Microarray Analysis of Differentially Expressed Lncrnas with Associated Co-Expression and Cerna Networks in Coronary Heart Disease
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Mechanical Forces Induce an Asthma Gene Signature in Healthy Airway Epithelial Cells Ayşe Kılıç1,10, Asher Ameli1,2,10, Jin-Ah Park3,10, Alvin T
www.nature.com/scientificreports OPEN Mechanical forces induce an asthma gene signature in healthy airway epithelial cells Ayşe Kılıç1,10, Asher Ameli1,2,10, Jin-Ah Park3,10, Alvin T. Kho4, Kelan Tantisira1, Marc Santolini 1,5, Feixiong Cheng6,7,8, Jennifer A. Mitchel3, Maureen McGill3, Michael J. O’Sullivan3, Margherita De Marzio1,3, Amitabh Sharma1, Scott H. Randell9, Jefrey M. Drazen3, Jefrey J. Fredberg3 & Scott T. Weiss1,3* Bronchospasm compresses the bronchial epithelium, and this compressive stress has been implicated in asthma pathogenesis. However, the molecular mechanisms by which this compressive stress alters pathways relevant to disease are not well understood. Using air-liquid interface cultures of primary human bronchial epithelial cells derived from non-asthmatic donors and asthmatic donors, we applied a compressive stress and then used a network approach to map resulting changes in the molecular interactome. In cells from non-asthmatic donors, compression by itself was sufcient to induce infammatory, late repair, and fbrotic pathways. Remarkably, this molecular profle of non-asthmatic cells after compression recapitulated the profle of asthmatic cells before compression. Together, these results show that even in the absence of any infammatory stimulus, mechanical compression alone is sufcient to induce an asthma-like molecular signature. Bronchial epithelial cells (BECs) form a physical barrier that protects pulmonary airways from inhaled irritants and invading pathogens1,2. Moreover, environmental stimuli such as allergens, pollutants and viruses can induce constriction of the airways3 and thereby expose the bronchial epithelium to compressive mechanical stress. In BECs, this compressive stress induces structural, biophysical, as well as molecular changes4,5, that interact with nearby mesenchyme6 to cause epithelial layer unjamming1, shedding of soluble factors, production of matrix proteins, and activation matrix modifying enzymes, which then act to coordinate infammatory and remodeling processes4,7–10. -
Maintenance of the Marginal Zone B Cell Compartment Specifically Requires the RNA-Binding Protein ZFP36L1
Europe PMC Funders Group Author Manuscript Nat Immunol. Author manuscript; available in PMC 2017 October 10. Published in final edited form as: Nat Immunol. 2017 June ; 18(6): 683–693. doi:10.1038/ni.3724. Europe PMC Funders Author Manuscripts Maintenance of the marginal zone B cell compartment specifically requires the RNA-binding protein ZFP36L1 Rebecca Newman1,2, Helena Ahlfors1, Alexander Saveliev1, Alison Galloway1, Daniel J Hodson3, Robert Williams1, Gurdyal S. Besra4, Charlotte N Cook5, Adam F Cunningham5, Sarah E Bell1, and Martin Turner1,* 1Laboratory of Lymphocyte Signalling and Development, The Babraham Institute, Babraham Research Campus, Cambridge, CB22 3AT, United Kingdom 2Immune Receptor Activation Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, United Kingdom 3Department of Haematology, University of Cambridge, The Clifford Allbutt Building, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0AH, United Kingdom 4School of Biosciences, University of Birmingham, Birmingham, B15 2TT, United Kingdom 5MRC Centre for Immune Regulation, School of Immunity and Infection, University of Birmingham, Birmingham, B15 2TT, United Kingdom Abstract Europe PMC Funders Author Manuscripts RNA binding proteins (RBP) of the ZFP36 family are best known for inhibiting the expression of cytokines through binding to AU rich elements in the 3’UTR and promoting mRNA decay. Here we show an indispensible role for ZFP36L1 as the regulator of a post-transcriptional hub that determined the identity of marginal zone (MZ) B cells by promoting their proper localization and survival. ZFP36L1 controlled a gene expression program related to signaling, cell-adhesion and locomotion, in part by limiting the expression of the transcription factors KLF2 and IRF8, which are known to enforce the follicular B cell phenotype. -
Isolation and Characterization of Lymphocyte-Like Cells from a Lamprey
Isolation and characterization of lymphocyte-like cells from a lamprey Werner E. Mayer*, Tatiana Uinuk-ool*, Herbert Tichy*, Lanier A. Gartland†, Jan Klein*, and Max D. Cooper†‡ *Max-Planck-Institut fu¨r Biologie, Abteilung Immungenetik, Corrensstrasse 42, D-72076 Tu¨bingen, Germany; and †Howard Hughes Medical Institute, University of Alabama, 378 Wallace Tumor Institute, Birmingham, AL 35294 Contributed by Max D. Cooper, August 30, 2002 Lymphocyte-like cells in the intestine of the sea lamprey, Petro- existence of the adaptive immune system in jawless fishes, myzon marinus, were isolated by flow cytometry under light- the identity of these cells has remained in doubt. The aim of the scatter conditions used for the purification of mouse intestinal present study was to exploit contemporary methods of cell lymphocytes. The purified lamprey cells were morphologically separation to isolate the agnathan lymphocyte-like cells to indistinguishable from mammalian lymphocytes. A cDNA library characterize them morphologically and by the genes they was prepared from the lamprey lymphocyte-like cells, and more express. than 8,000 randomly selected clones were sequenced. Homology searches comparing these ESTs with sequences deposited in the Materials and Methods databases led to the identification of numerous genes homologous Source and Preparation of Cell Suspension. Ammocoete larvae to those predominantly or characteristically expressed in mamma- (8–13 cm long) of the sea lamprey, Petromyzon marinus (from lian lymphocytes, which included genes controlling lymphopoiesis, Lake Huron, MI) were dissected along the ventral side to extract intracellular signaling, proliferation, migration, and involvement the intestine and the associated typhlosole (spiral valve). Cells of lymphocytes in innate immune responses. -
1 Production of Spliced Peptides by the Proteasome Nathalie Vigneron1,2, Vincent Stroobant1,2, Violette Ferrari1,2, Joanna Abi H
Production of spliced peptides by the proteasome Nathalie Vigneron1,2, Vincent Stroobant1,2, Violette Ferrari1,2, Joanna Abi Habib1,2, Benoit J. Van den Eynde1,2,3* 1Ludwig Institute for Cancer Research, Brussels, Belgium 2de Duve Institute, Université catholique de Louvain, Brussels, Belgium 3WELBIO (Walloon Excellence in Life Sciences and Biotechnology), Brussels, Belgium Running title: Peptide splicing by the proteasome *Author to whom correspondence should be addressed: Dr. Van den Eynde, Ludwig Institute for Cancer Research, de Duve Institute, Université catholique de Louvain, Avenue Hippocrate 75 B1.74.03, B-1200 Brussels, Belgium; Tel.: +32-2-7647580; Fax: +32-2-7647590; E-Mail: [email protected]. Keywords: proteasome, CD8+ cytolytic T lymphocytes, peptide splicing, transpeptidation, antigenic peptides Abstract CD8+ cytolytic T lymphocytes are essential players of anti-tumor immune responses. On tumors, they recognize peptides of about 8-to-10 amino acids that generally result from the degradation of cellular proteins by the proteasome. Until a decade ago, these peptides were thought to solely correspond to linear fragments of proteins that were liberated after the hydrolysis of the peptide bonds located at their extremities. However, several examples of peptides containing two fragments originally distant in the protein sequence challenged this concept and demonstrated that proteasome could also splice peptides together by creating a new peptide bond between two distant fragments. Unexpectedly, peptide splicing emerges as an essential way to increase the peptide repertoire diversity as these spliced peptides were shown to represent up to 25% of the peptides presented on a cell by MHC class I. Here, we review the different steps that led to the discovery of peptide splicing by the proteasome as well as the lightening offered by the recent progresses of mass spectrometry and bioinformatics in the analysis of the spliced peptide repertoire. -
Anti-Inflammatory Role of Curcumin in LPS Treated A549 Cells at Global Proteome Level and on Mycobacterial Infection
Anti-inflammatory Role of Curcumin in LPS Treated A549 cells at Global Proteome level and on Mycobacterial infection. Suchita Singh1,+, Rakesh Arya2,3,+, Rhishikesh R Bargaje1, Mrinal Kumar Das2,4, Subia Akram2, Hossain Md. Faruquee2,5, Rajendra Kumar Behera3, Ranjan Kumar Nanda2,*, Anurag Agrawal1 1Center of Excellence for Translational Research in Asthma and Lung Disease, CSIR- Institute of Genomics and Integrative Biology, New Delhi, 110025, India. 2Translational Health Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, 110067, India. 3School of Life Sciences, Sambalpur University, Jyoti Vihar, Sambalpur, Orissa, 768019, India. 4Department of Respiratory Sciences, #211, Maurice Shock Building, University of Leicester, LE1 9HN 5Department of Biotechnology and Genetic Engineering, Islamic University, Kushtia- 7003, Bangladesh. +Contributed equally for this work. S-1 70 G1 S 60 G2/M 50 40 30 % of cells 20 10 0 CURI LPSI LPSCUR Figure S1: Effect of curcumin and/or LPS treatment on A549 cell viability A549 cells were treated with curcumin (10 µM) and/or LPS or 1 µg/ml for the indicated times and after fixation were stained with propidium iodide and Annexin V-FITC. The DNA contents were determined by flow cytometry to calculate percentage of cells present in each phase of the cell cycle (G1, S and G2/M) using Flowing analysis software. S-2 Figure S2: Total proteins identified in all the three experiments and their distribution betwee curcumin and/or LPS treated conditions. The proteins showing differential expressions (log2 fold change≥2) in these experiments were presented in the venn diagram and certain number of proteins are common in all three experiments. -
Integrative Genomics Identifies New Genes Associated with Severe COPD and Emphysema Phuwanat Sakornsakolpat1,2, Jarrett D
Sakornsakolpat et al. Respiratory Research (2018) 19:46 https://doi.org/10.1186/s12931-018-0744-9 RESEARCH Open Access Integrative genomics identifies new genes associated with severe COPD and emphysema Phuwanat Sakornsakolpat1,2, Jarrett D. Morrow1, Peter J. Castaldi1,3, Craig P. Hersh1,4, Yohan Bossé5, Edwin K. Silverman1,4, Ani Manichaikul6 and Michael H. Cho1,4* Abstract Background: Genome-wide association studies have identified several genetic risk loci for severe chronic obstructive pulmonary disease (COPD) and emphysema. However, these studies do not fully explain disease heritability and in most cases, fail to implicate specific genes. Integrative methods that combine gene expression data with GWAS can provide more power in discovering disease-associated genes and give mechanistic insight into regulated genes. Methods: We applied a recently described method that imputes gene expression using reference transcriptome data to genome-wide association studies for two phenotypes (severe COPD and quantitative emphysema) and blood and lung tissue gene expression datasets. We further tested the potential causality of individual genes using multi-variant colocalization. Results: We identified seven genes significantly associated with severe COPD, and five genes significantly associated with quantitative emphysema in whole blood or lung. We validated results in independent transcriptome databases and confirmed colocalization signals for PSMA4, EGLN2, WNT3, DCBLD1, and LILRA3. Three of these genes were not located within previously reported GWAS loci for either phenotype. We also identified genetically driven pathways, including those related to immune regulation. Conclusions: An integrative analysis of GWAS and gene expression identified novel associations with severe COPD and quantitative emphysema, and also suggested disease-associated genes in known COPD susceptibility loci. -
PI31 Is an Adaptor Protein for Proteasome Transport in Axons And
bioRxiv preprint doi: https://doi.org/10.1101/364463; this version posted January 15, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. PI31 is an adaptor protein for proteasome transport in axons and required for synaptic development and function Kai Liu1, Sandra Jones1, Adi Minis1, Jose Rodriguez1, Henrik Molina2, Hermann Steller1,3* 1Strang Laboratory of Apoptosis and Cancer Biology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA. 2The Rockefeller University Proteomics Resource Center, The Rockefeller University, New York, NY, 10065, USA 3Lead contact *Correspondence: [email protected]. 1 bioRxiv preprint doi: https://doi.org/10.1101/364463; this version posted January 15, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract Protein degradation by the ubiquitin-proteasome system (UPS) is critical for neuronal development, plasticity and function. Neurons utilize microtubule-dependent molecular motors to allocate proteasomes to synapses, but how proteasomes are coupled to motor proteins and how this transport is regulated to meet changing demand for protein breakdown remains largely unknown. We show that the conserved proteasome-binding protein PI31 serves as an adaptor to directly couple proteasomes with dynein light chain proteins (DYNLL1/2). Inactivation of PI31 inhibits proteasome motility in axons and disrupts synaptic protein homeostasis, structure and function. Moreover, phosphorylation of PI31 at a conserved site by p38 MAP kinase promotes binding to DYNLL1/2, and a non-phosphorable PI31 mutant impairs proteasome movement in axons, suggesting a mechanism to regulate loading of proteasomes onto motor proteins. -
CD98 [19] Among Others [5][23]
bioRxiv preprint doi: https://doi.org/10.1101/2021.04.15.439921; this version posted April 18, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Physiological Substrates and Ontogeny-Specific Expression of the Ubiquitin Ligases 2 MARCH1 and MARCH8 3 4 Patrick Schriek1, Haiyin Liu1, Alan C. Ching1, Pauline Huang1, Nishma Gupta1, Kayla R. 5 Wilson1, MinHsuang Tsai1, Yuting Yan2, Christophe F. Macri1, Laura F. Dagley3,4, Giuseppe 6 Infusini3,4, Andrew I. Webb3,4, Hamish McWilliam1,2, Satoshi Ishido5, Justine D. Mintern1 and 7 Jose A. Villadangos1,2 8 9 1Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology 10 Institute, The University of Melbourne, Parkville, VIC 3010, Australia. 11 2Department of Microbiology and Immunology, Peter Doherty Institute for Infection and 12 Immunity, The University of Melbourne, Parkville, VIC 3010, Australia. 13 3Advanced Technology and Biology Division, The Walter and Eliza Hall Institute of Medical 14 Research, Parkville, VIC 3052, Australia. 15 4Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia. 16 5Department of Microbiology, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya 17 17 663-8501, Japan 18 19 20 21 Correspondence to Justine D. Mintern ([email protected]) or 22 Jose A. Villadangos ([email protected]) 1 bioRxiv preprint doi: https://doi.org/10.1101/2021.04.15.439921; this version posted April 18, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. -
35Th International Society for Animal Genetics Conference 7
35th INTERNATIONAL SOCIETY FOR ANIMAL GENETICS CONFERENCE 7. 23.16 – 7.27. 2016 Salt Lake City, Utah ABSTRACT BOOK https://www.asas.org/meetings/isag2016 INVITED SPEAKERS S0100 – S0124 https://www.asas.org/meetings/isag2016 epigenetic modifications, such as DNA methylation, and measuring different proteins and cellular metab- INVITED SPEAKERS: FUNCTIONAL olites. These advancements provide unprecedented ANNOTATION OF ANIMAL opportunities to uncover the genetic architecture GENOMES (FAANG) ASAS-ISAG underlying phenotypic variation. In this context, the JOINT SYMPOSIUM main challenge is to decipher the flow of biological information that lies between the genotypes and phe- notypes under study. In other words, the new challenge S0100 Important lessons from complex genomes. is to integrate multiple sources of molecular infor- T. R. Gingeras* (Cold Spring Harbor Laboratory, mation (i.e., multiple layers of omics data to reveal Functional Genomics, Cold Spring Harbor, NY) the causal biological networks that underlie complex traits). It is important to note that knowledge regarding The ~3 billion base pairs of the human DNA rep- causal relationships among genes and phenotypes can resent a storage devise encoding information for be used to predict the behavior of complex systems, as hundreds of thousands of processes that can go on well as optimize management practices and selection within and outside a human cell. This information is strategies. Here, we describe a multi-step procedure revealed in the RNAs that are composed of 12 billion for inferring causal gene-phenotype networks underly- nucleotides, considering the strandedness and allelic ing complex phenotypes integrating multi-omics data. content of each of the diploid copies of the genome. -
Clinically Annotated Breast, Ovarian and Pancreatic Cancer
www.nature.com/scientificreports OPEN MetaGxData: Clinically Annotated Breast, Ovarian and Pancreatic Cancer Datasets and their Use in Received: 19 November 2018 Accepted: 31 May 2019 Generating a Multi-Cancer Gene Published: xx xx xxxx Signature Deena M. A. Gendoo 1, Michael Zon2,4, Vandana Sandhu2, Venkata S. K. Manem2,3,5, Natchar Ratanasirigulchai2, Gregory M. Chen2, Levi Waldron 6 & Benjamin Haibe- Kains2,3,7,8,9 A wealth of transcriptomic and clinical data on solid tumours are under-utilized due to unharmonized data storage and format. We have developed the MetaGxData package compendium, which includes manually-curated and standardized clinical, pathological, survival, and treatment metadata across breast, ovarian, and pancreatic cancer data. MetaGxData is the largest compendium of curated transcriptomic data for these cancer types to date, spanning 86 datasets and encompassing 15,249 samples. Open access to standardized metadata across cancer types promotes use of their transcriptomic and clinical data in a variety of cross-tumour analyses, including identifcation of common biomarkers, and assessing the validity of prognostic signatures. Here, we demonstrate that MetaGxData is a fexible framework that facilitates meta-analyses by using it to identify common prognostic genes in ovarian and breast cancer. Furthermore, we use the data compendium to create the frst gene signature that is prognostic in a meta-analysis across 3 cancer types. These fndings demonstrate the potential of MetaGxData to serve as an important resource in oncology research, and provide a foundation for future development of cancer-specifc compendia. Ovarian, breast and pancreatic cancers are among the leading causes of cancer deaths among women, and recent studies have identifed biological and molecular commonalities between them1–4. -
The DNA Sequence and Comparative Analysis of Human Chromosome 20
articles The DNA sequence and comparative analysis of human chromosome 20 P. Deloukas, L. H. Matthews, J. Ashurst, J. Burton, J. G. R. Gilbert, M. Jones, G. Stavrides, J. P. Almeida, A. K. Babbage, C. L. Bagguley, J. Bailey, K. F. Barlow, K. N. Bates, L. M. Beard, D. M. Beare, O. P. Beasley, C. P. Bird, S. E. Blakey, A. M. Bridgeman, A. J. Brown, D. Buck, W. Burrill, A. P. Butler, C. Carder, N. P. Carter, J. C. Chapman, M. Clamp, G. Clark, L. N. Clark, S. Y. Clark, C. M. Clee, S. Clegg, V. E. Cobley, R. E. Collier, R. Connor, N. R. Corby, A. Coulson, G. J. Coville, R. Deadman, P. Dhami, M. Dunn, A. G. Ellington, J. A. Frankland, A. Fraser, L. French, P. Garner, D. V. Grafham, C. Grif®ths, M. N. D. Grif®ths, R. Gwilliam, R. E. Hall, S. Hammond, J. L. Harley, P. D. Heath, S. Ho, J. L. Holden, P. J. Howden, E. Huckle, A. R. Hunt, S. E. Hunt, K. Jekosch, C. M. Johnson, D. Johnson, M. P. Kay, A. M. Kimberley, A. King, A. Knights, G. K. Laird, S. Lawlor, M. H. Lehvaslaiho, M. Leversha, C. Lloyd, D. M. Lloyd, J. D. Lovell, V. L. Marsh, S. L. Martin, L. J. McConnachie, K. McLay, A. A. McMurray, S. Milne, D. Mistry, M. J. F. Moore, J. C. Mullikin, T. Nickerson, K. Oliver, A. Parker, R. Patel, T. A. V. Pearce, A. I. Peck, B. J. C. T. Phillimore, S. R. Prathalingam, R. W. Plumb, H. Ramsay, C. M. -
WO 2014/134728 Al 12 September 2014 (12.09.2014) P O P C T
(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2014/134728 Al 12 September 2014 (12.09.2014) P O P C T (51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every C12Q 1/68 (2006.01) G06F 19/20 (201 1.01) kind of national protection available): AE, AG, AL, AM, C40B 30/00 (2006.01) AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, (21) International Application Number: DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, PCT/CA20 14/050 174 HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, (22) International Filing Date: KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, 6 March 2014 (06.03.2014) MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, (25) Filing Language: English SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, (26) Publication Language: English TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (30) Priority Data: 61/774,271 7 March 2013 (07.03.2013) US (84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, (71) Applicants: UNIVERSITE DE MONTREAL [CA/CA]; GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ, 2900 Edouard-Montpetit, Montreal, Quebec H3T 1J4 UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, (CA).