up proteomics with data-dependent 27 United States 84 28 high resolution mass spectrometry and targeted multiple reaction monitoring (MRM) 85 Reviewed by: 29 experiments. Livers from rats and mice, treated with APAP, were homogenized and 86 Hartmut Jaeschke, 30 University of Kansas Medical Center digested by trypsin. Digests were then fractionated by mixed-mode solid-phase extraction 87 31 Research Institute, United States prior to liquid chromatography-tandem mass spectrometry (LC-MS/MS).
    [Show full text]
  • Dynamic Changes in the Urine Proteome in Two Ovarian Cancer Rat
    bioRxiv preprint doi: https://doi.org/10.1101/604850; this version posted April 10, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Dynamic changes in the urine proteome in two ovarian cancer rat models Yuqiu Li 1,2, Linpei Zhang1,2, Wenshu Meng 1,2, Youhe Gao *1,2 1. Department of Biochemistry and Molecular Biology, Beijing Normal University, Beijing 100875; 2. Gene Engineering Drug and Biotechnology Beijing Key Laboratory, Beijing 100875 *Corresponding author: Youhe Gao Email: [email protected] Phone: 86-10-5880-4382; Fax: 86-10-6521-2284 Abstract: Ovarian cancer is the most lethal gynecological malignancy in women, and it is likely to metastasize and has a poor prognosis. The early and reliable diagnosis and monitoring of ovarian cancer is very important. Without a homeostasis mechanism, urine can reflect early systemic changes in the body and has a great potential to be used for the early detection of cancer. This study tested whether early changes could be detected in two ovarian cancer rat models. Two rat models were established by either intraperitoneal (i.p.) or orthotopic (o.t.) injection of NuTu-19 ovarian cancer cells in female Fischer344 rats. Urine samples from ovarian cancer rats were collected at five time points during cancer development, and urinary proteins from the rats were profiled by liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS). Compared with pre-injection samples, 49 differential proteins that have human orthologues were significantly changed in the orthotopically injected model.
    [Show full text]
  • Molecular Changes in Tissue Proteome During Prostate Cancer Development: Proof-Of-Principle Investigation
    diagnostics Article Molecular Changes in Tissue Proteome during Prostate Cancer Development: Proof-of-Principle Investigation Agnieszka Latosinska 1,*, Katarina Davalieva 2 , Manousos Makridakis 3, William Mullen 4 , Joost P. Schanstra 5,6, Antonia Vlahou 3, Harald Mischak 1 and Maria Frantzi 1 1 Mosaiques Diagnostics GmbH, 30659 Hannover, Germany; [email protected] (H.M.); [email protected] (M.F.) 2 Research Centre for Genetic Engineering and Biotechnology “Georgi D Efremov”, Macedonian Academy of Sciences and Arts, 1000 Skopje, North Macedonia; [email protected] 3 Biomedical Research Foundation of the Academy of Athens, Centre of Systems Biology, 11527 Athens, Greece; [email protected] (M.M.); [email protected] (A.V.) 4 Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow G12 8QQ, UK; [email protected] 5 Institut National de la Santé et de la Recherche Médicale (INSERM), U1048, Institute of Cardiovascular and Metabolic Diseases, 31432 Toulouse, France; [email protected] 6 Université Toulouse III Paul-Sabatier, 31400 Toulouse, France * Correspondence: [email protected]; Tel.: +49-(0)51-15-547-4430; Fax: +49-(0)51-15-547-4431 Received: 30 July 2020; Accepted: 26 August 2020; Published: 31 August 2020 Abstract: (1) Background: Prostate cancer (PCa) is characterized by high heterogeneity. The aim of this study was to investigate molecular alterations underlying PCa development based on proteomics data. (2) Methods: Liquid chromatography coupled to tandem mass spectrometry was conducted for 22 fresh-frozen tissue specimens from patients with benign prostatic hyperplasia (BPH, n = 5) and PCa (n = 17). Mann Whitney test was used to define significant differences between the two groups.
    [Show full text]
  • Metabolism of Organosulfur Compounds in Ruegeria Pomeroyi Dss-3
    METABOLISM OF ORGANOSULFUR COMPOUNDS IN RUEGERIA POMEROYI DSS-3 by WARREN CRABB (Under the Direction of William B. Whitman) ABSTRACT Dimethylsulfoniopropionate (DMSP) accounts for up to 10% of the carbon fixed by marine phytoplankton, most of which, is released as dissolved organic matter available for degradation and assimilation by bacterioplankton. Bacterial metabolism of DMSP proceeds via two competing pathways: demethylation or cleavage. The latter releases dimethyl sulfide (DMS), a climatically relevant gas and a major source of atmospheric sulfur. The demethylation pathway was found to be highly abundant in marine bacteria and accounts for a majority of DMSP degradation. In addition to being a source of energy and sulfur for marine bacteria, the demethylation pathway directs transformation of DMSP away from formation of DMS. A number of techniques were utilized to elucidate the pathways and enzymology of DMSP metabolism in the marine bacteria, Ruegeria pomeroyi DSS-3. INDEX WORDS: Dimethylsulfoniopropionate; DMSP; Methanethiol; MeSH; Acrylate; 3- Hydroxypropionate; Metabolism; Assimilation; Sulfur; Ruegeria pomeroyi METABOLISM OF ORGANOSULFUR COMPOUNDS IN RUEGERIA POMEROYI DSS-3 by WARREN CRABB B.S, Armstrong Atlantic State University, 2010 A Thesis Submitted to the Graduate Faculty of The University of Georgia in Partial Fulfillment of the Requirements for the Degree MASTER OF SCIENCE ATHENS, GEORGIA 2013 © 2013 Warren Crabb All Rights Reserved METABOLISM OF ORGANOSULFUR COMPOUNDS IN RUEGERIA POMEROYI DSS-3 by WARREN CRABB Major Professor: William B. Whitman Committee: Mary Ann Moran Robert J. Maier Electronic Version Approved: Maureen Grasso Dean of the Graduate School The University of Georgia August 2013 ACKNOWLEDGEMENTS I would like to acknowledge the generous support and mentorship given by my thesis advisor Dr.
    [Show full text]
  • Transcriptomic Analysis of Early Stages of Intestinal Regeneration in Holothuria Glaberrima David J
    Transcriptomic Analysis of Early Stages of Intestinal Regeneration in Holothuria glaberrima David J. Quispe-Parra1, Joshua G. Medina-Feliciano1, Sebastián Cruz-González1, Humberto Ortiz-Zuazaga2, José E. García-Arrarás1* 1University of Puerto Rico, Biology Department, San Juan, 00925, Puerto Rico. 2University of Puerto Rico, Department of Computer Sciences, San Juan, 00925, Puerto Rico. Table S1. Results of transcriptome assessment with BUSCO Parameter BUSCO result Core genes queried 978 Complete core genes detected 99.1% Complete single copy core genes 27.2% Complete duplicated core genes 71.9% Fragmented core genes detected 0.4% Missing core genes 0.5% Table S2. Transcriptome length statistics and composition assessments with gVolante Parameter Result Number of sequences 491 436 Total length (nt) 408 930 895 Longest sequence (nt) 34 610 Shortest sequence (nt) 200 Mean sequence length (nt) 832 N50 sequence length (nt) 1 691 Table S3. RNA-seq data read statistic values Accession Quantity of reads Sample Mapped reads (SRA) Before Filtering After Filtering SRR12564573 NormalA 89 424 588.00 88 112 720.00 94.18% SRR12564572 NormalB 74 105 862.00 72 983 434.00 93.79% SRR12564570 NormalC 60 626 094.00 59 767 896.00 91.55% SRR12564564 Day1A 32 499 910.00 31 721 976.00 90.67% SRR12564563 Day1B 35 164 514.00 34 237 960.00 91.37% SRR12564571 Day1C 43 519 280.00 42 179 220.00 91.53% SRR12564567 Day3A 64 094 536.00 62 995 792.00 90.26% SRR12564566 Day3B 71 654 462.00 70 158 078.00 91.07% SRR12564565 Day3C 71 259 560.00 70 418 332.00 90.75% SRR12564569 Day3D* 107 688 184.00 106 083 898.00 - SRR12564568 Day3E* 108 372 334.00 106 767 522.00 - *Samples used for the assembly but not for differential expression analysis Table S4.
    [Show full text]
  • 1 Bacterial SBP56 Identified As a Cu-Dependent Methanethiol Oxidase Widely Distributed in the Biosphere Özge Eyicea,B1, Natalii
    Bacterial SBP56 identified as a Cu-dependent methanethiol oxidase widely distributed in the biosphere Özge Eyicea,b1, Nataliia Myronovaa,1, Arjan Polc, Ornella Carriónd, Jonathan Toddd, Tom J. Smithe, Stephen J. Gurmanf, Adam Cuthbertsona, Sophie Mazarda,2, Monique A.S.H. 5 Mennink-Kerstenc, Timothy D.H. Buggg, K. Kristoffer Anderssonh, Andrew W.B. Johnstond, Huub J.M. Op den Campc,3 , Hendrik Schäfera,3 Author contributions: HS, HOdC, NM, AP, KKA, TJS, SJG, JT, TDHB, AWBJ designed research; OE, NM, OC, JT, TJS, SJG, MMK, AP, HS, KKA, AC, SM performed research; HS, JT, TJS, KKA, AWBJ, AP, HOdC wrote the paper with editorial help of co-authors. 10 a School of Life Sciences, University of Warwick, Coventry, CV4 7AL, United Kingdom b School of Biological and Chemical Sciences, Queen Mary University of London, London, E1 4NS, United Kingdom c Department of Microbiology, Institute for Water and Wetland Research, Faculty of 15 Science, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands d School of Biological Sciences, University of East Anglia, Norwich, NR4 7TJ, United Kingdom e Department of Biosciences and Chemistry, Sheffield Hallam University, Howard Street, Sheffield, S1 1WB, United Kingdom 20 f Department of Physics and Astronomy, University of Leicester, Leicester, LE1 7RH, United Kingdom g Department of Chemistry, University of Warwick, Coventry, CV4 7AL, United Kingdom h Department of Bioscience, University of Oslo, PO Box 1066 Blindern, Blindernveien 31, 0371 Oslo, Norway 25 1 These authors contributed equally to the work 2 present address: Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, NSW, Australia 2109 3 Corresponding authors: 30 Hendrik Schäfer, Email: [email protected]; Phone: +44 2476 575052 Huub J.M.
    [Show full text]
  • 12) United States Patent (10
    US007635572B2 (12) UnitedO States Patent (10) Patent No.: US 7,635,572 B2 Zhou et al. (45) Date of Patent: Dec. 22, 2009 (54) METHODS FOR CONDUCTING ASSAYS FOR 5,506,121 A 4/1996 Skerra et al. ENZYME ACTIVITY ON PROTEIN 5,510,270 A 4/1996 Fodor et al. MICROARRAYS 5,512,492 A 4/1996 Herron et al. 5,516,635 A 5/1996 Ekins et al. (75) Inventors: Fang X. Zhou, New Haven, CT (US); 5,532,128 A 7/1996 Eggers Barry Schweitzer, Cheshire, CT (US) 5,538,897 A 7/1996 Yates, III et al. s s 5,541,070 A 7/1996 Kauvar (73) Assignee: Life Technologies Corporation, .. S.E. al Carlsbad, CA (US) 5,585,069 A 12/1996 Zanzucchi et al. 5,585,639 A 12/1996 Dorsel et al. (*) Notice: Subject to any disclaimer, the term of this 5,593,838 A 1/1997 Zanzucchi et al. patent is extended or adjusted under 35 5,605,662 A 2f1997 Heller et al. U.S.C. 154(b) by 0 days. 5,620,850 A 4/1997 Bamdad et al. 5,624,711 A 4/1997 Sundberg et al. (21) Appl. No.: 10/865,431 5,627,369 A 5/1997 Vestal et al. 5,629,213 A 5/1997 Kornguth et al. (22) Filed: Jun. 9, 2004 (Continued) (65) Prior Publication Data FOREIGN PATENT DOCUMENTS US 2005/O118665 A1 Jun. 2, 2005 EP 596421 10, 1993 EP 0619321 12/1994 (51) Int. Cl. EP O664452 7, 1995 CI2O 1/50 (2006.01) EP O818467 1, 1998 (52) U.S.
    [Show full text]
  • Comparative Proteomics Analysis for Identifying the Lipid Metabolism Related Pathways in Patients with Klippel-Feil Syndrome
    255 Original Article Page 1 of 14 Comparative proteomics analysis for identifying the lipid metabolism related pathways in patients with Klippel-Feil syndrome Ziquan Li1,2, Cong Zhang3, Bintao Qiu4, Yuchen Niu4, Ling Leng4, Siyi Cai1,5, Ye Tian1, Terry Jianguo Zhang1,2,5, Guixing Qiu1,2,5, Nan Wu1,2,5^, Zhihong Wu2,4,5, Yipeng Wang1,2,5^ 1Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China; 2Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China; 3Department of Endocrinology, China- Japan Friendship Hospital, Beijing, China; 4State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China; 5Key laboratory of big data for spinal deformities, Chinese Academy of Medical Sciences, Beijing, China Contributions: (I) Conception and design: Z Li, N Wu, Z Wu; (II) Administrative support: TJ Zhang, Y Wang, G Qiu; (III) Provision of study materials or patients: C Zhang, S Cai, Y Tian; (IV) Collection and assembly of data: Y Niu, L Leng, B Qiu, Z Li; (V) Data analysis and interpretation: L Leng, B Qiu; (VI) Manuscript writing: All authors; (VII) Final approval of manuscript: All authors. Correspondence to: Yipeng Wang MD. Department of Orthopedic Surgery, Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Key Laboratory of Big Data For Spinal Deformities, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, No. 1 Shuaifuyuan, Beijing 100730, China. Email: [email protected]; Zhihong Wu, PhD.
    [Show full text]
  • Understanding Physiological Adaptations, Metabolic Potential And
    UNDERSTANDING PHYSIOLOGICAL ADAPTATIONS, METABOLIC POTENTIAL AND ECOLOGY IN A NOVEL PHOTOAUTOTROPHIC ALGA FOR BIOFUEL PRODUCTION by Luisa Fernanda Corredor Arias A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Microbiology MONTANA STATE UNIVERSITY Bozeman, Montana November 2019 ©COPYRIGHT by Luisa Fernanda Corredor Arias 2019 All Rights Reserved ii DEDICATION To Ben, the love of my life, partner in crime and my happy place. Your love, support, devotion and kindness are beyond measure. To our little sunshine Lily. You turned my world into a wonderful rollercoaster of love and filled my life with joy and purpose. Para mi mamá Magda, por el inmenso amor, la dedicación y la ternura que siempre me brinda. Para mi papá Germán, quién despertó en mi la pasión por la ciencia y el conocimiento. iii ACKNOWLEDGEMENTS I would like to thank the Fulbright Scholarship Program for opening my mind to the world and its endless possibilities. It truly changed my life in the most positive ways. I would like to thank my advisor, Dr. Matthew Fields, for giving me the chance to be part of his lab, the opportunities he provided for my professional development and for his support and advice for the last seven years of my life. I am very grateful to my committee members, Drs. Robin Gerlach, Mensur Dlakic and Abigail Richards for their support and always taking the time to help me, teach me and guide me through grad school and science. A special thank you to former and current members of the Fields lab for their support and friendship, coming to work was always great fun.
    [Show full text]
  • Bacterial SBP56 Identified As a Cu-Dependent Methanethiol Oxidase Widely Distributed in the Biosphere Özge Eyice, Nataliia My
    Bacterial SBP56 identified as a Cu-dependent methanethiol oxidase widely distributed in the biosphere Özge Eyice, Nataliia Myronova, Arjan Pol, Ornella Carrión, Jonathan Todd, Tom J. Smith, Stephen J. Gurman, Adam Cuthbertson, Sophie Mazard, Monique A.S.H. Mennink-Kersten, Timothy D.H. Bugg, K. Kristoffer Andersson, Andrew W.B. Johnston, Huub J.M. Op den Camp, Hendrik Schäfer Supplementary Information This document contains supplementary information including additional detail concerning methods and results of methanethiol oxidase protein purification and characterization, Electron Paramagnetic Resonance Spectroscopy (EPR) analysis, X-ray spectroscopy analyses (EXAFS), genome sequencing of Hyphomicrobium sp. VS (Supplementary Figures S1-S12, Supplementary Tables S1-S7). Protein purification An initial protocol for purification of methanethiol oxidase from Hyphomicrobium sp. VS was developed as shown below in Supplementary Table S1. This resulted in a protein preparation that revealed a single dominant polypeptide in SDS-PAGE analysis with a molecular weight of approximately 46 kDa (Kertens-Mennink, Pol, Op den Camp, unpublished results). The activity of methanethiol oxidase in this preparation was enriched 36-fold in this fraction. Supplementary Table S1. Purification Table for preliminary MTO purification. MTO activity Protein Purification volume (µmol MT/min) [mg] fold Recovery crude extract 5.0 4.8 135.0 1.0 100.0 Q-sepharose 7.4 3.5 12.7 7.8 73.3 Amicon filtration 2.0 4.1 10.3 10.9 84.0 Superose 12 12.0 4.7 3.3 40.2 98.0 Amicon filtration 6.1 1.8 3.9 12.8 36.7 TSK-DEAE 7.0 0.5 0.4 36.0 10.8 Notes: after the second Amicon filtration, only 26.3% of the material was purified further, leading to a recovery of 10.8%.
    [Show full text]
  • Als Common Pathogenic Biological Routes Between Amyotrophic Lateral Sclerosis (ALS) and Frontotemporal Dementia (FTD)
    International Journal of Molecular Sciences Article Neuroanatomical Quantitative Proteomics Reveals Common Pathogenic Biological Routes between Amyotrophic Lateral Sclerosis (ALS) and Frontotemporal Dementia (FTD) Marina Oaia Iridoy 1,* , Irene Zubiri 2, María Victoria Zelaya 3, Leyre Martinez 1, Karina Ausín 2, Mercedes Lachen-Montes 2,4, Enrique Santamaría 2,4 , Joaquín Fernandez-Irigoyen 2,4 and Ivonne Jericó 1,* 1 Department of Neurology ComplejoHospitalario de Navarra (CHN), IdiSNA (Navarra Institute for Health Research), Irunlarrea 3, 31008 Pamplona, Spain; [email protected] 2 Proteored-ISCIII, Proteomics Unit, Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), IdiSNA, Irunlarrea 3, 31008 Pamplona, Spain; [email protected] (I.Z.); [email protected] (K.A.); [email protected] (M.L.-M.); [email protected] (E.S.); [email protected] (J.F.-I.) 3 Pathological Anatomyservice Complejo Hospitalario de Navarra (CHN), IdiSNA (Navarra Institute for Health Research), Irunlarrea 3, 31008 Pamplona, Spain; [email protected] 4 Clinical Neuroproteomics Group, Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), IdiSNA, Irunlarrea 3, 31008 Pamplona, Spain * Correspondence: [email protected] (M.O.I.); [email protected] (I.J.); Tel.: +34-699721112 (M.O.I.); +34-848422222 (I.J.) Received: 21 November 2018; Accepted: 19 December 2018; Published: 20 December 2018 Abstract: (1) Background: Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are neurodegenerative disorders with an overlap in clinical presentation and neuropathology. Common and differential mechanisms leading to protein expression changes and neurodegeneration in ALS and FTD were studied trough a deep neuroproteome mapping of the spinal cord.
    [Show full text]