Environmental Impact Assessment of Norwegian Polar Institute Operations in Antarctica

Total Page:16

File Type:pdf, Size:1020Kb

Environmental Impact Assessment of Norwegian Polar Institute Operations in Antarctica ENVIRONMENTAL IMPACT ASSESSMENT OF NORWEGIAN POLAR INSTITUTE OPERATIONS IN ANTARCTICA 2021-2030 Norwegian Polar Institute 1 2 Contents PREFACE ........................................................................................................................................................ 6 1.0 INTRODUCTION ....................................................................................................................................... 7 1.1 History of Norwegian activity in Antarctica ........................................................................................ 7 1.1.1 The history of research in Dronning Maud land .......................................................................... 7 1.1.2 The Norwegian Antarctic Research Expeditions (NARE) .............................................................. 8 1.1.3 Establishment of Troll station ...................................................................................................... 8 1.2 Current NPI operations in Antarctica ................................................................................................ 10 1.2.1 The Norwegian Polar Institute’s formal role .............................................................................. 10 1.2.2 The Norwegian Polar Institute’s operations in Antarctica ......................................................... 10 1.2.3 Geographic area ......................................................................................................................... 11 1.3 Past assessments .............................................................................................................................. 11 1.4 Purpose of the assessment: ENVIRONMENTAL IMPACT ASSESSMENT OF NORWEGIAN POLAR INSTITUTE’S OPERATIONS IN ANTARCTICA ............................................................................................. 12 2.0 CONSIDERING THE ENVIRONMENT ...................................................................................................... 13 3.0. TROLL RESEARCH STATION .................................................................................................................. 13 3.1 Introduction ...................................................................................................................................... 13 3.2. Land use and footprint ..................................................................................................................... 17 3.2.1 Description ................................................................................................................................. 17 3.2.2 Alternatives ................................................................................................................................ 20 3.2.3 Impacts ....................................................................................................................................... 21 3.3 Use of vehicles .................................................................................................................................. 23 3.3.1 Description ................................................................................................................................. 23 3.3.2 Alternatives ................................................................................................................................ 25 3 3.3 Impacts ....................................................................................................................................... 26 3.4 Waste ................................................................................................................................................ 26 3.4.1 Description ................................................................................................................................. 26 3.4.2 Alternatives ................................................................................................................................ 30 3.4.3 Impacts ....................................................................................................................................... 32 3.5 Management of fuel and hazardous substances .............................................................................. 34 3.5.1 Description ................................................................................................................................. 34 3.5.2 Alternatives ................................................................................................................................ 36 3 3.5.3 Impacts ....................................................................................................................................... 37 3.6 Power supply ..................................................................................................................................... 38 3.6.1 Description ................................................................................................................................. 38 3.6.2 Alternatives ................................................................................................................................ 39 3.6.3 Impacts ....................................................................................................................................... 40 3.7 Water supply ..................................................................................................................................... 41 3.7.1 Description ................................................................................................................................. 41 3.7.2 Alternatives ................................................................................................................................ 41 3.7.3 Impacts ....................................................................................................................................... 41 3.8 Recreational activities ....................................................................................................................... 41 3.8.1 Introduction ............................................................................................................................... 41 3.8.2 Alternatives ................................................................................................................................ 42 3.8.3 Impact ........................................................................................................................................ 43 4.0 TOR FIELD STATION ............................................................................................................................... 43 4.1. Land use and footprint ..................................................................................................................... 44 4.1.1 Description ................................................................................................................................. 44 4.1.2 Alternatives ................................................................................................................................ 44 4.2 Waste at Tor field station ................................................................................................................. 45 4.2.1 Description ................................................................................................................................. 45 4.2.2 Alternatives ................................................................................................................................ 47 4.3 Fuel and hazardous substances at Tor station .................................................................................. 47 4.4 Water use and foodstuff ................................................................................................................... 47 4.5 Energy use and electrical power ....................................................................................................... 47 4.6 Impacts .............................................................................................................................................. 48 5.0 FIELD CAMPS ......................................................................................................................................... 51 5.1. Land use and footprint ..................................................................................................................... 51 5.2 Waste from field camps .................................................................................................................... 52 5.3 Fuel in field camps ............................................................................................................................ 53 5.4 Water use .......................................................................................................................................... 53 5.5 Energy use and electrical power ....................................................................................................... 53 5.6 Impacts .............................................................................................................................................. 54 6.0 MARINE VESSEL SUPPLY OPERATIONS .................................................................................................. 56 4 6.1 Description ........................................................................................................................................ 56 6.2 Alternatives ......................................................................................................................................
Recommended publications
  • Wastewater Treatment in Antarctica
    Wastewater Treatment in Antarctica Sergey Tarasenko Supervisor: Neil Gilbert GCAS 2008/2009 Table of content Acronyms ...........................................................................................................................................3 Introduction .......................................................................................................................................4 1 Basic principles of wastewater treatment for small objects .....................................................5 1.1 Domestic wastewater characteristics....................................................................................5 1.2 Characteristics of main methods of domestic wastewater treatment .............................5 1.3 Designing of treatment facilities for individual sewage disposal systems...................11 2 Wastewater treatment in Antarctica..........................................................................................13 2.1 Problems of transferring treatment technologies to Antarctica .....................................13 2.1.1 Requirements of the Protocol on Environmental Protection to the Antarctic Treaty / Wastewater quality standards ...................................................................................................13 2.1.2 Geographical situation......................................................................................................14 2.1.2.1 Climatic conditions....................................................................................................14
    [Show full text]
  • Office of Polar Programs
    DEVELOPMENT AND IMPLEMENTATION OF SURFACE TRAVERSE CAPABILITIES IN ANTARCTICA COMPREHENSIVE ENVIRONMENTAL EVALUATION DRAFT (15 January 2004) FINAL (30 August 2004) National Science Foundation 4201 Wilson Boulevard Arlington, Virginia 22230 DEVELOPMENT AND IMPLEMENTATION OF SURFACE TRAVERSE CAPABILITIES IN ANTARCTICA FINAL COMPREHENSIVE ENVIRONMENTAL EVALUATION TABLE OF CONTENTS 1.0 INTRODUCTION....................................................................................................................1-1 1.1 Purpose.......................................................................................................................................1-1 1.2 Comprehensive Environmental Evaluation (CEE) Process .......................................................1-1 1.3 Document Organization .............................................................................................................1-2 2.0 BACKGROUND OF SURFACE TRAVERSES IN ANTARCTICA..................................2-1 2.1 Introduction ................................................................................................................................2-1 2.2 Re-supply Traverses...................................................................................................................2-1 2.3 Scientific Traverses and Surface-Based Surveys .......................................................................2-5 3.0 ALTERNATIVES ....................................................................................................................3-1
    [Show full text]
  • A NEWS BULLETIN Published Quarterly by the NEW ZEALAND ANTARCTIC SOCIETY (INC)
    A NEWS BULLETIN published quarterly by the NEW ZEALAND ANTARCTIC SOCIETY (INC) An English-born Post Office technician, Robin Hodgson, wearing a borrowed kilt, plays his pipes to huskies on the sea ice below Scott Base. So far he has had a cool response to his music from his New Zealand colleagues, and a noisy reception f r o m a l l 2 0 h u s k i e s . , „ _ . Antarctic Division photo Registered at Post Ollice Headquarters. Wellington. New Zealand, as a magazine. II '1.7 ^ I -!^I*"JTr -.*><\\>! »7^7 mm SOUTH GEORGIA, SOUTH SANDWICH Is- . C I R C L E / SOUTH ORKNEY Is x \ /o Orcadas arg Sanae s a Noydiazarevskaya ussr FALKLAND Is /6Signyl.uK , .60"W / SOUTH AMERICA tf Borga / S A A - S O U T H « A WEDDELL SHETLAND^fU / I s / Halley Bav3 MINING MAU0 LAN0 ENOERBY J /SEA uk'/COATS Ld / LAND T> ANTARCTIC ••?l\W Dr^hnaya^^General Belgrano arg / V ^ M a w s o n \ MAC ROBERTSON LAND\ '■ aust \ /PENINSULA' *\4- (see map betowi jrV^ Sobldl ARG 90-w {■ — Siple USA j. Amundsen-Scott / queen MARY LAND {Mirny ELLSWORTH" LAND 1, 1 1 °Vostok ussr MARIE BYRD L LAND WILKES LAND ouiiiv_. , ROSS|NZJ Y/lnda^Z / SEA I#V/VICTORIA .TERRE , **•»./ LAND \ /"AOELIE-V Leningradskaya .V USSR,-'' \ --- — -"'BALLENYIj ANTARCTIC PENINSULA 1 Tenitnte Matianzo arg 2 Esptrarua arg 3 Almirarrta Brown arc 4PttrtlAHG 5 Otcipcion arg 6 Vtcecomodoro Marambio arg * ANTARCTICA 7 Arturo Prat chile 8 Bernardo O'Higgins chile 1000 Miles 9 Prasid«fTtB Frei chile s 1000 Kilometres 10 Stonington I.
    [Show full text]
  • Station Sharing in Antarctica
    IP 94 Agenda Item: ATCM 7, ATCM 10, ATCM 11, ATCM 14, CEP 5, CEP 6b, CEP 9 Presented by: ASOC Original: English Station Sharing in Antarctica 1 IP 94 Station Sharing in Antarctica Information Paper Submitted by ASOC to the XXIX ATCM (CEP Agenda Items 5, 6 and 9, ATCM Agenda Items 7, 10, 11 and 14) I. Introduction and overview As of 2005 there were at least 45 permanent stations in the Antarctic being operated by 18 countries, of which 37 were used as year-round stations.i Although there are a few examples of states sharing scientific facilities (see Appendix 1), for the most part the practice of individual states building and operating their own facilities, under their own flags, persists. This seems to be rooted in the idea that in order to become a full Antarctic Treaty Consultative Party (ATCP), one has to build a station to show seriousness of scientific purpose, although formally the ATCPs have clarified that this is not the case. The scientific mission and international scientific cooperation is nominally at the heart of the ATS,ii and through SCAR the region has a long-established scientific coordination body. It therefore seems surprising that half a century after the adoption of this remarkable Antarctic regime, we still see no truly international stations. The ‘national sovereign approach’ continues to be the principal driver of new stations. Because new stations are likely to involve relatively large impacts in areas that most likely to be near pristine, ASOC submits that this approach should be changed. In considering environmental impact analyses of proposed new station construction, the Committee on Environmental Protection (CEP) presently does not have a mandate to take into account opportunities for sharing facilities (as an alternative that would reduce impacts).
    [Show full text]
  • Product Manual
    PRODUCT MANUAL The Sami of Finnmark. Photo: Terje Rakke/Nordic Life/visitnorway.com. Norwegian Travel Workshop 2014 Alta, 31 March-3 April Sorrisniva Igloo Hotel, Alta. Photo: Terje Rakke/Nordic Life AS/visitnorway.com INDEX - NORWEGIAN SUPPLIERS Stand Page ACTIVITY COMPANIES ARCTIC GUIDE SERVICE AS 40 9 ARCTIC WHALE TOURS 57 10 BARENTS-SAFARI - H.HATLE AS 21 14 NEW! DESTINASJON 71° NORD AS 13 34 FLÅM GUIDESERVICE AS - FJORDSAFARI 200 65 NEW! GAPAHUKEN DRIFT AS 23 70 GEIRANGER FJORDSERVICE AS 239 73 NEW! GLØD EXPLORER AS 7 75 NEW! HOLMEN HUSKY 8 87 JOSTEDALSBREEN & STRYN ADVENTURE 205-206 98 KIRKENES SNOWHOTEL AS 19-20 101 NEW! KONGSHUS JAKT OG FISKECAMP 11 104 LYNGSFJORD ADVENTURE 39 112 NORTHERN LIGHTS HUSKY 6 128 PASVIKTURIST AS 22 136 NEW! PÆSKATUN 4 138 SCAN ADVENTURE 38 149 NEW! SEIL NORGE AS (SAILNORWAY LTD.) 95 152 NEW! SEILAND HOUSE 5 153 SKISTAR NORGE 150 156 SORRISNIVA AS 9-10 160 NEW! STRANDA SKI RESORT 244 168 TROMSØ LAPLAND 73 177 NEW! TROMSØ SAFARI AS 48 178 TROMSØ VILLMARKSSENTER AS 75 179 TRYSILGUIDENE AS 152 180 TURGLEDER AS / ENGHOLM HUSKY 12 183 TYSFJORD TURISTSENTER AS 96 184 WHALESAFARI LTD 54 209 WILD NORWAY 161 211 ATTRACTIONS NEW! ALTA MUSEUM - WORLD HERITAGE ROCK ART 2 5 NEW! ATLANTERHAVSPARKEN 266 11 DALSNIBBA VIEWPOINT 1,500 M.A.S.L 240 32 DESTINATION BRIKSDAL 210 39 FLØIBANEN AS 224 64 FLÅMSBANA - THE FLÅM RAILWAY 229-230 67 HARDANGERVIDDA NATURE CENTRE EIDFJORD 212 82 I Stand Page HURTIGRUTEN 27-28 96 LOFOTR VIKING MUSEUM 64 110 MAIHAUGEN/NORWEGIAN OLYMPIC MUSEUM 190 113 NATIONAL PILGRIM CENTRE 163 120 NEW! NORDKAPPHALLEN 15 123 NORWEGIAN FJORD CENTRE 242 126 NEW! NORSK FOLKEMUSEUM 140 127 NORWEGIAN GLACIER MUSEUM 204 131 STIFTELSEN ALNES FYR 265 164 CARRIERS ACP RAIL INTERNATIONAL 251 2 ARCTIC BUSS LOFOTEN 56 8 AVIS RENT A CAR 103 13 BUSSRING AS 47 24 COLOR LINE 107-108 28 COMINOR AS 29 29 FJORD LINE AS 263-264 59 FJORD1 AS 262 62 NEW! H.M.
    [Show full text]
  • Application of a New Polarimetric Filter to Radarsat-2 Data of Deception Island (Antarctic Peninsula Region) for Surface Cover Characterization
    APPLICATION OF A NEW POLARIMETRIC FILTER TO RADARSAT-2 DATA OF DECEPTION ISLAND (ANTARCTIC PENINSULA REGION) FOR SURFACE COVER CHARACTERIZATION a b c a S. Guillaso ,∗ T. Schmid , J. Lopez-Mart´ ´ınez , O. D’Hondt a Technische Universitat¨ Berlin, Computer Vision and Remote Sensing, Berlin, Germany - [email protected] b CIEMAT, Madrid, Spain - [email protected] c Universidad Autonoma´ de Madrid, Spain - [email protected] KEY WORDS: SAR, Antarctica, Surface characterization, Geomorphology, Soils, Polarimetry, Speckle Filtering, Image interpretation ABSTRACT: In this paper, we describe a new approach to analyse and quantify land surface covers on Deception Island, a volcanic island located in the Northern Antarctic Peninsula region by means of fully polarimetric RADARSAT-2 (C-Band) SAR image. Data have been filtered by a new polarimetric speckle filter (PolSAR-BLF) that is based on the bilateral filter. This filter is locally adapted to the spatial structure of the image by relying on pixel similarities in both the spatial and the radiometric domains. Thereafter different polarimetric features have been extracted and selected before being geocoded. These polarimetric parameters serve as a basis for a supervised classification using the Support Vector Machine (SVM) classifier. Finally, a map of landform is generated based on the result of the SVM results. 1. INTRODUCTION Ice-free land surfaces of the Northern Antarctica Peninsula region are under the influence of freeze-thaw cycling effects on differ- ent parent materials. This is mainly due to the particular climatic conditions of the so called Maritime Antarctica and because this region is one the the fastest warming areas of the southern hemi- sphere.
    [Show full text]
  • Development Pressures on the Antarctic Wilderness
    XXVIII ATCM – IP May 2004 Original: English Agenda Items 3 (Operation of the CEP) and 4a (General Matters) DEVELOPMENT PRESSURES ON THE ANTARCTIC WILDERNESS Submitted to the XXVIII ATCM by the Antarctic and Southern Ocean Coalition DEVELOPMENT PRESSURES ON THE ANTARCTIC WILDERNESS 1. Introduction In 2004 the Antarctic and Southern Ocean Coalition (ASOC) tabled information paper ATCM XXVII IP 094 “Are new stations justified?”. The paper highlighted proposals for the construction of no less than five new Antarctic stations in the context of at least 73 established stations (whether full year or summer only), maintained by 26 States already operating in the Antarctic Treaty Area. The paper considered what was driving the new station activity in Antarctica, whether or not it was necessary or desirable, and what alternatives there might be to building yet more stations. Whilst IP 094 focused on new station proposals, it noted that there were other significant infrastructure projects underway in Antarctica, which included substantial upgrades of existing national stations, the development of air links to various locations in Antarctica and related runways, and an ice road to the South Pole. Since then, ASOC has become aware of additional proposals for infrastructure projects. This paper updates ASOC’s ATCM XXVII IP 094 to include most infrastructure projects planned or currently underway in Antarctica as of April 2005, and discusses their contribution to cumulative impacts. The criteria used to select these projects are: 1. The project’s environmental impact is potentially “more than minor or transitory”; 2. The project results in a development of infrastructure that is significant in the Antarctic context; 3.
    [Show full text]
  • Southern Hemisphere Mid- and High-Latitudinal AOD, CO, NO2, And
    Ahn et al. Progress in Earth and Planetary Science (2019) 6:34 Progress in Earth and https://doi.org/10.1186/s40645-019-0277-y Planetary Science RESEARCH ARTICLE Open Access Southern Hemisphere mid- and high- latitudinal AOD, CO, NO2, and HCHO: spatiotemporal patterns revealed by satellite observations Dha Hyun Ahn1, Taejin Choi2, Jhoon Kim1, Sang Seo Park3, Yun Gon Lee4, Seong-Joong Kim2 and Ja-Ho Koo1* Abstract To assess air pollution emitted in Southern Hemisphere mid-latitudes and transported to Antarctica, we investigate the climatological mean and temporal trends in aerosol optical depth (AOD), carbon monoxide (CO), nitrogen dioxide (NO2), and formaldehyde (HCHO) columns using satellite observations. Generally, all these measurements exhibit sharp peaks over and near the three nearby inhabited continents: South America, Africa, and Australia. This pattern indicates the large emission effect of anthropogenic activities and biomass burning processes. High AOD is also found over the Southern Atlantic Ocean, probably because of the sea salt production driven by strong winds. Since the pristine Antarctic atmosphere can be polluted by transport of air pollutants from the mid-latitudes, we analyze the 10-day back trajectories that arrive at Antarctic ground stations in consideration of the spatial distribution of mid-latitudinal AOD, CO, NO2, and HCHO. We find that the influence of mid-latitudinal emission differs across Antarctic regions: western Antarctic regions show relatively more back trajectories from the mid-latitudes, while the eastern Antarctic regions do not show large intrusions of mid-latitudinal air masses. Finally, we estimate the long-term trends in AOD, CO, NO2, and HCHO during the past decade (2005–2016).
    [Show full text]
  • Download (Pdf, 236
    Science in the Snow Appendix 1 SCAR Members Full members (31) (Associate Membership) Full Membership Argentina 3 February 1958 Australia 3 February 1958 Belgium 3 February 1958 Chile 3 February 1958 France 3 February 1958 Japan 3 February 1958 New Zealand 3 February 1958 Norway 3 February 1958 Russia (assumed representation of USSR) 3 February 1958 South Africa 3 February 1958 United Kingdom 3 February 1958 United States of America 3 February 1958 Germany (formerly DDR and BRD individually) 22 May 1978 Poland 22 May 1978 India 1 October 1984 Brazil 1 October 1984 China 23 June 1986 Sweden (24 March 1987) 12 September 1988 Italy (19 May 1987) 12 September 1988 Uruguay (29 July 1987) 12 September 1988 Spain (15 January 1987) 23 July 1990 The Netherlands (20 May 1987) 23 July 1990 Korea, Republic of (18 December 1987) 23 July 1990 Finland (1 July 1988) 23 July 1990 Ecuador (12 September 1988) 15 June 1992 Canada (5 September 1994) 27 July 1998 Peru (14 April 1987) 22 July 2002 Switzerland (16 June 1987) 4 October 2004 Bulgaria (5 March 1995) 17 July 2006 Ukraine (5 September 1994) 17 July 2006 Malaysia (4 October 2004) 14 July 2008 Associate Members (12) Pakistan 15 June 1992 Denmark 17 July 2006 Portugal 17 July 2006 Romania 14 July 2008 261 Appendices Monaco 9 August 2010 Venezuela 23 July 2012 Czech Republic 1 September 2014 Iran 1 September 2014 Austria 29 August 2016 Colombia (rejoined) 29 August 2016 Thailand 29 August 2016 Turkey 29 August 2016 Former Associate Members (2) Colombia 23 July 1990 withdrew 3 July 1995 Estonia 15 June
    [Show full text]
  • Balloons up and Away
    Published during the austral summer at McMurdo Station, Antarctica, for the United States Antarctic Program December 21, 2003 Home away Balloons up and away from Dome By Kris Kuenning TRACER Sun staff As steel and plywood panels continue to go up at the new takes flight Amundsen-Scott South Pole Station building, this season’s By Brien Barnett residents are living out the transi- Sun staff tion from old Dome to new sta- Inside TRACER mission tion. control, Patrick “JoJo” Boyle With the summer crew set- sits in the six-foot square tling into the first two occupied office listening to music and sections of the new station, there watching computer monitors is some nostalgia for Dome life, for incoming data and mes- but the large new dining facility, sages. with windows overlooking the Every now and then Boyle ceremonial South Pole, has won points to the monitor where a a lot of hearts over already. string of bright red pixels “I don’t miss the old galley suddenly appear, indicating a one bit,” said cargo technician recent high-energy cosmic Scot Jackson, “and I really ray event. The tone of his thought I would.” voice shows excitement. Head chef “Cookie” Jon “Oooh, that’s a big Emanuel is enjoying the new event… That’s an iron event facilities, too, but is feeling the for sure … There’s another pangs of the transition when it one.” comes to getting supplies up to Behind him, in the office the second floor kitchen. Despite at McMurdo Station’s Crary the limiting size and aging facil- Laboratory is a map of ities of the old kitchen, the food Antarctica with a semicircle stores were always in easy reach of sticky notes stuck to it.
    [Show full text]
  • Advances in Seismic Monitoring at Deception Island Volcano
    ANNALS OF GEOPHYSICS, 57, 3, 2014, SS0321; doi:10.4401/ag-6378 Special section: Geophysical monitorings at the Earth’s polar regions Advances in seismic monitoring at Deception Island volcano (Antarctica) since the International Polar Year Enrique Carmona1, Javier Almendros1,2,*, Rosa Martín1, Guillermo Cortés1, Gerardo Alguacil1,2, Javier Moreno1, José Benito Martín1, Antonio Martos1, Inmaculada Serrano1,2, Daniel Stich1,2, Jesús M. Ibáñez1,2 1 Instituto Andaluz de Geofísica, Universidad de Granada, Granada, Spain 2 Departamento de Física Teórica y del Cosmos, Universidad de Granada, Granada, Spain Article history Received June 30, 2013; accepted October 25, 2013. Subject classification: Volcano monitoring, Seismic network, Seismic array, Deception Island volcano, International Polar Year. ABSTRACT of the most visited places in Antarctica both by sci- Deception Island is an active volcano located in the south Shetland Is- entists and tourists, which emphasizes the impor- lands, Antarctica. It constitutes a natural laboratory to test geophysical tance of volcano surveillance and monitoring. instruments in extreme conditions, since they have to endure not only the Antarctic climate but also the volcanic environment. Deception is one of the most visited places in Antarctica, both by scientists and tourists, which emphasize the importance of volcano monitoring. Seismic monitoring has been going on since 1986 during austral summer surveys. The recorded data include volcano-tectonic earthquakes, long-period events and volcanic tremor, among
    [Show full text]
  • Frozen Politics on a Thawing Continent
    FROZEN POLITICS ON A THAWING CONTINENT A Political Ecology Approach to Understanding Science and its Relationship to Neocolonial and Capitalist Processes in Antarctica MANON KATRINA BURBIDGE LUND UNIVERSITY MSc Human Ecology: Culture, Power and Sustainability (2 years) Supervisor: Alf Hornborg Department of Human Geography 30 ECTS Spring 2019 Abstract Despite possessing a unique relationship between humankind and the environment, and its occupation of a large proportion of the planet’s surface area, Antarctica is markedly absent from literature produced within the disciplines of human and political ecology. With no states or indigenous peoples, Antarctica is instead governed by a conglomeration of states as part of the Antarctic Treaty System, which places high values upon scientific research, peace and conservation. By connecting political ecology with neocolonial, world-systems and politically-situated science perspectives, this research addressed the question of how neocolonialism and the prospects of capital accumulation are legitimised by scientific research in Antarctica, as a result of science’s privileged position in the Treaty. Three methods were applied, namely GIS, critical-political content analysis and semi-structured interviews, which were then triangulated to create an overall case study. These methods explored the intersections between Antarctic power structures, the spatial patterns of the built environment and the discourses of six national scientific programmes, complemented by insights from eight expert interviews. This thesis constitutes an important contribution to the fields of human and political ecology, firstly by intersecting it with critical Antarctic studies, something which has not previously been attempted, but also by expanding the application of a world-systems perspective to a continent very rarely included in this field’s academia.
    [Show full text]