Echinodermata: Echinoidea: Clypeasteroida: Scutellina) John M
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Bulletin of the United States Fish Commission
CONTRIBUTIONS FROM THE BIOLOGICAL LABORATORY OF THE U. S. FISH COMMISSION AT WOODS HOLE, MASSACHUSETTS. THE ECHINODERMS OE THE WOODS HOLE REGION. BY HUBERT LYMAN CLARK, Professor of Biology Olivet College .. , F. C. B. 1902—35 545 G’G-HTEMrS. Page. Echinoidea: Page. Introduction 547-550 Key to the species 562 Key to the classes 551 Arbacia punctlilata 563 Asteroidea: Strongylocentrotus drbbachiensis 563 Key to the species 552 Echinaiachnius parma 564 Asterias forbesi 552 Mellita pentapora 565 Asterias vulgaris 553 Holothurioidea: Asterias tenera 554 Key to the species 566 Asterias austera 555 Cucumaria frondosa 566 Cribrella sanguinolenta 555 Cucumaria plulcherrkna 567 Solaster endeca 556 Thyone briareus 567 Ophiuroidea: Thyone scabra 568 Key to the species 558 Thyone unisemita 569 Ophiura brevi&pina 558 Caudina arenata 569 Ophioglypha robusta 558 Trocliostoma oolitieum 570 Ophiopholis aculeata 559 Synapta inhaerens 571 Amphipholi.s squamata 560 Synapta roseola 571 _ Gorgonocephalus agassizii , 561 Bibliography 572-574 546 THE ECHINODERMS OF THE WOODS HOLE REGION. By HUBERT LYMAN CLARK, Professor of Biology , Olivet College. As used in this report, the Woods Hole region includes that part of I he New England coast easily accessible in one-day excursions by steamer from the U. S. Fish Commission station at Woods Hole, Mass. The northern point of Cape Cod is the limit in one direction, and New London, Conn., is the opposite extreme. Seaward the region would naturally extend to about the 100- fathom line, but for the purposes of this report the 50-fathom line has been taken as the limit, the reason for this being that as the Gulf Stream is approached we meet with an echinodcrm fauna so totally different from that along shore that the two have little in common. -
Preliminary Mass-Balance Food Web Model of the Eastern Chukchi Sea
NOAA Technical Memorandum NMFS-AFSC-262 Preliminary Mass-balance Food Web Model of the Eastern Chukchi Sea by G. A. Whitehouse U.S. DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration National Marine Fisheries Service Alaska Fisheries Science Center December 2013 NOAA Technical Memorandum NMFS The National Marine Fisheries Service's Alaska Fisheries Science Center uses the NOAA Technical Memorandum series to issue informal scientific and technical publications when complete formal review and editorial processing are not appropriate or feasible. Documents within this series reflect sound professional work and may be referenced in the formal scientific and technical literature. The NMFS-AFSC Technical Memorandum series of the Alaska Fisheries Science Center continues the NMFS-F/NWC series established in 1970 by the Northwest Fisheries Center. The NMFS-NWFSC series is currently used by the Northwest Fisheries Science Center. This document should be cited as follows: Whitehouse, G. A. 2013. A preliminary mass-balance food web model of the eastern Chukchi Sea. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-AFSC-262, 162 p. Reference in this document to trade names does not imply endorsement by the National Marine Fisheries Service, NOAA. NOAA Technical Memorandum NMFS-AFSC-262 Preliminary Mass-balance Food Web Model of the Eastern Chukchi Sea by G. A. Whitehouse1,2 1Alaska Fisheries Science Center 7600 Sand Point Way N.E. Seattle WA 98115 2Joint Institute for the Study of the Atmosphere and Ocean University of Washington Box 354925 Seattle WA 98195 www.afsc.noaa.gov U.S. DEPARTMENT OF COMMERCE Penny. S. Pritzker, Secretary National Oceanic and Atmospheric Administration Kathryn D. -
Biodiversity Journal, 8 (2): 315-389
Biodiversity Journal, 2017, 8 (2): 315–389 MONOGRAPH Revision of the genus Amphiope L. Agassiz, 1840 (Echinoidea Astriclypeidae) with the description of a new species from the Miocene of France Paolo Stara1& Enrico Borghi2 1Centro Studi di Storia Naturale del Mediterraneo - Museo di Storia Naturale Aquilegia and Geomuseo Monte Arci, Masullas, Oristano, Sardinia, Italy; e-mail: [email protected] 2Società Reggiana di Scienze Naturali, Via Tosti 1, 42100 Reggio Emilia, Italy; e-mail: [email protected] ABSTRACT The taxonomy of Amphiope L. Agassiz, 1840 (Echinoidea, Astriclypeidae), an echinoid dis- tributed in the Oligo-Miocene of Central and Southern Europe, is largely unresolved since the description of most species attributed to this genus was based only on the external mor- phological features, while important characters, such as the oral plating and the internal sup- port system, were poorly illustrated or completely omitted. Additionally, the type material of some species was missing or badly preserved and geographical/stratigraphical information about the type-locality was unclear. This was the case also for Amphiope bioculata (Des Moulins, 1837), the type species of the genus. The poor definition of the earlier described species of Amphiope prevented comparison with fossils from other localities and ages, sub- sequently attributed to this genus. A large part of the earlier species of Amphiope, key-taxa for the resolution of the complex taxonomy of this genus, are herein revised by modern meth- ods. For this purpose, the type material available in public institutions has been re-examined and, when possible, new topo-typic material has been collected. As a result, the morphological description of A. -
Florida Fossil Invertebrates 2 (Pdf)
FLORIDA FOSSIL INVERTEBRATES Parl2 JANUARY 2OO2 SINGLE ISSUE: $z.OO OLIGOCENE AND MIOCENE ECHINOIDS CRAIG W. OYEN1 and ROGER W. PORTELL, lDeparlment of Geography and Earth Science Shippensburg U niversity 1871 Old Main Drive Shippensburg, PA 17257 -2299 e-mail: cwoyen @ ark.ship.edu 2Florida Museum of Natural History University of Florida P. O. Box 117800 Gainesville, FL 32611 -7800 e-mail: portell @flmnh.ufl.edu A PUBLICATTON OF THE FLORTDA PALEONTOLOGTCAL SOCIETY tNC. r,q)-.'^ .o$!oLo"€n)- .l^\ z*- il--'t- ' .,vn\'9t\ x\\I ^".{@^---M'Wa*\/i w*'"'t:.&-.d te\ 3t tu , l ". (. .]tt f-w#wlW,/ \;,6'#,/ FLORIDA FOSSIL INVERTEBRATES tssN 1536-5557 Florida Fossil lnvertebrafes is a publication of the Florida Paleontological Society, Inc., and is intended as a guide for identification of the many, common, invertebrate fossils found around the state. lt will deal solely with named species; no new taxonomic work will be included. Two parts per year will be completed with the first three parts discussing echinoids. Part 1 (published June 2001) covered Eocene echinoids, Parl2 (January 2002 publication) is about Oligocene and Miocene echinoids, and Part 3 (June 2002 publication) will be on Pliocene and Pleistocene echinoids. Each issue will be image-rich and, whenever possible, specimen images will be at natural size (1x). Some of the specimens figured in this series soon will be on display at Powell Hall, the museum's Exhibit and Education Center. Each part of the series will deal with a specific taxonomic group (e.9., echinoids) and contain a brief discussion of that group's life history along with the pertinent geological setting. -
Assessment of Red King Crabs Following Offshore Placer Gold Mining in Norton Sound
Assessment of Red King Crabs Following Offshore Placer Gold Mining in Norton Sound Stephen C. Jewett Reprinted from the Alaska Fishery Research Bulletin Vol. 6 No. 1, Summer 1999 The Alaska Fishery Research Bulletin can found on the World Wide Web at URL: http://www.state.ak.us/adfg/geninfo/pubs/afrb/afrbhome.htm . Alaska Fishery Research Bulletin 6(1):1–18. 1999. Articles Copyright © 1999 by the Alaska Department of Fish and Game Assessment of Red King Crabs Following Offshore Placer Gold Mining in Norton Sound Stephen C. Jewett ABSTRACT: In a 4-year study I assessed impacts of offshore placer gold mining on adult red king crabs Paralithodes camtschaticus in the northeastern Bering Sea near Nome, Alaska. From June to October 1986– 1990, nearshore mining with a bucket-line dredge to depths of 9 to 20 m removed 1.5 km2 and about 5.5 × 106 m3 of substrate. Crabs were offshore of the study area when mining occurred but were in the mining vicinity during the ice-covered months of March and April, which was the primary time data on crab abundance and prey were obtained. Comparisons between mined and unmined stations revealed that mining had a negligible effect on crabs. Crab catches, size, sex, quantity, and contribution of most prey groups in stomachs were similar between mined and unmined areas. However, a few ROV observations indicated that crab abundance was lower in mined areas. Also, plants (mainly eelgrass Zostera marina) and hydroids, which accumulated in mining depressions, were more common in crab stomachs from mined areas. -
Southeastern Part of the Texas Coastal Plain
DEPARTMENT OF THE INTERIOR UNITED STATES GEOLOGICAL SURVEY GEORGE OTIS SMITH, DIRECTOR WATER-SUPPLY PAPER 335 GEOLOGY AND UNDERGROUND WATERS OF THE SOUTHEASTERN PART OF THE TEXAS COASTAL PLAIN BY ALEXANDER DEUSSEN WASHINGTON GOVERNMENT PRINTING OFFICE 1914 CONTENTS. Page. Introduction.............................................................. 13 Physiography.............................................................. 14 General character..................................................... 14 Topographic features.................................................. 16 Relief............................................................ 16 Coast prairie.................................................. 16 Kisatchie Wold............................................... 16 Nacogdoches Wold............................................ 16 Corsicana Cuesta and White Rock Escarpment................... 18 Bottom lands................................................. 18 Mounds and pimple plains...................................... 19 Drainage.......................................................... 19 Timber............................................................... 21 General geologic features................................................... 21 Relation of geology to the occurrence of underground water............... 21 Principles of stratigraphy.............................................. 22 Erosion and sedimentation.......................................... 22 The geologic column.............................................. 22 Subdivision -
Variation in Growth Pattern in the Sand Dollar, Echinarachnius Parma, (Lamarck)
University of New Hampshire University of New Hampshire Scholars' Repository Doctoral Dissertations Student Scholarship Summer 1964 VARIATION IN GROWTH PATTERN IN THE SAND DOLLAR, ECHINARACHNIUS PARMA, (LAMARCK) PRASERT LOHAVANIJAYA University of New Hampshire, Durham Follow this and additional works at: https://scholars.unh.edu/dissertation Recommended Citation LOHAVANIJAYA, PRASERT, "VARIATION IN GROWTH PATTERN IN THE SAND DOLLAR, ECHINARACHNIUS PARMA, (LAMARCK)" (1964). Doctoral Dissertations. 2339. https://scholars.unh.edu/dissertation/2339 This Dissertation is brought to you for free and open access by the Student Scholarship at University of New Hampshire Scholars' Repository. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of University of New Hampshire Scholars' Repository. For more information, please contact [email protected]. This dissertation has been 65-950 microfilmed exactly as received LOHAVANIJAYA, Prasert, 1935- VARIATION IN GROWTH PATTERN IN THE SAND DOLLAR, ECHJNARACHNIUS PARMA, (LAMARCK). University of New Hampshire, Ph.D., 1964 Zoology University Microfilms, Inc., Ann Arbor, Michigan VARIATION IN GROWTH PATTERN IN THE SAND DOLLAR, EC’HINARACHNIUS PARMA, (LAMARCK) BY PRASERT LOHAVANUAYA B. Sc. , (Honors), Chulalongkorn University, 1959 M.S., University of New Hampshire, 1961 A THESIS Submitted to the University of New Hampshire In Partial Fulfillment of The Requirements for the Degree of Doctor of Philosophy Graduate School Department of Zoology June, 1964 This thesis has been examined and approved. May 2 2, 1 964. Date An Abstract of VARIATION IN GROWTH PATTERN IN THE SAND DOLLAR, ECHINARACHNIUS PARMA, (LAMARCK) This study deals with Echinarachnius parma, the common sand dollar of the New England coast. Some problems concerning taxonomy and classification of this species are considered. -
The Architecture of Permian Glossopterid Ovuliferous Reproductive Organs
Alcheringa: An Australasian Journal of Palaeontology ISSN: 0311-5518 (Print) 1752-0754 (Online) Journal homepage: https://www.tandfonline.com/loi/talc20 The architecture of Permian glossopterid ovuliferous reproductive organs Stephen Mcloughlin & Rose Prevec To cite this article: Stephen Mcloughlin & Rose Prevec (2019) The architecture of Permian glossopterid ovuliferous reproductive organs, Alcheringa: An Australasian Journal of Palaeontology, 43:4, 480-510, DOI: 10.1080/03115518.2019.1659852 To link to this article: https://doi.org/10.1080/03115518.2019.1659852 Published online: 01 Oct 2019. Submit your article to this journal Article views: 138 View related articles View Crossmark data Citing articles: 1 View citing articles Full Terms & Conditions of access and use can be found at https://www.tandfonline.com/action/journalInformation?journalCode=talc20 The architecture of Permian glossopterid ovuliferous reproductive organs STEPHEN MCLOUGHLIN and ROSE PREVEC MCLOUGHLIN,S.&PREVEC, R. 20 September 2019. The architecture of Permian glossopterid ovuliferous reproductive organs. Alcheringa 43, 480–510. ISSN 0311-5518 A historical account of research on glossopterid ovuliferous reproductive structures reveals starkly contrasting interpretations of their architecture and homologies from the earliest investigations. The diversity of interpretations has led to the establishment of a multitude of genera for these fossil organs, many of the taxa being synonymous. We identify a need for taxonomic revision of these genera to clearly demarcate taxa before they can be used effectively as palaeobiogeographic or biostratigraphic indices. Our assessment of fructification features based on extensive studies of adpression and permineralized fossils reveals that many of the character states for glossopterids used in previous phylogenetic analyses are erroneous. -
Echinodermata: Echinoidea: Clypeasteroida: Scutellina) John M
Gulf of Mexico Science Volume 17 Article 4 Number 1 Number 1 1999 Eccentricity of the Apical System and Peristome of Sand Dollars (Echinodermata: Echinoidea: Clypeasteroida: Scutellina) John M. Lawrence University of South Florida Christopher M. Pomory University of South Florida DOI: 10.18785/goms.1701.04 Follow this and additional works at: https://aquila.usm.edu/goms Recommended Citation Lawrence, J. M. and C. M. Pomory. 1999. Eccentricity of the Apical System and Peristome of Sand Dollars (Echinodermata: Echinoidea: Clypeasteroida: Scutellina). Gulf of Mexico Science 17 (1). Retrieved from https://aquila.usm.edu/goms/vol17/iss1/4 This Article is brought to you for free and open access by The Aquila Digital Community. It has been accepted for inclusion in Gulf of Mexico Science by an authorized editor of The Aquila Digital Community. For more information, please contact [email protected]. Lawrence and Pomory: Eccentricity of the Apical System and Peristome of Sand Dollars ( Gulf of Mexico Science, 1999(1), pp. 35-39 Eccentricity of the Apical System and Peristome of Sand Dollars (Echinodermata: Echinoidea: Clypeasteroida: Scutellina) jOHN M. LAWRENCE AND CHRISTOPHER M. POMORY Eccentricity, location of structures away from a central position, is associated with directional movement. Although sand dollars have directional movement, only eccentricity of the anus is apparent. Eccentricity of the apical system and peristome is less apparent. We have found the apical system and the peristome are statistically significantly slightly anterior in Mellita tenuis, Mellita quinquiesper forata, Mellita isometra, and Encope aberrans. The apical system of Leodia sexiesper forata is central and that of Echinarachnius parma is anterior, whereas the peri stome of both is statistically significantly slightly posterior. -
Short-Term Repeatability in the Self-Righting Behaviour of a Cold
Journal of the Marine Roll, right, repeat: short-term repeatability in Biological Association of the United Kingdom the self-righting behaviour of a cold-water sea cucumber cambridge.org/mbi Jeff C. Clements1,* , Ellen Schagerström2,3 , Sam Dupont2, Fredrik Jutfelt1 and Kirti Ramesh2 Original Article 1Department of Biology, Norwegian University of Science and Technology, Høgskoleringen 5, 7491 Trondheim, Norway; 2Department of Biological and Environmental Sciences, University of Gothenburg, Sven Lovén Centre for Cite this article: Clements JC, Schagerström Marine Infrastructure – Kristineberg, Kristineberg 566, 45178 Fiskebäckskil, Sweden and 3Swedish Mariculture E, Dupont S, Jutfelt F, Ramesh K (2020). Roll, right, repeat: short-term repeatability in the Research Centre (SWEMARC), University of Gothenburg, P.O. Box 463, 405 30 Gothenburg, Sweden self-righting behaviour of a cold-water sea cucumber. Journal of the Marine Biological Abstract Association of the United Kingdom 1–6. https:// doi.org/10.1017/S0025315419001218 For many benthic marine invertebrates, inversion (being turned upside-down) is a common event that can increase vulnerability to predation, desiccation and unwanted spatial transport, Received: 15 August 2019 and requires behavioural ‘self-righting’ to correct. While self-righting behaviour has been Revised: 9 December 2019 – Accepted: 18 December 2019 studied for more than a century, the repeatability (R) the portion of behavioural variance due to inter-individual differences – of this trait is not well understood. Heritability and Key words: the evolution of animal behaviour rely on behavioural repeatability. Here, we examined the behavioural repeatability; Echinodermata; self-righting technique of a cold-water holothurid, Parastichopus tremulus, and assessed the epibenthic; Holothuriidae; predator avoidance; repeatability of this behaviour. -
A Phylogenomic Resolution of the Sea Urchin Tree of Life
bioRxiv preprint doi: https://doi.org/10.1101/430595; this version posted September 29, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. A phylogenomic resolution of the sea urchin tree of life Nicolás Mongiardino Koch ([email protected]) – Corresponding author Department of Geology and Geophysics, Yale University, New Haven CT, USA Simon E. Coppard ([email protected]) Department of Biology, Hamilton College, Clinton NY, USA. Smithsonian Tropical Research Institute, Balboa, Panama. Harilaos A. Lessios ([email protected]) Smithsonian Tropical Research Institute, Balboa, Panama. Derek E. G. Briggs ([email protected]) Department of Geology and Geophysics, Yale University, New Haven CT, USA. Peabody Museum of Natural History, Yale University, New Haven CT, USA. Rich Mooi ([email protected]) Department of Invertebrate Zoology and Geology, California Academy of Sciences, San Francisco CA, USA. Greg W. Rouse ([email protected]) Scripps Institution of Oceanography, UC San Diego, La Jolla CA, USA. bioRxiv preprint doi: https://doi.org/10.1101/430595; this version posted September 29, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Abstract Background: Echinoidea is a clade of marine animals including sea urchins, heart urchins, sand dollars and sea biscuits. -
Short Contributions to the Geology of Georgia
SHORT CONTRIBUTIONS TO THE GEOLOGY OF GEORGIA ATLANTA 1978 BULLITIN 93 For convenience in selecting our reports from your bookshelves, they will be color-keyed across the spine by subject as follows: Red Valley & Ridge mapping and structural geology Dk. Purple Piedmont & Blue Ridge mapping and struc- tural geology Maroon Coastal Plain mapping and stratigraphy Lt. Green Paleontology Lt. Blue Coastal Zone studies Dk. Green Geochemical and Geophysical studies Dk. Blue Hydrology Olive Economic geology Mining directory Yellow Environmental studies Engineering studies Dk. Orange Bibliographies and lists of publications Brown Petroleum and natural gas Black Field trip guidebooks Dk. Brown Collections of papers Colors have been selected at random, and will be augmented as new subjects are published. ---- -·-- ------·- -~-~-·-·--· ·- .. SHORT CONTRIBUTIONS TO THE GEOLOGY OF GEORGIA STATE OF GEORGIA Department of Natural Resources Joe D. Tanner. Commissioner Environmental Protection Division J. leonard Ledbetter. Director Georgia Geologic Survey John R. George, Acting State Geologist ATLANTA 1978 CONTENTS Page The Huber Formation of Eastern Central Georgia by B. F. BUIE . 1 Figure 1. Contact of Huber Formation overlain unconformably by Clinchfield Sand . 2 Figure 2. Close-up view of fossil zone in clayey sand, near top of Huber Formation . 2 Figure 3. Schematic diagram of Cretaceous and Tertiary strata, Macon-Gordon area, Georgia . 3 Table 1. Detailed stratigraphic section of Huber Formation 4 Figure 4. Road cut exposure of updip Huber Formation 5 Figure 5. Photograph of measured section (Table 1) . 5 Table 2. Characteristics of kaolins of the Cretaceous beds undifferentiated and Huber Formation . 6 Figure 6. Contrast of fracture form in Tertiary and Cretaceous kaolin 6 Figure 7.