Bach1 Is Critical for the Transformation of Mouse Embryonic Fibroblasts by Rasv12 and Maintains ERK Signaling

Total Page:16

File Type:pdf, Size:1020Kb

Bach1 Is Critical for the Transformation of Mouse Embryonic Fibroblasts by Rasv12 and Maintains ERK Signaling Oncogene (2013) 32, 3231–3245 & 2013 Macmillan Publishers Limited All rights reserved 0950-9232/13 www.nature.com/onc ORIGINAL ARTICLE Bach1 is critical for the transformation of mouse embryonic fibroblasts by RasV12 and maintains ERK signaling A Nakanome1,2, A Brydun1,3, M Matsumoto1,4,KOta1, R Funayama5,6, K Nakayama5, M Ono7, K Shiga2, T Kobayashi2 and K Igarashi1,3,6 Reactive oxygen species (ROS), by-products of aerobic respiration, promote genetic instability and contribute to the malignant transformation of cells. Among the genes related to ROS metabolism, Bach1 is a repressor of the oxidative stress response, and a negative regulator of ROS-induced cellular senescence directed by p53 in higher eukaryotes. While ROS are intimately involved in carcinogenesis, it is not clear whether Bach1 is involved in this process. We found that senescent Bach1-deficient mouse embryonic fibroblasts (MEFs) underwent spontaneous immortalization the same as did the wild-type cells. When transduced with constitutively active Ras (H-RasV12), the proliferation and colony formation of these cells in vitro were markedly reduced. When transplanted into athymic nude mice, the growth and vascularization of tumors derived from Bach1-deficient cells were also decreased. Gene expression profiling of the MEFs revealed a new H-RasV12 signature, which was distinct from the previously reported signatures in epithelial tumors, and was partly dependent on Bach1. The Bach1-deficient cells showed diminished phosphorylation of MEK and ERK1/2 in response to H-RasV12, which was consistent with the alterations in the gene expression profile, including phosphatase genes. Finally, Bach1-deficient mice were less susceptible to 4-nitroquinoline-1-oxidide (4-NQO)- induced tongue carcinoma than wild-type mice. Our data provide evidence for a critical role of Bach1 in cell transformation and tumor growth induced by activated H-RasV12. Oncogene (2013) 32, 3231–3245; doi:10.1038/onc.2012.336; published online 30 July 2012 Keywords: Bach1; ROS; cancer; Ras; ERK INTRODUCTION reduced in Bach1-deficient mice compared with wild-type Reactive oxygen species (ROS) are inevitable by-products of controls,9,10 suggesting that Bach1 determines the ROS levels by aerobic respiration. ROS have conventionally been regarded as fine-tuning the expression of oxidative stress-response genes, having carcinogenic potential and profound associations with including Hmox1. tumor promotion.1 First, ROS are one of the major causes of DNA Intriguingly, Bach1 represses the oxidative stress-induced damage in vivo and increase mutations in DNA.2 Second, the cellular senescence directed by p53.11 Senescence, induced by production of ROS is induced in response to growth factors and the activation of tumor suppressors, inhibits the development of oncogene activation, and can modulate critical intracellular cancer by arresting the proliferation of damaged or stressed cells signaling molecules by affecting their redox regulation.3 Third, that are at risk for malignant transformation.12,13 Bach1 inhibits ROS affect heterotypic cell–cell interactions within tumor tissues p53-mediated cellular senescence by forming a complex with p53, and also affect angiogenesis.4 Therefore, changes in ROS histone deacetylase 1 and nuclear receptor co-repressor, thereby metabolism potentially affect both the prevention and repressing the transcriptional activity of p53.11 Although oxidative promotion of cancer. stress is one of the major causes of the senescence of mouse In higher eukaryotes, the transcriptional responses toward embryonic fibroblasts (MEFs),14 oncogenic Ras with activating oxidative stress are regulated by two major transcription factor mutations also induces cellular senescence.15 Importantly, families, the NF-kB/Rel family and the AP-1 superfamily, which although ROS are essential for Ras-induced cell transformation,16 includes Jun.5 Bach1 is a heme-regulated transcriptional repressor little is known about the involvement of the oxidative stress found in vertebrates and is a member of the AP-1 superfamily.6 response in Ras-driven tumorigeneisis. The regulation of ROS Bach1 forms heterodimers with small Maf oncoproteins (MafK, metabolism and cellular senescence by Bach1 suggest that it may MafF, MafG), binds to the Maf recognition element, which be relevant to tumorigenesis. encompasses an AP-1-binding site,7 and represses the Activating mutations in Ras family proto-oncogenes are very expression of oxidative stress-responsive genes, including heme common in human cancer, and modulators of aberrant Ras oxygenase-1 (Hmox1).8 These genes are activated by Nrf2, which signaling have an important role in tumorigenesis.17 Recently, also belongs to the AP-1 superfamily and forms heterodimers with there have been several reports describing that there is a large the small Maf proteins. Atherosclerosis and ischemic reperfusion group of genes/proteins that are not oncogenes, but if targeted, injury of the heart, both involving ROS-mediated damage, are can cause reduced proliferation of transformed cells.18 These 1Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan; 2Department of Otolaryngology-Head and Neck Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan; 3Center for Regulatory Epigenome and Diseases, Tohoku University Graduate School of Medicine, Sendai, Japan; 4Department of Obstetrics and Gynecology, Tohoku University Graduate School of Medicine, Sendai, Japan; 5Division of Cell Proliferation, Tohoku University Graduate School of Medicine, Sendai, Japan; 6CREST, Japan Science and Technology Agency, Sendai, Japan and 7Department of Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan. Correspondence: Professor K Igarashi, Department of Biochemistry, Tohoku University Graduate School of Medicine, Seiryo-machi 2–1, Sendai, Japan. E-mail: [email protected] Received 3 September 2011; revised 7 June 2012; accepted 20 June 2012; published online 30 July 2012 Bach1 as a possible target of non-oncogene addiction A Nakanome et al 3232 phenomena have been interpreted in such a way that activated deficiency did not prevent the immortalization of MEFs despite oncogenes rely on genes that are themselves not oncogenes, thus their enhanced propensity for cellular senescence. However, leading to the so-called ‘non-oncogene addiction’.19 For instance, Bach1 was nearly indispensable for the transformation of the Ras family is dependent on the heat shock response in human immortalized cells with activated Ras (H-RasV12) in vitro, and cancer cells.18 enhanced the tumor formation in vivo. Bach1 deficiency reduced In this report, we examined the roles of Bach1 in the ROS levels, and profoundly affected the transcriptional response proliferation and ROS metabolism of transformed cells. Bach1 to H-RasV12, including the negative feedback loop of extracellular Figure 1. Immortalization of Bach1-deficient MEFs. (a) Wild-type and Bach1-deficient primary cell cultures sequentially acquired morphologies typical of senescent and immortal cells (scale bar ¼ 100 mm). (b) The rates of spontaneous immortalization of 25 wild-type and 16 Bach1- deficient independent MEF cultures were monitored. (c) Top, the protein levels of Bach1 in primary and immortalized MEFs. Tubulin was used as loading control. N ¼ 3, the error bars indicate the s.d. Bottom, the result of a typical Western blot analysis is shown. (d) The expression levels of p19ARF mRNA were examined in the primary and two independently immortalized wild-type (black bars) and Bach1-deficient (gray bars) MEF cultures (N ¼ 3, the error bars indicate the s.d.). (e) The expression levels of p53 mRNA were compared as in (d). (f) The proliferation rates of immortalized Bach1-deficient and wild-type cells with high or low p19ARF expression were compared. The data represent typical results of three independent experiments. Oncogene (2013) 3231 – 3245 & 2013 Macmillan Publishers Limited Bach1 as a possible target of non-oncogene addiction A Nakanome et al 3233 signal-regulated kinase (ERK). These results suggest that Bach1 is a regulate the inhibition of proliferation induced by cell-to-cell critical factor for Ras-induced transformation and may represent a contact. Because the inactivation of p19ARF appeared to be a target gene of non-oncogene addiction by Ras. random event in immortalization, we selected only the i-MEF cultures that had lost p19ARF expression for the further analyses. RESULTS Bach1 facilitates H-RasV12-induced proliferation and Bach1-deficient MEFs bypass senescence in vitro transformation Senescent MEFs eventually resume proliferation because of the Unlike primary MEFs, i-MEFs can be transformed by single inactivation of p53 and/or p19ARF, resulting in their immortaliza- oncogenes, such as H-RasV12.21 We therefore compared the tion.20 To examine whether Bach1 deficiency would affect this transformation of wild-type and Bach1-deficient i-MEFs by process beyond the premature entry into senescence, we compared H-RasV12. When transduced with H-RasV12,theBach1-deficient the kinetics of immortalization using senescent wild-type and Bach1- i-MEFs produced smaller numbers of colonies in mono-layered deficient MEFs. While senescent cells developed typical phenotypes, culture (Figure 2a). When reconstituted with a Bach1-expressing including flattened morphology and cell cycle arrest, immortalized plasmid, Bach1-deficient i-MEFs formed more colonies (Figure 2a). cells (i-MEFs) regained their typical fibroblastic morphology and
Recommended publications
  • Screening and Identification of Key Biomarkers in Clear Cell Renal Cell Carcinoma Based on Bioinformatics Analysis
    bioRxiv preprint doi: https://doi.org/10.1101/2020.12.21.423889; this version posted December 23, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Screening and identification of key biomarkers in clear cell renal cell carcinoma based on bioinformatics analysis Basavaraj Vastrad1, Chanabasayya Vastrad*2 , Iranna Kotturshetti 1. Department of Biochemistry, Basaveshwar College of Pharmacy, Gadag, Karnataka 582103, India. 2. Biostatistics and Bioinformatics, Chanabasava Nilaya, Bharthinagar, Dharwad 580001, Karanataka, India. 3. Department of Ayurveda, Rajiv Gandhi Education Society`s Ayurvedic Medical College, Ron, Karnataka 562209, India. * Chanabasayya Vastrad [email protected] Ph: +919480073398 Chanabasava Nilaya, Bharthinagar, Dharwad 580001 , Karanataka, India bioRxiv preprint doi: https://doi.org/10.1101/2020.12.21.423889; this version posted December 23, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract Clear cell renal cell carcinoma (ccRCC) is one of the most common types of malignancy of the urinary system. The pathogenesis and effective diagnosis of ccRCC have become popular topics for research in the previous decade. In the current study, an integrated bioinformatics analysis was performed to identify core genes associated in ccRCC. An expression dataset (GSE105261) was downloaded from the Gene Expression Omnibus database, and included 26 ccRCC and 9 normal kideny samples. Assessment of the microarray dataset led to the recognition of differentially expressed genes (DEGs), which was subsequently used for pathway and gene ontology (GO) enrichment analysis.
    [Show full text]
  • Activated Peripheral-Blood-Derived Mononuclear Cells
    Transcription factor expression in lipopolysaccharide- activated peripheral-blood-derived mononuclear cells Jared C. Roach*†, Kelly D. Smith*‡, Katie L. Strobe*, Stephanie M. Nissen*, Christian D. Haudenschild§, Daixing Zhou§, Thomas J. Vasicek¶, G. A. Heldʈ, Gustavo A. Stolovitzkyʈ, Leroy E. Hood*†, and Alan Aderem* *Institute for Systems Biology, 1441 North 34th Street, Seattle, WA 98103; ‡Department of Pathology, University of Washington, Seattle, WA 98195; §Illumina, 25861 Industrial Boulevard, Hayward, CA 94545; ¶Medtronic, 710 Medtronic Parkway, Minneapolis, MN 55432; and ʈIBM Computational Biology Center, P.O. Box 218, Yorktown Heights, NY 10598 Contributed by Leroy E. Hood, August 21, 2007 (sent for review January 7, 2007) Transcription factors play a key role in integrating and modulating system. In this model system, we activated peripheral-blood-derived biological information. In this study, we comprehensively measured mononuclear cells, which can be loosely termed ‘‘macrophages,’’ the changing abundances of mRNAs over a time course of activation with lipopolysaccharide (LPS). We focused on the precise mea- of human peripheral-blood-derived mononuclear cells (‘‘macro- surement of mRNA concentrations. There is currently no high- phages’’) with lipopolysaccharide. Global and dynamic analysis of throughput technology that can precisely and sensitively measure all transcription factors in response to a physiological stimulus has yet to mRNAs in a system, although such technologies are likely to be be achieved in a human system, and our efforts significantly available in the near future. To demonstrate the potential utility of advanced this goal. We used multiple global high-throughput tech- such technologies, and to motivate their development and encour- nologies for measuring mRNA levels, including massively parallel age their use, we produced data from a combination of two distinct signature sequencing and GeneChip microarrays.
    [Show full text]
  • United States Patent ( 10 ) Patent No.: US 10,468,120 B2 Hakozaki Et Al
    US010468120B2 United States Patent ( 10 ) Patent No.: US 10,468,120 B2 Hakozaki et al. (45 ) Date of Patent : * Nov . 5 , 2019 (54 ) METHOD OF GENERATING A 2008/0280844 A1 * 11/2008 Lessnick C12Q 1/6886 HYPERPIGMENTATION CONDITION GENE 514/44 A 2009/0017080 A1 1/2009 Tanner et al. EXPRESSION SIGNATURE 2010/0189669 A1 * 7/2010 Hakozaki 424/60 2010/0292085 A1 * 11/2010 Lum GOIN 33/5067 (71 ) Applicant: The Procter & Gamble Company , 506/7 Cincinnati, OH (US ) 2011/0150798 A1 6/2011 Bacus 2011/0269852 A1 * 11/2011 McDaniel 514/789 ( 72 ) Inventors: Tomohiro Hakozaki, Cincinnati, OH 2012/0149773 A1 * 6/2012 Park A61K 31/203 (US ) ; Wenzhu Zhao , Mason , OH (US ) ; 514/552 Robert Lloyd Binder , Montgomery, 2013/0165470 A1 * 6/2013 Isfort A61K 31/439 OH (US ) ; Jun Xu , Mason , OH (US ) 514/289 (73 ) Assignee : The Procter & Gamble Company , FOREIGN PATENT DOCUMENTS Cincinnati , OH (US ) WO WO 2003/100557 12/2003 WO WO 2005/040416 5/2005 ( * ) Notice : Subject to any disclaimer, the term of this WO 2012011904 A1 1/2012 patent is extended or adjusted under 35 WO 2012116081 A2 8/2012 WO WO2012116081 8/2012 U.S.C. 154 ( b ) by 162 days . WO WO 2014/028572 2/2014 This patent is subject to a terminal dis claimer. OTHER PUBLICATIONS ( 21) Appl. No .: 13 /851,873 Affymetrix HGU133A 2.0 ( release 33 , submitted Oct. 30 , 2012 ) , Affymetrix.com . * Filed : Hakozaki et al. ( 2002 )British Journal of Dermatology 147.1 (2002 ) : ( 22 ) Mar. 27 , 2013 20-31 . * Aoki et al . (British Journal of Dermatology 156.6 (2007 ) : 1214 (65 ) Prior Publication Data 1223 ) .
    [Show full text]
  • Angiogenic Patterning by STEEL, an Endothelial-Enriched Long
    Angiogenic patterning by STEEL, an endothelial- enriched long noncoding RNA H. S. Jeffrey Mana,b, Aravin N. Sukumara,b, Gabrielle C. Lamc,d, Paul J. Turgeonb,e, Matthew S. Yanb,f, Kyung Ha Kub,e, Michelle K. Dubinskya,b, J. J. David Hob,f, Jenny Jing Wangb,e, Sunit Dasg,h, Nora Mitchelli, Peter Oettgeni, Michael V. Seftonc,d,j, and Philip A. Marsdena,b,e,f,1 aInstitute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada; bKeenan Research Centre for Biomedical Science in the Li Ka Shing Knowledge Institute, St. Michael’s Hospital, University of Toronto, Toronto, ON M5B 1T8, Canada; cDonnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E2, Canada; dInstitute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada; eDepartment of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada; fDepartment of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada; gArthur and Sonia Labatt Brain Tumour Research Institute, Hospital for SickKids, University of Toronto, Toronto, ON M5G 1X8, Canada; hDivision of Neurosurgery and Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, University of Toronto, Toronto, ON M5B 1W8, Canada; iDepartment of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115; and jDepartment of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON M5S 3E5, Canada Edited by Napoleone Ferrara, University of California, San Diego, La Jolla, CA, and approved January 24, 2018 (received for review August 28, 2017) Endothelial cell (EC)-enriched protein coding genes, such as endothelial formation in vitro and blood vessel formation in vivo.
    [Show full text]
  • Isolation and Characterization of Lymphocyte-Like Cells from a Lamprey
    Isolation and characterization of lymphocyte-like cells from a lamprey Werner E. Mayer*, Tatiana Uinuk-ool*, Herbert Tichy*, Lanier A. Gartland†, Jan Klein*, and Max D. Cooper†‡ *Max-Planck-Institut fu¨r Biologie, Abteilung Immungenetik, Corrensstrasse 42, D-72076 Tu¨bingen, Germany; and †Howard Hughes Medical Institute, University of Alabama, 378 Wallace Tumor Institute, Birmingham, AL 35294 Contributed by Max D. Cooper, August 30, 2002 Lymphocyte-like cells in the intestine of the sea lamprey, Petro- existence of the adaptive immune system in jawless fishes, myzon marinus, were isolated by flow cytometry under light- the identity of these cells has remained in doubt. The aim of the scatter conditions used for the purification of mouse intestinal present study was to exploit contemporary methods of cell lymphocytes. The purified lamprey cells were morphologically separation to isolate the agnathan lymphocyte-like cells to indistinguishable from mammalian lymphocytes. A cDNA library characterize them morphologically and by the genes they was prepared from the lamprey lymphocyte-like cells, and more express. than 8,000 randomly selected clones were sequenced. Homology searches comparing these ESTs with sequences deposited in the Materials and Methods databases led to the identification of numerous genes homologous Source and Preparation of Cell Suspension. Ammocoete larvae to those predominantly or characteristically expressed in mamma- (8–13 cm long) of the sea lamprey, Petromyzon marinus (from lian lymphocytes, which included genes controlling lymphopoiesis, Lake Huron, MI) were dissected along the ventral side to extract intracellular signaling, proliferation, migration, and involvement the intestine and the associated typhlosole (spiral valve). Cells of lymphocytes in innate immune responses.
    [Show full text]
  • Identification of Proteins That Are Differentially Expressed in Brains
    Journal of Proteomics 139 (2016) 103–121 Contents lists available at ScienceDirect Journal of Proteomics journal homepage: www.elsevier.com/locate/jprot Identification of proteins that are differentially expressed in brains with Alzheimer's disease using iTRAQ labeling and tandem mass spectrometry Benito Minjarez a,1, Karla Grisel Calderón-González a, Ma. Luz Valero Rustarazo b,2, María Esther Herrera-Aguirre a,MaríaLuisaLabra-Barriosa, Diego E. Rincon-Limas c,d, Manuel M. Sánchez del Pino b,3,RaulMenae,4, Juan Pedro Luna-Arias a,⁎ a Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav-IPN), Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, Gustavo A. Madero, C.P. 07360 Ciudad de México, México b Unidad de Proteómica, Centro de Investigación Príncipe Felipe, C/Rambla del Saler 16, 46012 Valencia, España c Department of Neurology, McKnight Brain Institute, University of Florida, Gainesville, FL 32611, USA d Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL 32611, USA e Departamento de Fisiología, Biofísica y Neurociencias, Cinvestav-IPN, Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, Gustavo A. Madero, C.P. 07360 Ciudad de México, México article info abstract Article history: Alzheimer's disease is one of the leading causes of dementia in the elderly. It is considered the result of complex Received 5 November 2015 events involving both genetic and environmental factors. To gain further insights into this complexity, we Received in revised form 26 February 2016 quantitatively analyzed the proteome of cortex region of brains from patients diagnosed with Alzheimer's Accepted 11 March 2016 disease, using a bottom-up proteomics approach.
    [Show full text]
  • 1 Production of Spliced Peptides by the Proteasome Nathalie Vigneron1,2, Vincent Stroobant1,2, Violette Ferrari1,2, Joanna Abi H
    Production of spliced peptides by the proteasome Nathalie Vigneron1,2, Vincent Stroobant1,2, Violette Ferrari1,2, Joanna Abi Habib1,2, Benoit J. Van den Eynde1,2,3* 1Ludwig Institute for Cancer Research, Brussels, Belgium 2de Duve Institute, Université catholique de Louvain, Brussels, Belgium 3WELBIO (Walloon Excellence in Life Sciences and Biotechnology), Brussels, Belgium Running title: Peptide splicing by the proteasome *Author to whom correspondence should be addressed: Dr. Van den Eynde, Ludwig Institute for Cancer Research, de Duve Institute, Université catholique de Louvain, Avenue Hippocrate 75 B1.74.03, B-1200 Brussels, Belgium; Tel.: +32-2-7647580; Fax: +32-2-7647590; E-Mail: [email protected]. Keywords: proteasome, CD8+ cytolytic T lymphocytes, peptide splicing, transpeptidation, antigenic peptides Abstract CD8+ cytolytic T lymphocytes are essential players of anti-tumor immune responses. On tumors, they recognize peptides of about 8-to-10 amino acids that generally result from the degradation of cellular proteins by the proteasome. Until a decade ago, these peptides were thought to solely correspond to linear fragments of proteins that were liberated after the hydrolysis of the peptide bonds located at their extremities. However, several examples of peptides containing two fragments originally distant in the protein sequence challenged this concept and demonstrated that proteasome could also splice peptides together by creating a new peptide bond between two distant fragments. Unexpectedly, peptide splicing emerges as an essential way to increase the peptide repertoire diversity as these spliced peptides were shown to represent up to 25% of the peptides presented on a cell by MHC class I. Here, we review the different steps that led to the discovery of peptide splicing by the proteasome as well as the lightening offered by the recent progresses of mass spectrometry and bioinformatics in the analysis of the spliced peptide repertoire.
    [Show full text]
  • Anti-Inflammatory Role of Curcumin in LPS Treated A549 Cells at Global Proteome Level and on Mycobacterial Infection
    Anti-inflammatory Role of Curcumin in LPS Treated A549 cells at Global Proteome level and on Mycobacterial infection. Suchita Singh1,+, Rakesh Arya2,3,+, Rhishikesh R Bargaje1, Mrinal Kumar Das2,4, Subia Akram2, Hossain Md. Faruquee2,5, Rajendra Kumar Behera3, Ranjan Kumar Nanda2,*, Anurag Agrawal1 1Center of Excellence for Translational Research in Asthma and Lung Disease, CSIR- Institute of Genomics and Integrative Biology, New Delhi, 110025, India. 2Translational Health Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, 110067, India. 3School of Life Sciences, Sambalpur University, Jyoti Vihar, Sambalpur, Orissa, 768019, India. 4Department of Respiratory Sciences, #211, Maurice Shock Building, University of Leicester, LE1 9HN 5Department of Biotechnology and Genetic Engineering, Islamic University, Kushtia- 7003, Bangladesh. +Contributed equally for this work. S-1 70 G1 S 60 G2/M 50 40 30 % of cells 20 10 0 CURI LPSI LPSCUR Figure S1: Effect of curcumin and/or LPS treatment on A549 cell viability A549 cells were treated with curcumin (10 µM) and/or LPS or 1 µg/ml for the indicated times and after fixation were stained with propidium iodide and Annexin V-FITC. The DNA contents were determined by flow cytometry to calculate percentage of cells present in each phase of the cell cycle (G1, S and G2/M) using Flowing analysis software. S-2 Figure S2: Total proteins identified in all the three experiments and their distribution betwee curcumin and/or LPS treated conditions. The proteins showing differential expressions (log2 fold change≥2) in these experiments were presented in the venn diagram and certain number of proteins are common in all three experiments.
    [Show full text]
  • Supplemental Information
    Supplemental information Dissection of the genomic structure of the miR-183/96/182 gene. Previously, we showed that the miR-183/96/182 cluster is an intergenic miRNA cluster, located in a ~60-kb interval between the genes encoding nuclear respiratory factor-1 (Nrf1) and ubiquitin-conjugating enzyme E2H (Ube2h) on mouse chr6qA3.3 (1). To start to uncover the genomic structure of the miR- 183/96/182 gene, we first studied genomic features around miR-183/96/182 in the UCSC genome browser (http://genome.UCSC.edu/), and identified two CpG islands 3.4-6.5 kb 5’ of pre-miR-183, the most 5’ miRNA of the cluster (Fig. 1A; Fig. S1 and Seq. S1). A cDNA clone, AK044220, located at 3.2-4.6 kb 5’ to pre-miR-183, encompasses the second CpG island (Fig. 1A; Fig. S1). We hypothesized that this cDNA clone was derived from 5’ exon(s) of the primary transcript of the miR-183/96/182 gene, as CpG islands are often associated with promoters (2). Supporting this hypothesis, multiple expressed sequences detected by gene-trap clones, including clone D016D06 (3, 4), were co-localized with the cDNA clone AK044220 (Fig. 1A; Fig. S1). Clone D016D06, deposited by the German GeneTrap Consortium (GGTC) (http://tikus.gsf.de) (3, 4), was derived from insertion of a retroviral construct, rFlpROSAβgeo in 129S2 ES cells (Fig. 1A and C). The rFlpROSAβgeo construct carries a promoterless reporter gene, the β−geo cassette - an in-frame fusion of the β-galactosidase and neomycin resistance (Neor) gene (5), with a splicing acceptor (SA) immediately upstream, and a polyA signal downstream of the β−geo cassette (Fig.
    [Show full text]
  • Integrative Genomics Identifies New Genes Associated with Severe COPD and Emphysema Phuwanat Sakornsakolpat1,2, Jarrett D
    Sakornsakolpat et al. Respiratory Research (2018) 19:46 https://doi.org/10.1186/s12931-018-0744-9 RESEARCH Open Access Integrative genomics identifies new genes associated with severe COPD and emphysema Phuwanat Sakornsakolpat1,2, Jarrett D. Morrow1, Peter J. Castaldi1,3, Craig P. Hersh1,4, Yohan Bossé5, Edwin K. Silverman1,4, Ani Manichaikul6 and Michael H. Cho1,4* Abstract Background: Genome-wide association studies have identified several genetic risk loci for severe chronic obstructive pulmonary disease (COPD) and emphysema. However, these studies do not fully explain disease heritability and in most cases, fail to implicate specific genes. Integrative methods that combine gene expression data with GWAS can provide more power in discovering disease-associated genes and give mechanistic insight into regulated genes. Methods: We applied a recently described method that imputes gene expression using reference transcriptome data to genome-wide association studies for two phenotypes (severe COPD and quantitative emphysema) and blood and lung tissue gene expression datasets. We further tested the potential causality of individual genes using multi-variant colocalization. Results: We identified seven genes significantly associated with severe COPD, and five genes significantly associated with quantitative emphysema in whole blood or lung. We validated results in independent transcriptome databases and confirmed colocalization signals for PSMA4, EGLN2, WNT3, DCBLD1, and LILRA3. Three of these genes were not located within previously reported GWAS loci for either phenotype. We also identified genetically driven pathways, including those related to immune regulation. Conclusions: An integrative analysis of GWAS and gene expression identified novel associations with severe COPD and quantitative emphysema, and also suggested disease-associated genes in known COPD susceptibility loci.
    [Show full text]
  • PI31 Is an Adaptor Protein for Proteasome Transport in Axons And
    bioRxiv preprint doi: https://doi.org/10.1101/364463; this version posted January 15, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. PI31 is an adaptor protein for proteasome transport in axons and required for synaptic development and function Kai Liu1, Sandra Jones1, Adi Minis1, Jose Rodriguez1, Henrik Molina2, Hermann Steller1,3* 1Strang Laboratory of Apoptosis and Cancer Biology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA. 2The Rockefeller University Proteomics Resource Center, The Rockefeller University, New York, NY, 10065, USA 3Lead contact *Correspondence: [email protected]. 1 bioRxiv preprint doi: https://doi.org/10.1101/364463; this version posted January 15, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract Protein degradation by the ubiquitin-proteasome system (UPS) is critical for neuronal development, plasticity and function. Neurons utilize microtubule-dependent molecular motors to allocate proteasomes to synapses, but how proteasomes are coupled to motor proteins and how this transport is regulated to meet changing demand for protein breakdown remains largely unknown. We show that the conserved proteasome-binding protein PI31 serves as an adaptor to directly couple proteasomes with dynein light chain proteins (DYNLL1/2). Inactivation of PI31 inhibits proteasome motility in axons and disrupts synaptic protein homeostasis, structure and function. Moreover, phosphorylation of PI31 at a conserved site by p38 MAP kinase promotes binding to DYNLL1/2, and a non-phosphorable PI31 mutant impairs proteasome movement in axons, suggesting a mechanism to regulate loading of proteasomes onto motor proteins.
    [Show full text]
  • Expression and Regulation of Sex Determining Genes in the Mouse
    Expression and regulation of sex determining genes in the mouse. Veronica Mercedes Narvaez Padilla A thesis submitted for the Degree of Doctor of Philosophy 1996 Department of Developmental Genetics Department of Biology National Institute for Medical Research, University College London The Ridgeway, Mill Hill, Gower Street, London, NW7 lAA London, WCIE GET ProQuest Number: 10016705 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. uest. ProQuest 10016705 Published by ProQuest LLC(2016). Copyright of the Dissertation is held by the Author. All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code. Microform Edition © ProQuest LLC. ProQuest LLC 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106-1346 In memory of Pepe and Arturo. ...Many times Fve been alone and many times Fve cried. Anyway you’ll never know the many ways Fve tried... (Lennon & M cC artney) Little darling, it’s being a long cold lonely winter. Little darling, it feels like years since it’s been here. Here comes the sun, here comes the sun and I say It’s alright! (G. Harrison) Contents Contents ...................................................................................................................................................4
    [Show full text]