The Impact of Disasters and Crises on Agriculture and Food Security

Total Page:16

File Type:pdf, Size:1020Kb

The Impact of Disasters and Crises on Agriculture and Food Security The impact of disasters and crises 2017 on agriculture and food security Photo credits: (from left to right, top to bottom) Front cover: South Sudan ©FAO/Marco de Gaetano Page VII: ©Reuters/Carlos Garcia Rawlins; ©FAO/IFAD/WFP/Michael Tewe; ©FAO/Tony Karumba Page VIII: ©Reuters/Erik de Castro; ©FAO/J. Thompson Page XI: ©FAO/Karel Prinsloo; ©FAO/Asim Hafeez Page XII: ©FAO/Giuseppe Bizzarri; ©FAO/Albert Gonzalez Farran Page 7: ©FAO/F. Paladini; ©FAO/Justine Texier Page 10: ©FAO; ©FAO/Giulio Napolitano Page 12: ©FAO/Ami Vitale; ©FAO/Giuseppe Bizzarri Page 13: ©FAO/Dante Diosina; ©Chris Steele-Perkins/Magnum Page 34: ©FAO/ Andrew Esiebo Page 35: ©FAO/Chedly Kayouli Page 36: ©FAO/Dante Diosina; ©FAO/Walter Astrada Page 37: ©FAO/Asim Hafeez; ©FAO/Roberto Faidutti Page 65: @FAO/Nepal; FAO/Nepal Page 73: ©FAO/Prakash Singh; ©FAO/Ami Vitale Page 81: ©FAO/Giuseppe Carotenuto; ©FAO/Xia Zuzhang Page 84: ©FAO/Giulio Napolitano; ©FAO/Luca Sola Page 89: ©East Africa Production House Page 90: ©Reuters/Khalil Ashawi; ©FAO/Albert Gonzalez Farran Page 91: ©FAO/Truls Brekke; ©FAO/Issouf Sanogo Page 96: ©Reuters/Vasily Fedosenko Page 97: ©FAO/Liana Miuccio Page 105: ©FAO/Simon Maina; ©FAO/Cengiz Yar Page 113: ©FAO/Syria; ©FAO/Syria Page 115: ©Reuters/ Abdalghne Karoof The designations employed and the presentation of material in this information product do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations (FAO) concerning the legal or development status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. The mention of specific companies or products of manufacturers, whether or not these have been patented, does not imply that these have been endorsed or recommended by FAO in preference to others of a similar nature that are not mentioned. The views expressed in this information product are those of the author(s) and do not necessarily reflect the views or policies of FAO. ISBN: 978-92-5-130359-7 © FAO, 2018 FAO encourages the use, reproduction and dissemination of material in this information product. Except where otherwise indicated, material may be copied, downloaded and printed for private study, research and teaching purposes, or for use in non-commercial products or services, provided that appropriate acknowledgement of FAO as the source and copyright holder is given and that FAO’s endorsement of users’ views, products or services is not implied in any way. All requests for translation and adaptation rights and for resale and other commercial use rights should be made via www.fao.org/contact-us/licence-request or addressed to [email protected]. FAO information products are available on the FAO website: www.fao.org/publications and can be purchased through [email protected]. Art direction and design: Teikna Design Printed and bound in Italy 2017 The impact of disasters and crises on agriculture and food security Food and Agriculture Organization of the United Nations Rome, 2018 inTroducTion pArT i Foreword xv Agriculture in an More disasters, more impact uncertain environment 1 on agriculture 13 Acknowledgements xvii chapter i Acronyms xix Natural disasters and food Disaster damage and loss – a hefty chain crises 2 share for agriculture and its Conflicts and protracted crises 5 subsectors 15 More disasters, but dearth of chapter ii information on damage and loss Impact of natural disasters on in agriculture 6 crop and livestock production in developing countries 23 Purpose and scope of this report 8 ©Reuters/Rodi Said pArT ii pArT iii conclusion Estimating damage and loss: covering new ground: food chain FAo’s 2017 report – Transforming getting it right 37 crises and conflict 91 damage and loss assessment 117 chapter iii chapter Vii The way forward – informing Applying the methodology – trials Food chain crises agricultural DRR policy 120 from the Philippines and Ethiopia 39 damage and loss – measuring the chapter iV impact of transboundary animal Nepal earthquakes: damage and loss diseases on livestock 93 AppEndicEs 123 in the agricultural crop sector 53 chapter Viii Annex 124 Applying FAO’s post-disaster damage chapter V Glossary 134 The impact of disasters on and loss assessment methodology Bibliography 136 fisheries and aquaculture 67 in a conflict situation – the Syrian Arab Republic 107 chapter Vi The impact of disasters on forest resources 77 Heavily reliant on weather, climate, land, and water for its ability to thrive, agriculture is particularly vulnerable to natural disasters ©FAO/Asim Hafeez One of the most direct ways in which natural disasters affect the sector is through reduced production. This results in direct economic loss to farmers, which can cascade along the entire value chain, affecting agricultural growth and rural livelihoods The rising incidence of weather extremes will have increasingly negative impacts on agriculture because critical thresholds are already being exceeded Disasters impact agriculture beyond the short-term. The sector often endures long-lasting and multi-pronged consequences such as loss of harvest and livestock, outbreaks of disease, and destruction of rural infrastructure and irrigation systems Natural disasters and protracted crises often overlap, aggravating impacts. More than 19 countries are currently affected by protracted crises, conflict and violence. Conflicts can devastate agriculture and rural livelihoods, causing significant economic loss, food insecurity and damage on all scales Foreword The second edition of FAO’s report on the Impact of Disasters and Crises on Agriculture arrives at a pivotal moment for the future of disaster risk reduction and climate change. In 2017, the fifth Global Platform for Disaster Risk Reduction and COP23 brought the international community together to reiterate commitments for achieving targets of the SDGs, Paris Agreement and Sendai Framework for Disaster Risk Reduction. Global negotiations took place as the deadly trio of hurricanes Harvey, Irma and Maria wreaked havoc across developing and developed nations alike, a stark reminder that the 2030 Agenda for Sustainable Development cannot be achieved by countries while constantly battling flood waters and rebuilding flattened infrastructure. Agriculture sectors face many risks, such as climate and market volatility, pests and diseases, extreme weather events, and an ever-increasing number of protracted crises and conflicts. Natural disasters have cost billions of dollars in lost agricultural production. The human food chain is under continuous threat from an alarming increase in the number of outbreaks of transboundary animal and plant pests and diseases. Conflict and protracted crises are forcing more and more people into conditions of poverty, food insecurity and displacement. This has become the “new normal,” and the impact of climate change will further exacerbate these threats and challenges. Disaster risk reduction (DRR) and management must therefore become an integral part of modern agriculture. The ability of governments, international bodies and other partners to operate and cooperate in fragile and disaster-prone contexts will become a defining feature for achieving resilience and sustainability. FAO is fully committed to the implementation of the 2030 Agenda and – beyond its duties as a custodian agency for monitoring global progress under 21 of the SDG indicators – has entered a key partnership with the UN Office for Disaster and Risk Reduction (UNISDR) on a resilience-related target. This entails FAO’s contribution, support and leadership in monitoring a composite global indicator on economic loss in agriculture caused by disasters, corresponding to SDG target 1.5.2 and Sendai Framework indicator C-2. As the 2030 Agenda sets our common vision for a transformed world and we progress towards global targets, it is crucial to understand and act on the messages of this report. Agriculture often bears a disproportionate share of disaster impacts, many of which are borne directly by smallholders. As resources become increasingly scarce, objective evidence is needed to effectively target our investments in resilience, preparedness and mitigation. This report provides the latest data on the impact of disasters and crises on agriculture sectors, combined with sound analysis of remaining gaps and challenges. Its attention is not limited to natural disasters alone, but includes the first-ever analysis of the effect on agriculture of conflict and food chain crises. The 2017 report also considers how the entire sector is impacted: not only crops and livestock, but also forestry, fisheries and aquaculture. Partnerships are needed to foster effective disaster risk management systems. Governments, international organizations, civil society and the private sector have the opportunity and obligation to work together in their commitment to a safer future for agriculture and rural livelihoods. A culture of disaster impact monitoring and assessment is an integral part of promoting effective DRR policy and action. Both national and local capacities must be strengthened to cope with increasing risks and recurring shocks. Building a more holistic and ambitious disaster-resilience framework for agriculture is crucial to ensuring sustainable development – which is a cornerstone for peace and the basis for adaptation to climate change. José Graziano da Silva Director-General FAO XV Acknowledgements This second report on the impact of disasters and crises
Recommended publications
  • Climate Change and Human Health: Risks and Responses
    Climate change and human health RISKS AND RESPONSES Editors A.J. McMichael The Australian National University, Canberra, Australia D.H. Campbell-Lendrum London School of Hygiene and Tropical Medicine, London, United Kingdom C.F. Corvalán World Health Organization, Geneva, Switzerland K.L. Ebi World Health Organization Regional Office for Europe, European Centre for Environment and Health, Rome, Italy A.K. Githeko Kenya Medical Research Institute, Kisumu, Kenya J.D. Scheraga US Environmental Protection Agency, Washington, DC, USA A. Woodward University of Otago, Wellington, New Zealand WORLD HEALTH ORGANIZATION GENEVA 2003 WHO Library Cataloguing-in-Publication Data Climate change and human health : risks and responses / editors : A. J. McMichael . [et al.] 1.Climate 2.Greenhouse effect 3.Natural disasters 4.Disease transmission 5.Ultraviolet rays—adverse effects 6.Risk assessment I.McMichael, Anthony J. ISBN 92 4 156248 X (NLM classification: WA 30) ©World Health Organization 2003 All rights reserved. Publications of the World Health Organization can be obtained from Marketing and Dis- semination, World Health Organization, 20 Avenue Appia, 1211 Geneva 27, Switzerland (tel: +41 22 791 2476; fax: +41 22 791 4857; email: [email protected]). Requests for permission to reproduce or translate WHO publications—whether for sale or for noncommercial distribution—should be addressed to Publications, at the above address (fax: +41 22 791 4806; email: [email protected]). The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the World Health Organization concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries.
    [Show full text]
  • Cross-References ASTEROID IMPACT Definition and Introduction History of Impact Cratering Studies
    18 ASTEROID IMPACT Tedesco, E. F., Noah, P. V., Noah, M., and Price, S. D., 2002. The identification and confirmation of impact structures on supplemental IRAS minor planet survey. The Astronomical Earth were developed: (a) crater morphology, (b) geo- 123 – Journal, , 1056 1085. physical anomalies, (c) evidence for shock metamor- Tholen, D. J., and Barucci, M. A., 1989. Asteroid taxonomy. In Binzel, R. P., Gehrels, T., and Matthews, M. S. (eds.), phism, and (d) the presence of meteorites or geochemical Asteroids II. Tucson: University of Arizona Press, pp. 298–315. evidence for traces of the meteoritic projectile – of which Yeomans, D., and Baalke, R., 2009. Near Earth Object Program. only (c) and (d) can provide confirming evidence. Remote Available from World Wide Web: http://neo.jpl.nasa.gov/ sensing, including morphological observations, as well programs. as geophysical studies, cannot provide confirming evi- dence – which requires the study of actual rock samples. Cross-references Impacts influenced the geological and biological evolu- tion of our own planet; the best known example is the link Albedo between the 200-km-diameter Chicxulub impact structure Asteroid Impact Asteroid Impact Mitigation in Mexico and the Cretaceous-Tertiary boundary. Under- Asteroid Impact Prediction standing impact structures, their formation processes, Torino Scale and their consequences should be of interest not only to Earth and planetary scientists, but also to society in general. ASTEROID IMPACT History of impact cratering studies In the geological sciences, it has only recently been recog- Christian Koeberl nized how important the process of impact cratering is on Natural History Museum, Vienna, Austria a planetary scale.
    [Show full text]
  • February 2021: Extreme Cold, Snow, and Ice in the South Central U.S
    NASA/NOAA NASA/NOAA FEBRUARY 2021: EXTREME COLD,SNOW, AND ICE IN THE SOUTH CENTRAL U.S. APRIL 2021 | DARRIAN BERTRAND AND SIMONE SPEIZER SUGGESTED CITATION Bertrand, D. and S. Speizer, 2021: February 2021: Extreme Cold, Snow, and Ice in the South Central U.S. Southern Climate Impacts Planning Program, 30 pp. http://www.southernclimate.org/documents/Feb2021ExtremeCold.pdf. TABLE OF CONTENTS 1 2 6 INTRODUCTION WEATHER RECORDS & PATTERN CLIMATOLOGY 15 19 ENERGY WATER 10 15 19 20 HEALTH INFRASTRUCTURE COMPARISON IMPACTS TO HISTORIC 21 22 EVENTS ECONOMY ENVIRONMENT 23 SOCIETY 24 25 26 LOCAL HAZARD SUMMARY REFERENCES MITIGATION SUCCESSES PAGE | 01 INTRODUCTION INTRODUCTION February 2021’s weather was a wild ride for many across the U.S. Many records were broken from a strong arctic blast of cold air that extended south of the Mexico border, and wintry precipitation covered much of the country. While the extent of the winter storm traversed coast to coast, this summary will cover the Southern Climate Impacts Planning Program (SCIPP) region of Oklahoma, Texas, Arkansas, and Louisiana (Fig. 1). We'll be diving into the weather pattern, records, the Figure 1. SCIPP Region context of this event relative to climatology, past historic events, impacts, and hazard mitigation successes. EVENTHIGHLIGHTS Extreme Cold Temperature and Snow: Nearly 3,000 long-term temperature records were broken/tied in February in the SCIPP region. All 120 OK Mesonet stations were below 0°F at the same time for the first time. Some areas were below freezing for nearly 2 weeks. This was the coldest event in the region in over 30 years.
    [Show full text]
  • Impact of the Coronavirus Pandemic (COVID-19) Lockdown on Mental Health and Well-Being in the United Arab Emirates
    ORIGINAL RESEARCH published: 16 March 2021 doi: 10.3389/fpsyt.2021.633230 Impact of the Coronavirus Pandemic (COVID-19) Lockdown on Mental Health and Well-Being in the United Arab Emirates Leila Cheikh Ismail 1,2,3, Maysm N. Mohamad 4, Mo’ath F. Bataineh 5, Abir Ajab 1,3, Amina M. Al-Marzouqi 3,6, Amjad H. Jarrar 4, Dima O. Abu Jamous 3, Habiba I. Ali 4, Haleama Al Sabbah 7, Hayder Hasan 1,3, Lily Stojanovska 4,8, Mona Hashim 1,3, Reyad R. Shaker Obaid 1,3, Sheima T. Saleh 1,3, Tareq M. Osaili 1,3,9 and Ayesha S. Al Dhaheri 4* 1 Department of Clinical Nutrition and Dietetics, College of Health Sciences, University of Sharjah, Sharjah, United Arab Emirates, 2 Nuffield Department of Women’s & Reproductive Health, University of Oxford, Oxford, United Kingdom, 3 Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates, 4 Department of Edited by: Nutrition and Health, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Daniel Bressington, Emirates, 5 Department of Sport Rehabilitation, Faculty of Physical Education and Sport Sciences, The Hashemite University, Charles Darwin University, Australia Zarqa, Jordan, 6 Department of Health Services Administration, College of Health Sciences, Research Institute for Medical 7 Reviewed by: and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates, College of Natural and Health Sciences, Zayed University, Dubai, United Arab Emirates, 8 Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia, Gianluca Serafini, 9 Department of Nutrition and Food Technology, Faculty of Agriculture, Jordan University of Science and Technology, San Martino Hospital (IRCCS), Italy Irbid, Jordan Andrea Aguglia, University of Genoa, Italy Andrea Amerio, United Arab Emirates (UAE) has taken unprecedented precautionary measures including University of Genoa, Italy complete lockdowns against COVID-19 to control its spread and ensure the well-being *Correspondence: Ayesha S.
    [Show full text]
  • Asteroid Impact, Not Volcanism, Caused the End-Cretaceous Dinosaur Extinction
    Asteroid impact, not volcanism, caused the end-Cretaceous dinosaur extinction Alfio Alessandro Chiarenzaa,b,1,2, Alexander Farnsworthc,1, Philip D. Mannionb, Daniel J. Luntc, Paul J. Valdesc, Joanna V. Morgana, and Peter A. Allisona aDepartment of Earth Science and Engineering, Imperial College London, South Kensington, SW7 2AZ London, United Kingdom; bDepartment of Earth Sciences, University College London, WC1E 6BT London, United Kingdom; and cSchool of Geographical Sciences, University of Bristol, BS8 1TH Bristol, United Kingdom Edited by Nils Chr. Stenseth, University of Oslo, Oslo, Norway, and approved May 21, 2020 (received for review April 1, 2020) The Cretaceous/Paleogene mass extinction, 66 Ma, included the (17). However, the timing and size of each eruptive event are demise of non-avian dinosaurs. Intense debate has focused on the highly contentious in relation to the mass extinction event (8–10). relative roles of Deccan volcanism and the Chicxulub asteroid im- An asteroid, ∼10 km in diameter, impacted at Chicxulub, in pact as kill mechanisms for this event. Here, we combine fossil- the present-day Gulf of Mexico, 66 Ma (4, 18, 19), leaving a crater occurrence data with paleoclimate and habitat suitability models ∼180 to 200 km in diameter (Fig. 1A). This impactor struck car- to evaluate dinosaur habitability in the wake of various asteroid bonate and sulfate-rich sediments, leading to the ejection and impact and Deccan volcanism scenarios. Asteroid impact models global dispersal of large quantities of dust, ash, sulfur, and other generate a prolonged cold winter that suppresses potential global aerosols into the atmosphere (4, 18–20). These atmospheric dinosaur habitats.
    [Show full text]
  • The Observation of the Lightning Induced Variations in Atmospheric Ions
    XV International Conference on Atmospheric Electricity, 15-20 June 2014, Norman, Oklahoma, U.S.A. The Observation of the Lightning Induced Variations in Atmospheric Ions Xuemeng Chen1,*, Hanna E. Manninen1,2, Pasi Aalto1, Petri Keronen1, Antti Mäkelä3, Jussi Paatero3, Tuukka Petäjä1 and Markku Kulmala1 1. Department of Physics, University of Helsinki, Helsinki, Finland 2. Institute of Physics, University of Tartu, Estonia 3. Finnish Meteorological Institute, Helsinki, Finland ABSTRACT: Variations in atmospheric ion concentration were studied in a boreal forest in Finland, with emphasis on the effect of lightning. In general, changes in ion concentrations have diurnal and seasonal patterns. Distinct features were found in ions of different size ranges, namely small ions (0.8 – 1.7 nm) and intermediate ions (1.7 – 7 nm). Preliminary results on two case studies of lightning effect are present, one with rain effect and the other not. Bursts in the concentrations of small ions and intermediate ions were observed in both cases. However, different trends in trace gases were observed for the two cases. Further investigation is needed to reveal the nature of lightning ions and the mechanism in their formation. The work is under progress. INTRODUCTION Atmospheric ions, or air ions, refer to electric charge carriers present in the atmosphere. Distinct features exist in their chemical composition, mass, size as well as number of carried charges. According to Tammet [1998], atmospheric ions can be classified into small or cluster ions, intermediate ions, and large ions based on their mobility (Z) in air, being Z > 0.5 cm2V-1s-1, 0.5 cm2V-1s-1 ≤ Z ≥ 0.03 cm2V-1s-1 and Z< 0.03 cm2V-1s-1, respectively.
    [Show full text]
  • Cyclone Factsheet UPDATE
    TROPICAL CYCLONES AND CLIMATE CHANGE: FACTSHEET CLIMATECOUNCIL.ORG.AU TROPICAL CYCLONES AND CLIMATE CHANGE: FACT SHEET KEY POINTS • Climate change is increasing the destructive power of tropical cyclones. o All weather events today, including tropical cyclones, are occurring in an atmosphere that is warmer, wetter, and more energetic than in the past. o It is likely that maximum windspeeds and the amount of rainfall associated with tropical cyclones is increasing. o Climate change may also be affecting many other aspects of tropical cyclone formation and behaviour, including the speed at which they intensify, the speed at which a system moves (known as translation speed), and how much strength is retained after reaching land – all factors that can render them more dangerous. o In addition, rising sea levels mean that the storm surges that accompany tropical cyclones are even more damaging. • While climate change may mean fewer tropical cyclones overall, those that do form can become more intense and costly. In other words, we are likely to see more of the really strong and destructive tropical cyclones. • A La Niña event brings an elevated tropical cyclone risk for Australia, as there are typically more tropical cyclones in the Australian region than during El Niño years. BACKGROUND Tropical cyclones, known as hurricanes in the North Atlantic and Northeast Pacific, typhoons in the Northwest Pacific, and simply as tropical cyclones in the South Pacific and Indian Oceans, are among the most destructive of extreme weather events. Many Pacific Island Countries, including Fiji, Vanuatu, Solomon Islands and Tonga, lie within the South Pacific cyclone basin.
    [Show full text]
  • The Error Is the Feature: How to Forecast Lightning Using a Model Prediction Error [Applied Data Science Track, Category Evidential]
    The Error is the Feature: How to Forecast Lightning using a Model Prediction Error [Applied Data Science Track, Category Evidential] Christian Schön Jens Dittrich Richard Müller Saarland Informatics Campus Saarland Informatics Campus German Meteorological Service Big Data Analytics Group Big Data Analytics Group Offenbach, Germany ABSTRACT ACM Reference Format: Despite the progress within the last decades, weather forecasting Christian Schön, Jens Dittrich, and Richard Müller. 2019. The Error is the is still a challenging and computationally expensive task. Current Feature: How to Forecast Lightning using a Model Prediction Error: [Ap- plied Data Science Track, Category Evidential]. In Proceedings of 25th ACM satellite-based approaches to predict thunderstorms are usually SIGKDD Conference on Knowledge Discovery and Data Mining (KDD ’19). based on the analysis of the observed brightness temperatures in ACM, New York, NY, USA, 10 pages. different spectral channels and emit a warning if a critical threshold is reached. Recent progress in data science however demonstrates 1 INTRODUCTION that machine learning can be successfully applied to many research fields in science, especially in areas dealing with large datasets. Weather forecasting is a very complex and challenging task requir- We therefore present a new approach to the problem of predicting ing extremely complex models running on large supercomputers. thunderstorms based on machine learning. The core idea of our Besides delivering forecasts for variables such as the temperature, work is to use the error of two-dimensional optical flow algorithms one key task for meteorological services is the detection and pre- applied to images of meteorological satellites as a feature for ma- diction of severe weather conditions.
    [Show full text]
  • Imagine2014 8B3 02 Gehrke
    Loss Adjustment via Unmanned Aerial Systems (UAS) – Experiences and Challenges for Crop Insurance Thomas Gehrke, Regional Director Berlin, Resp. for International Affairs Loss Adjustment via UAS - Experiences and 20.10.2014 1 Challenges for Crop Insurance Structure 1. Introduction – Demo 2. Vereinigte Hagel – Market leader in Europe 3. Precision Agriculture – UAS 4. Crop insurance – Loss adjustment via UAS 5. Challenges and Conclusion Loss Adjustment via UAS - Experiences and Challenges for Crop Insurance 20.10.2014 2 Introduction – Demo Short film (not in pdf-file) Loss Adjustment via UAS - Experiences and Challenges for Crop Insurance 20.10.2014 3 Structure 1. Introduction – Demo 2. Vereinigte Hagel – Market leader in Europe 3. Precision Agriculture – UAS 4. Crop insurance – Loss adjustment via UAS 5. Challenges and Conclusion Loss Adjustment via UAS - Experiences and Challenges for Crop Insurance 20.10.2014 4 190 years of experience Secufarm® 1 Hail * Loss Adjustment via UAS - Experiences and Challenges for Crop Insurance 20.10.2014 5 2013-05-09, Hail – winter barley Loss Adjustment via UAS - Experiences and Challenges for Crop Insurance 20.10.2014 6 … and 4 weeks later Loss Adjustment via UAS - Experiences and Challenges for Crop Insurance 20.10.2014 7 Our Line of MPCI* Products PROFESSIONAL RISK MANAGEMENT is crucial part of modern agriculture. With Secufarm® products, farmers can decide individually which agricultural Secufarm® 6 crops they would like to insure against ® Fire & Drought which risks. Secufarm 4 Frost Secufarm® 3 Storm & Intense Rain Secufarm® 1 certain crop types are eligible Hail only for Secufarm 1 * MPCI: Multi Peril Crop Insurance Loss Adjustment via UAS - Experiences and Challenges for Crop Insurance 20.10.2014 8 Insurable Damages and their Causes Hail Storm Frost WEATHER RISKS are increasing further.
    [Show full text]
  • Pull up Banner Tropical Cycclone.Ai
    Air released Eye air Warm air Cold rises Steady winds Eye Warm air A tropical Cyclone (also known as typhoons or hurricanes) is a violent rotating windstorm that develops over warm tropical waters warner than 26.5°C and located between 5° and 15°latitude. Tropical Cyclones affect nearly all Pacific Islands countries and are the most frequent hazard to affect Fiji with around 2 – 3 cyclones occurring every year. As a result of climate change, cyclone frequency has doubled in the last decade. The cyclone season in Fiji runs from November to April and some cyclones do occur outside the season. T ropical Cyclone Strong winds can devastating western Viti Levu continue for hours, days, and killing seven people. even causing widespread damage to buildings, Storm surges and waves infrastructure and created by low atmospheric vegetation and causing pressure and strong cyclonic loss of life. winds blowing over long distance. A storm surge is a Wind speed levels of a raised dome of seawater about tropical cyclone are; 60-80km wide and 2-5m higher Gale Force Winds : 63-87 km/h than normal sea level. As the Storm force winds : 88-117 km/h cyclone makes landfall, storm Hurricane force winds : 117 + km/h surge and waves inundate coastal areas. At the coast, Torrential rains can result in widespread flash flooding and storm surge and waves are the river flooding. Up to 600mm and more of high intensity rain can greatest threat to life and be produced in one day. These rains can also trigger property and also cause severe landslides in hilly areas, which may already be sodden due to coastal erosion.
    [Show full text]
  • PROTECT YOUR PROPERTY from STORM SURGE Owning a House Is One of the Most Important Investments Most People Make
    PROTECT YOUR PROPERTY FROM STORM SURGE Owning a house is one of the most important investments most people make. Rent is a large expense for many households. We work hard to provide a home and a future for ourselves and our loved ones. If you live near the coast, where storm surge is possible, take the time to protect yourself, your family and your belongings. Storm surge is the most dangerous and destructive part of coastal flooding. It can turn a peaceful waterfront into a rushing wall of water that floods homes, erodes beaches and damages roadways. While you can’t prevent a storm surge, you can minimize damage to keep your home and those who live there safe. First, determine the Base Flood Elevation (BFE) for your home. The BFE is how high floodwater is likely to rise during a 1%-annual-chance event. BFEs are used to manage floodplains in your community. The regulations about BFEs could affect your home. To find your BFE, you can look up your address on the National Flood Hazard Layer. If you need help accessing or understanding your BFE, contact FEMA’s Flood Mapping and Insurance eXchange. You can send an email to FEMA-FMIX@ fema.dhs.gov or call 877 FEMA MAP (877-336-2627). Your local floodplain manager can help you find this information. Here’s how you can help protect your home from a storm surge. OUTSIDE YOUR HOME ELEVATE While it is an investment, elevating your SECURE Do you have a manufactured home and want flood insurance YOUR HOME home is one of the most effective ways MANUFACTURED from the National Flood Insurance Program? If so, your home to mitigate storm surge effects.
    [Show full text]
  • Climate Change Futures Health, Ecological and Economic Dimensions
    Climate Change Futures Health, Ecological and Economic Dimensions A Project of: The Center for Health and the Global Environment Harvard Medical School Sponsored by: Swiss Re United Nations Development Programme IntroNew.qxd 9/27/06 12:40 PM Page 1 CLIMATE CHANGE FUTURES Health, Ecological and Economic Dimensions A Project of: The Center for Health and the Global Environment Harvard Medical School Sponsored by: Swiss Re United Nations Development Programme IntroNew.qxd 9/27/06 12:40 PM Page 2 Published by: The Center for Health and the Global Environment Harvard Medical School With support from: Swiss Re United Nations Development Programme Edited by: Paul R. Epstein and Evan Mills Contributing editors: Kathleen Frith, Eugene Linden, Brian Thomas and Robert Weireter Graphics: Emily Huhn and Rebecca Lincoln Art Directors/Design: Evelyn Pandozi and Juan Pertuz Contributing authors: Pamela Anderson, John Brownstein, Ulisses Confalonieri, Douglas Causey, Nathan Chan, Kristie L. Ebi, Jonathan H. Epstein, J. Scott Greene, Ray Hayes, Eileen Hofmann, Laurence S. Kalkstein, Tord Kjellstrom, Rebecca Lincoln, Anthony J. McMichael, Charles McNeill, David Mills, Avaleigh Milne, Alan D. Perrin, Geetha Ranmuthugala, Christine Rogers, Cynthia Rosenzweig, Colin L. Soskolne, Gary Tabor, Marta Vicarelli, X.B. Yang Reviewers: Frank Ackerman, Adrienne Atwell, Tim Barnett, Virginia Burkett, Colin Butler, Eric Chivian, Richard Clapp, Stephen K. Dishart, Tee L. Guidotti, Elisabet Lindgren, James J. McCarthy, Ivo Menzinger, Richard Murray, David Pimentel, Jan von Overbeck, R.K. Pachauri, Claire L. Parkinson, Kilaparti Ramakrishna, Walter V. Reid, David Rind, Earl Saxon, Ellen-Mosley Thompson, Robert Unsworth, Christopher Walker Additional contributors to the CCF project: Juan Almendares, Peter Bridgewater, Diarmid Campbell-Lendrum, Manuel Cesario, Michael B.
    [Show full text]