Short Contributions to the Geology of Georgia

Total Page:16

File Type:pdf, Size:1020Kb

Short Contributions to the Geology of Georgia SHORT CONTRIBUTIONS TO THE GEOLOGY OF GEORGIA ATLANTA 1978 BULLITIN 93 For convenience in selecting our reports from your bookshelves, they will be color-keyed across the spine by subject as follows: Red Valley & Ridge mapping and structural geology Dk. Purple Piedmont & Blue Ridge mapping and struc- tural geology Maroon Coastal Plain mapping and stratigraphy Lt. Green Paleontology Lt. Blue Coastal Zone studies Dk. Green Geochemical and Geophysical studies Dk. Blue Hydrology Olive Economic geology Mining directory Yellow Environmental studies Engineering studies Dk. Orange Bibliographies and lists of publications Brown Petroleum and natural gas Black Field trip guidebooks Dk. Brown Collections of papers Colors have been selected at random, and will be augmented as new subjects are published. ---- -·-- ------·- -~-~-·-·--· ·- .. SHORT CONTRIBUTIONS TO THE GEOLOGY OF GEORGIA STATE OF GEORGIA Department of Natural Resources Joe D. Tanner. Commissioner Environmental Protection Division J. leonard Ledbetter. Director Georgia Geologic Survey John R. George, Acting State Geologist ATLANTA 1978 CONTENTS Page The Huber Formation of Eastern Central Georgia by B. F. BUIE . 1 Figure 1. Contact of Huber Formation overlain unconformably by Clinchfield Sand . 2 Figure 2. Close-up view of fossil zone in clayey sand, near top of Huber Formation . 2 Figure 3. Schematic diagram of Cretaceous and Tertiary strata, Macon-Gordon area, Georgia . 3 Table 1. Detailed stratigraphic section of Huber Formation 4 Figure 4. Road cut exposure of updip Huber Formation 5 Figure 5. Photograph of measured section (Table 1) . 5 Table 2. Characteristics of kaolins of the Cretaceous beds undifferentiated and Huber Formation . 6 Figure 6. Contrast of fracture form in Tertiary and Cretaceous kaolin 6 Figure 7. Scanning electron microscope (SEM) photograph of a typical specimen of Tertiary (Claiborne) kaolin (12,000X) . 7 Figure 8. SEM photograph of same specimen as in Figure 6 (60,000X) 7 Anomalous Distribution of Sinks in the Upper Little River Watershed: Tift, Turner and Worth Counties, Georgia by R. E. CARVER 8 Figure 1. Index map showing the location of the upper Little River watershed . 8 Figure 2. Outline map of the upper Little River watershed showing the location of sinks . 9 Table 1. Size distribution of sinks in the upper Little River watershed . 9 Table 2. Distribution of sinks in the upper Little River watershed 10 Stratigraphic Significance of Heavy Minerals in Atlantic Coastal Plain Sediments of Georgia by R. E. CARVER and R. M. SCOTT . 11 Table 1. Analyses of non-opaque, non-micaceous heavy mineral fraction of Holocene and Pleistocene Atlantic Coastal Plain sands . 12 Table 2. Correlation of heavy mineralogy with age of sediment 13 Table 3. Analyses of non-opaque, non-micaceous heavy mineral fraction of Eocene and Cretaceous Atlantic Coastal Plain sands . 14 Soil Geochemistry of the Franklin-Creighton Gold Mine, Cherokee County, Georgia by R. B. COOK . 15 Figure 1. Land lot map of the Franklin-Creighton Gold Mine and grid area . 16 Figure 2. Grid area map with underground workings projected vertically to surface . 17 Figure 3. Contour map of "B" horizon soil gold content 18 Table 1. Data for nine ore zones within the Franklin vein . 19 Figure 4. Contour map of "B" horizon soil copper content 20 CONTENTS - Continued Page Ore mineralogy of West-Central Georgia Massive Sulfide Deposits by R. B. COOK . 22 Figure 1. Sphalerite embayment into pyrite . 24 Figure 2. Sphalerite deeply embaying pyrite . 24 Figure '3. Apparent core and rim replacement of cataclastically deformed pyrite by sphalerite . 24 Figure 4. Cataclastically deformed pyrite "healed" by chalcopyrite 24 Figure 5. Euhedral dolomite partially replaced by chalcopyrite 27 Figure 6. Dolomite replacement by chalcopyrite 27 Figure 7. Pyrite replacement by amphibole 28 Figure 8. Skeletal sphalerite crystal in albite . 28 Figure 9. Cataclastically deformed magnetite with gahnite . 28 Figure 10. Clastic quartz grain bounded by deformed pyrite 28 Figure 11. Clastic feldspar grain veined by pyrrhotite . 29 Figure 12. Extensive replacement of wall rock silicates by pyrrhotite 29 Shear Zones in the Corbin Gneiss of Georgia by J. 0. COSTELLO . 32 Figure 1. Generalized areal extent of the Corbin gneiss . 32 Figure 2. Generalized geologic map of the Salem Church Anticlinorium and Murphy Syncline . 33 Figure 3. Allatoona Dam Quadrangle showing the Corbin gneiss "inclusions" and sample locations 34 Plate I. Slab of sheared Corbin gneiss . 34 Plate II. Outcrop of sheared Corbin gneiss 34 Plate III. Photomicrograph of sheared Corbin gneiss 35 Plate IV. Photomicrograph of sheared Corbin gneiss 35 Plate V. Outcrop of Corbin gneiss on Shut-in Creek 35 Plate VI. Igneous contact between megacrystic Corbin gneiss and a finer grained gneissic rock . 36 Plate VII. Unconformable contact between porphyroclastic Corbin gneiss and arkosic conglomerates of the Pinelog Formation . 36 Plate VIII. Syncline with a core of meta-arkosic rocks enclosed with Corbin gneiss . 36 The Geology and Ground Water of the Gulf Trough by CAROL GELBAUM . 38 Figure 1. Location map of GGS wells used for this report . 38 Figure 2. Potentiometric map of the principal artesian aquifer 40 Figure 3. Cross-section A-A'. 41 Figure 4. Cross-section B-B'. 42 Figure 5. Fence diagram of the southwestern portions of the Gulf Trough . 44 Table 1. List of GGS wells selected for this study . 48 ii CONTENTS - Continued Page The Sandy Springs Group and Related Rocks of the Georgia Piedmont­ Nomenclature and Stratigraphy by M. W. HIGGINS and K. I. McCONNELL 50 Figure 1. Landsat image showing the topographic expression of the Sandy Springs Group . 50 Table 1. Stratigraphic units of the Sandy Springs Group . 50 Figure 2. Diagrammatic stratigraphic column of the Sandy Springs Group. 51 Figure 3. County outline map of Georgia showing known outcrop area of the Sandy Springs Group . 51 Figure 4. The type locality for the Powers Ferry Formation . 52 Figure 5. The type locality for the Mableton Amphibolite Member 52 Figure 6. The type locality for the Chattahoochee Palisades Quartzite 53 Figure 7. The type locality for the Factory Shoals Formation 53 Figure 8. The type locality for the Rottenwood Creek Quartzite 54 Figure 9. The type locality for the Long Island Creek Gneiss . 54 Table 2 Correlation Chart . 55 Stratigraphy of the Tobacco Road Sand- A New Formation by P. F. HUDDLESTUN and J. H. HETRICK . 56 Figure 1. Location map of Tobacco Road Sand . 56 Figure 2. Outcrop belt of Jacksonian deposits 57 Figure 3. Section of Tobacco Road Sand exposed at type locality in Richmond County, Georgia . 60 Figure 4. Stratigraphic cross-section in Burke and Richmond County, Georgia . 62 Figure 5. Stratigraphic and columnal cross-section in Washington County, Georgia . 64 Figure 6. Section of Tobacco Road Sand exposed in Oakey Woods Wildlife Management Area, Houston County, Georgia . 66 Figure 7. 68 Figure 8. Block diagram showing inferred development of Tobacco Road sedimentation and paleogeography . 70 Appendix List of cited localities and cores . 77 A Gravity Survey of the Dalton, Georgia Area by S. A. GUINN and L. T. LONG . 78 Figure 1. Location Map . 78 Figure 2. Simple Bouger gravity map and geologic map 79 Figure 3. Simple Bouger gravity map of Georgia. 79 Figure 4. 80 Figure 5. 81 Figure 6. Gravity profile A-A'. 81 iii CONTENTS - Continued Page The Alto Allochthon: A Major Tectonic Unit of the Northeast Georgia Piedmont by R. D. HATCHER . 83 Figure 1. Generalized geologic map showing the location of the Alto Allochthon . ... 83 Figure 2. Detailed geologic map of a portion of the Tugaloo Lake Quadrangle, South Carolina- Georgia . 84 Structural and Lithologic Controls of Sweetwater Creek in Western Georgia by K. I. McCONNELL and C. E. ABRAMS . 87 Figure 1. Drainage basin of Sweetwater Creek . 87 Figure 2. Geologic map of the Sweetwater Creek drainage basin 88 Figure 3. Equal-area projection of poles to foliation . 89 Figure 4. Equal-area projection of poles to jointing in the Austell gneiss 89 Figure 5. Relationship of Snake Creek and the Dog River to the Austell-Frolona antiform . 90 Figure 6. Equal-area projection of poles to jointing in the southeastern section of Sweetwater Creek . 91 Figure 7. Rose diagrams of foliation, jointing and stream direction 91 A Thermal Reconnaissance of Georgia: Heat Flow and Radioactive Heat Generation by D. L. SMITH, R. G. GREGORY and M. J. GARVEY . 93 Figure 1. Distribution of heat flow values in and adjacent to Georgia. 94 Table 1. Temperature gradient, mean harmonic thermal conductivity values and surface heat flow values . 95 Figure 2. Temperature profiles recorded in Georgia boreholes 96 Table 2. Average abundances of radioactive elements and heat generation values for 1 kilogram composite samples of surficial rocks in Georgia . 97 Figure 3. Distribution of sample locations for radioactive heat generation measurements and generalized contour lines of average values . ... 98 Figure 4. Plot of surficial heat flow and radioactive heat generation for Georgia and surrounding areas . 99 Figure 5. Plot of temperature calculations for the Georgia subsurface . 101 Table 3. Temperature calculations for the Georgia subsurface . 102 iv THE HUBER FORMATION OF EASTERN CENTRAL GEORGIA B. F. Buie Department of Geology Florida State University Tallahassee, Florida 32306 ABSTRACT The term "Huber Formation" is proposed for all of the known that these physical differences correlate to a large post-Cretaceous pre-Jackson strata in the kaolin mining degree with the age of the kaolin, Cretaceous or Tertiary. districts of Georgia, northeast of .the Ocmulgee River. This Accordingly, recognition of the Huber Formation will term is justified for convenience in referring to a sequence contribute to the solution of some of the prospecting, of strata having incompletely known age, but occurring evaluation, and mining problems. between two recognizable unconformities and constituting The portion of Georgia referred to in this paper is a mappable unit.
Recommended publications
  • Download the Scanned
    'fnp AtvrERrcAN MrxERALocrsr JOURNAL OF THE MINERALOGICAL SOCIETY OF AMERICA Vor,. 8 JUNE, 1923 No.5 MINERALOGRAPHY AS AN AID TO MILLING1 Brrrs TsousoN,University of Toronto The accurate determination of the opaque minerals present in an ore is very often of prime importance to the mill-man if he would work out the problem of separation intelligently. It is sufficiently obvious that a chemical analysis or an assay will only give him data as to the elements present and will leave him more or lessin the dark as to the minerals representedin the ore. Since it has been found that certain sulfidesare more amenable to flota- tion methods than others, the value of accurate mineralogical determination of the ores would appear to be particularly necessary 'in this form of milling. However, it should also be quite evident that any milling problem would be benefited at its inception by a careful study of the mineral content of the ore, the approximate quantitative proportions of the minerals present, and their mutual inter-relationships. As far as the writer is aware the only satisfactory method for examining these ores microscopically is by means of , polished sections in reflected light. This branch of Mineralogy, known variously as Mineralography or Mineragraphy, may also be applied to the microscopic study of mill-products in the difierent stages of separation. Where the fragmental ma-terial is fairly coarse a thin layer of it may be set in melted sealing-wax and polished in the ordinary way. If the material is fine enough to pass through a 4S-meshscreen, before polishing, it must be mixed with a combination of melted sealing-wax and balsam.
    [Show full text]
  • The Development and Application of Destressing
    The Development and Application of Destressing Techniques in the Mines of INCO Limited, Sudbury, Ontario. By J. Denis P. O'Donnell Sr. Laurentian University SUDBURY. Ontario. A thesis submitted to the School of Graduatr Studies in partial fulfilrnent of the requirements for the Degree of Master of Science. Apr. Yd. 1999 APPDEMCAoc O Copyright by J. Denis P. O'Donnell Sr. 1999 National Library Bibliothèque nationale I*I of Canada du Canada Acquisitions and Acquisitions et Bibliographie Services services bibliographiques 395 Wellington Street 395, nie Wellington Ottawa ON KIA ON4 Ottawa ON K 1A ON4 Canada Canada Your fi& Votre réUnmai Ow fi/e Notre reierence The author has granted a non- L'auteur a accordé une licence non exclusive licence allowuig the exclusive permettant à la National Library of Canada to Bibliothèque nationale du Canada de reproduce, loan, distribute or sel1 reproduire, prêter, distribuer ou copies of ths thesis in microform, vendre des copies de cette thèse sous paper or electronic formats. la forme de microfiche/film, de reproduction sur papier ou sur format électronique. The author retains ownership of the L'auteur conserve la propriété du copyright in this thesis. Neither the droit d'auteur qui protège cette thèse. thesis nor substantial extracts from it Ni la thèse ni des extraits substantiels may be printed or otherwise de celle-ci ne doivent être imprimés reproduced without the author's ou autrement reproduits sans son permission. autorisation. iii Acknowledgements The destressing project. the research. and compilation of this thesis was carrird out with the help and encouragement of a number of people.
    [Show full text]
  • Seismic Activity in the Northern Ontario Portion of the Canadian Shield: Annual Progress Report for the Period January 01 – December 31, 2014
    Seismic Activity in the Northern Ontario Portion of the Canadian Shield: Annual Progress Report for the Period January 01 – December 31, 2014 NWMO-TR-2015-21 December 2015 J. Adams1 J.A. Drysdale1 S. Halchuk1 P. Street1 V. Peci2 1 Canadian Hazards Information Service, Geological Survey of Canada Natural Resources Canada Government of Canada 2 V.Peci under contract Nuclear Waste Management Organization 22 St. Clair Avenue East, 6th Floor Toronto, Ontario M4T 2S3 Canada Tel: 416-934-9814 Web: www.nwmo.ca i Seismic Activity in the Northern Ontario Portion of the Canadian Shield: Annual Progress Report for the Period January 01 – December 31, 2014 NWMO-TR-2015-21 December 2015 J. Adams1 J.A. Drysdale1 S. Halchuk1 P. Street1 V. Peci2 1 Canadian Hazards Information Service Geological Survey of Canada, Natural Resources Canada Government of Canada 2 V. Peci under contract This report has been prepared under contract to NWMO. The report has been reviewed by NWMO, but the views and conclusions are those of the authors and do not necessarily represent those of the NWMO. All copyright and intellectual property rights belong to NWMO. ii Document History Seismic Activity in the Northern Ontario Portion of the Canadian Shield: Title: Annual Progress Report for the Period January 01 – December 31, 2014 Report Number: NWMO-TR-2015-21 Revision: R000 Date: December December 2015 Canadian Hazards Information Service, Geological Survey of Canada, Natural Resources Canada, Government of Canada Authored by: J. Adams, J.A. Drysdale, S. Halchuk, P. Street and V. Peci, Verified by: J.A. Drysdale Approved by: J Adams Nuclear Waste Management Organization Reviewed by: Richard Crowe Accepted by: Mark Jensen iii ABSTRACT Title: Seismic Activity in the Northern Ontario Portion of the Canadian Shield: Annual Progress Report for the Period January 01 – December 31, 2014 Report No.: NWMO-TR-2015-21 Author(s): J.
    [Show full text]
  • 1985, November
    Publications Editor Trialngle Peter vom Scheidt Writer In this issue Frank Pagnucco Published by the Public Affairs Fun is first Department of Inco Limited, Copper Cliff, A sense of family is what makes the Salto Gymnastics Ontario PPM INO - Phone 705-682-5425 Club special. 4 Creighton deep On the cover Innovative techniques and equipment allow development of orebody below 7,000 level to be Our stylistic version of Canada carried out in an efficient and cost effective planner. 10 Geese flying south reminds us that Fall has arrived and that Summer is officially over. This seasonal change comes too fast Classic Cars for some and for others it doesn't happen fast enough. Classic cars help classy people raise money for community projects. But our cover doesn't just 14 symbolize the changing seasons it also features the newest tenants United Way of Inco's tailings area. To learn This year's United Way campaign for employees in the more about these new guests see Sudbury area will take place during the week of story beginning on page 16 of October 21. All money collected will go to one of 19 this issue. Sudbury agencies. 22 Cliff smelter complex who appear in the next issue. praised the significant milestone. In order to publish the large Ernie, a lubrication engineer backlog of retirement interviews inspector at the smelter, says that have occurred during the safety is something he considers past few months it was necessary every day on the job. "I think that the last edition of the about safety first," he states.
    [Show full text]
  • Myths of Deep and High Stress Mining — Reality Checks with Case Histories
    Deep Mining 2017: Eighth International Conference on Deep and High Stress Mining – J Wesseloo (ed.) © 2017 Australian Centre for Geomechanics, Perth, ISBN 978-0-9924810-6-3 doi:10.36487/ACG_rep/1704_58_Suorineni Myths of deep and high stress mining — reality checks with case histories FT Suorineni University of New South Wales, Australia Abstract The theme of this conference is ‘deep and high stress mining’. Obviously, mining at depth and in high stress is a current challenge and will continue to be so. Despite the several years of dedication to this subject and its importance, the definition of what is ‘deep’ and ‘high stress’ remains a matter of conjecture. Clear understanding of these terms, are fundamental to the design of excavations to achieve the benefits of the knowledge accumulated on the subject over the years. This paper aims at critically examining conditions that constitute high stress and explores what is ‘depth’ in the mining context. International case histories are used to demonstrate how a misunderstanding of ‘depth’ and ‘high stress’ can result in wrong mine layouts and excavation designs. The paper then provides conditions that constitute high stress and deep mining as a guide to mine layouts and the design of excavations to cope with these conditions. Keywords: deep mining, high stress, case histories 1 Introduction Stress is a significant factor in determining the safe and economic extraction of orebodies and, hence, an important consideration in determining mining methods. Stacey and Wesseloo (1998) state that from the point of view of planning of mining operations, the in situ stress field is the most important input parameter for modelling of excavations.
    [Show full text]
  • A Comparative Study of Nickel Sulphide Deposits Within the Area of the Canadian Shield
    Wilfrid Laurier University Scholars Commons @ Laurier Theses and Dissertations (Comprehensive) 1970 A Comparative Study of Nickel Sulphide Deposits Within the Area of the Canadian Shield Robert G. Kreiner Wilfrid Laurier University Follow this and additional works at: https://scholars.wlu.ca/etd Part of the Geology Commons, and the Physical and Environmental Geography Commons Recommended Citation Kreiner, Robert G., "A Comparative Study of Nickel Sulphide Deposits Within the Area of the Canadian Shield" (1970). Theses and Dissertations (Comprehensive). 1528. https://scholars.wlu.ca/etd/1528 This Thesis is brought to you for free and open access by Scholars Commons @ Laurier. It has been accepted for inclusion in Theses and Dissertations (Comprehensive) by an authorized administrator of Scholars Commons @ Laurier. For more information, please contact [email protected]. A COMPARATIVE STUDY OF NICKEL SULPHIDE DEPOSITS WITHIN THE AREA OF THE CANADIAN SHIELD BY Robert G. Kreiner Submitted in partial fulfillment of the requirements for theM.A. Degree in Geography Faculty of Graduate Studies Waterloo Lutheran University Waterloo, Ontario 1970 Property ii i,\j Library Waterloo University College UMI Number: EC56498 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent on the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. UMI EC56498 Copyright 2012 by ProQuest LLC. All rights reserved. This edition of the work is protected against unauthorized copying under Title 17, United States Code.
    [Show full text]
  • Biodiversity Journal, 8 (2): 315-389
    Biodiversity Journal, 2017, 8 (2): 315–389 MONOGRAPH Revision of the genus Amphiope L. Agassiz, 1840 (Echinoidea Astriclypeidae) with the description of a new species from the Miocene of France Paolo Stara1& Enrico Borghi2 1Centro Studi di Storia Naturale del Mediterraneo - Museo di Storia Naturale Aquilegia and Geomuseo Monte Arci, Masullas, Oristano, Sardinia, Italy; e-mail: [email protected] 2Società Reggiana di Scienze Naturali, Via Tosti 1, 42100 Reggio Emilia, Italy; e-mail: [email protected] ABSTRACT The taxonomy of Amphiope L. Agassiz, 1840 (Echinoidea, Astriclypeidae), an echinoid dis- tributed in the Oligo-Miocene of Central and Southern Europe, is largely unresolved since the description of most species attributed to this genus was based only on the external mor- phological features, while important characters, such as the oral plating and the internal sup- port system, were poorly illustrated or completely omitted. Additionally, the type material of some species was missing or badly preserved and geographical/stratigraphical information about the type-locality was unclear. This was the case also for Amphiope bioculata (Des Moulins, 1837), the type species of the genus. The poor definition of the earlier described species of Amphiope prevented comparison with fossils from other localities and ages, sub- sequently attributed to this genus. A large part of the earlier species of Amphiope, key-taxa for the resolution of the complex taxonomy of this genus, are herein revised by modern meth- ods. For this purpose, the type material available in public institutions has been re-examined and, when possible, new topo-typic material has been collected. As a result, the morphological description of A.
    [Show full text]
  • Florida Fossil Invertebrates 2 (Pdf)
    FLORIDA FOSSIL INVERTEBRATES Parl2 JANUARY 2OO2 SINGLE ISSUE: $z.OO OLIGOCENE AND MIOCENE ECHINOIDS CRAIG W. OYEN1 and ROGER W. PORTELL, lDeparlment of Geography and Earth Science Shippensburg U niversity 1871 Old Main Drive Shippensburg, PA 17257 -2299 e-mail: cwoyen @ ark.ship.edu 2Florida Museum of Natural History University of Florida P. O. Box 117800 Gainesville, FL 32611 -7800 e-mail: portell @flmnh.ufl.edu A PUBLICATTON OF THE FLORTDA PALEONTOLOGTCAL SOCIETY tNC. r,q)-.'^ .o$!oLo"€n)- .l^\ z*- il--'t- ' .,vn\'9t\ x\\I ^".{@^---M'Wa*\/i w*'"'t:.&-.d te\ 3t tu , l ". (. .]tt f-w#wlW,/ \;,6'#,/ FLORIDA FOSSIL INVERTEBRATES tssN 1536-5557 Florida Fossil lnvertebrafes is a publication of the Florida Paleontological Society, Inc., and is intended as a guide for identification of the many, common, invertebrate fossils found around the state. lt will deal solely with named species; no new taxonomic work will be included. Two parts per year will be completed with the first three parts discussing echinoids. Part 1 (published June 2001) covered Eocene echinoids, Parl2 (January 2002 publication) is about Oligocene and Miocene echinoids, and Part 3 (June 2002 publication) will be on Pliocene and Pleistocene echinoids. Each issue will be image-rich and, whenever possible, specimen images will be at natural size (1x). Some of the specimens figured in this series soon will be on display at Powell Hall, the museum's Exhibit and Education Center. Each part of the series will deal with a specific taxonomic group (e.9., echinoids) and contain a brief discussion of that group's life history along with the pertinent geological setting.
    [Show full text]
  • The Sudbury Basin Stress Tensor – Myth Or Reality?
    Deep Mining 2014 – M Hudyma and Y Potvin (eds) © 2014 Australian Centre for Geomechanics, Perth, ISBN 978-0-9870937-9-0 doi:10.36487/ACG_rep/1410_43_Suorineni The Sudbury Basin stress tensor – myth or reality? FT Suorineni The University of New South Wales, Australia F Malek Vale Canada Ltd., Canada Abstract Sudbury Basin is host to many underground mines, most of which are seismically active. Some of these mines, e.g. Creighton Mine, have been in operation for over a century and can be said to be matured. Others, e.g. Glencore Xstrata Nickel Rim South Mine, have just been opened and can be classified as young. Several in situ stress measurements have been performed in these mines over the years. Mine seismicity and rockburst research has been very active in the Sudbury Basin since 1984 following the then Falconbridge Mine disaster. Stress tensor is one of the critical inputs in numerical models for the assessment of excavation performance, support demand and rockbursts and seismicity potential. It is also an important input in closed-form solutions for similar purposes. Over the years, several technical reports have referred to a Sudbury Basin stress tensor. In a recent review study of stress measurements in the Sudbury Basin as a means of validating the so called Sudbury Basin stress tensor, the supposed stress tensor source could be hardly identified. It is important to recognise that in situ stress measurement errors remain significantly high and would be unacceptable in any other branch of engineering (Hoek 1994). To improve confidence in these measurements several carefully measured data are required.
    [Show full text]
  • Examples of Ground Support Practice in Challenging Ground Conditions at Vale’S Deep Operations in Sudbury
    Deep Mining 2014 – M Hudyma and Y Potvin (eds) © 2014 Australian Centre for Geomechanics, Perth, ISBN 978-0-9870937-9-0 doi:10.36487/ACG_rep/1410_19_Yao Examples of ground support practice in challenging ground conditions at Vale’s deep operations in Sudbury M Yao Vale Canada Ltd., Canada A Sampson-Forsythe Vale Canada Ltd., Canada AR Punkkinen Vale Canada Ltd., Canada Abstract Vale has operated a number of underground mines in the Ontario division in Sudbury for over a century. During this time, numerous mining methods have been employed including cut-and-fill, drift-and-fill, post pillar cut-and-fill, modified sublevel caving, underhand cut-and-fill/drift and fill plus bulk mining methods such as vertical retreat mining (VRM)/slot-slash, uppers retreat and underhand bulk mining. The division hosts a wide variety of orebodies of varying geometries, many of these at advanced stages of mining extraction. Consequently, the geomechanical challenges are substantial and include both gravity-driven and rockburst-prone ground failure conditions that are further exacerbated by rock mass characteristics and ever-increasing mining depths. Typically the gravity-driven scenarios include the recovery of remnant pillars in old mined out areas, mining through consolidated backfill and recovery of post-failure sill pillars. Burst-prone conditions become a challenge when mining through stiff and brittle geological structures, upon recovery of highly stressed sill pillars in narrow vein ore bodies or when mining at depths in excess of 2,500 m from surface. Gravity driven and stress induced ground failures may occur simultaneously. Underhand cut-and-fill for sill pillar recovery in narrow vein ore bodies are also known to involve risk from both of these failure mechanisms.
    [Show full text]
  • Southeastern Part of the Texas Coastal Plain
    DEPARTMENT OF THE INTERIOR UNITED STATES GEOLOGICAL SURVEY GEORGE OTIS SMITH, DIRECTOR WATER-SUPPLY PAPER 335 GEOLOGY AND UNDERGROUND WATERS OF THE SOUTHEASTERN PART OF THE TEXAS COASTAL PLAIN BY ALEXANDER DEUSSEN WASHINGTON GOVERNMENT PRINTING OFFICE 1914 CONTENTS. Page. Introduction.............................................................. 13 Physiography.............................................................. 14 General character..................................................... 14 Topographic features.................................................. 16 Relief............................................................ 16 Coast prairie.................................................. 16 Kisatchie Wold............................................... 16 Nacogdoches Wold............................................ 16 Corsicana Cuesta and White Rock Escarpment................... 18 Bottom lands................................................. 18 Mounds and pimple plains...................................... 19 Drainage.......................................................... 19 Timber............................................................... 21 General geologic features................................................... 21 Relation of geology to the occurrence of underground water............... 21 Principles of stratigraphy.............................................. 22 Erosion and sedimentation.......................................... 22 The geologic column.............................................. 22 Subdivision
    [Show full text]
  • Variation in Growth Pattern in the Sand Dollar, Echinarachnius Parma, (Lamarck)
    University of New Hampshire University of New Hampshire Scholars' Repository Doctoral Dissertations Student Scholarship Summer 1964 VARIATION IN GROWTH PATTERN IN THE SAND DOLLAR, ECHINARACHNIUS PARMA, (LAMARCK) PRASERT LOHAVANIJAYA University of New Hampshire, Durham Follow this and additional works at: https://scholars.unh.edu/dissertation Recommended Citation LOHAVANIJAYA, PRASERT, "VARIATION IN GROWTH PATTERN IN THE SAND DOLLAR, ECHINARACHNIUS PARMA, (LAMARCK)" (1964). Doctoral Dissertations. 2339. https://scholars.unh.edu/dissertation/2339 This Dissertation is brought to you for free and open access by the Student Scholarship at University of New Hampshire Scholars' Repository. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of University of New Hampshire Scholars' Repository. For more information, please contact [email protected]. This dissertation has been 65-950 microfilmed exactly as received LOHAVANIJAYA, Prasert, 1935- VARIATION IN GROWTH PATTERN IN THE SAND DOLLAR, ECHJNARACHNIUS PARMA, (LAMARCK). University of New Hampshire, Ph.D., 1964 Zoology University Microfilms, Inc., Ann Arbor, Michigan VARIATION IN GROWTH PATTERN IN THE SAND DOLLAR, EC’HINARACHNIUS PARMA, (LAMARCK) BY PRASERT LOHAVANUAYA B. Sc. , (Honors), Chulalongkorn University, 1959 M.S., University of New Hampshire, 1961 A THESIS Submitted to the University of New Hampshire In Partial Fulfillment of The Requirements for the Degree of Doctor of Philosophy Graduate School Department of Zoology June, 1964 This thesis has been examined and approved. May 2 2, 1 964. Date An Abstract of VARIATION IN GROWTH PATTERN IN THE SAND DOLLAR, ECHINARACHNIUS PARMA, (LAMARCK) This study deals with Echinarachnius parma, the common sand dollar of the New England coast. Some problems concerning taxonomy and classification of this species are considered.
    [Show full text]