PROTECT YOUR PROPERTY from STORM SURGE Owning a House Is One of the Most Important Investments Most People Make

Total Page:16

File Type:pdf, Size:1020Kb

PROTECT YOUR PROPERTY from STORM SURGE Owning a House Is One of the Most Important Investments Most People Make PROTECT YOUR PROPERTY FROM STORM SURGE Owning a house is one of the most important investments most people make. Rent is a large expense for many households. We work hard to provide a home and a future for ourselves and our loved ones. If you live near the coast, where storm surge is possible, take the time to protect yourself, your family and your belongings. Storm surge is the most dangerous and destructive part of coastal flooding. It can turn a peaceful waterfront into a rushing wall of water that floods homes, erodes beaches and damages roadways. While you can’t prevent a storm surge, you can minimize damage to keep your home and those who live there safe. First, determine the Base Flood Elevation (BFE) for your home. The BFE is how high floodwater is likely to rise during a 1%-annual-chance event. BFEs are used to manage floodplains in your community. The regulations about BFEs could affect your home. To find your BFE, you can look up your address on the National Flood Hazard Layer. If you need help accessing or understanding your BFE, contact FEMA’s Flood Mapping and Insurance eXchange. You can send an email to FEMA-FMIX@ fema.dhs.gov or call 877 FEMA MAP (877-336-2627). Your local floodplain manager can help you find this information. Here’s how you can help protect your home from a storm surge. OUTSIDE YOUR HOME ELEVATE While it is an investment, elevating your SECURE Do you have a manufactured home and want flood insurance YOUR HOME home is one of the most effective ways MANUFACTURED from the National Flood Insurance Program? If so, your home to mitigate storm surge effects. Elevation Elevating your home HOMES must be affixed to a permanent foundation, so that the may reduce your flood may also lower your flood insurance wheels and axles do not support its weight. This will help insurance premium. premium. When a home is properly the home resist flotation, collapse, or side-to-side movement. elevated, the lowest floor should be Your local floodplain manager can explain the requirements. above the BFE. Areas below the BFE can A professional engineer or architect can make sure the be used for parking, storage, or access anchoring system is designed and installed correctly. to the house. Work with your local officials and licensed professionals SECURE OBJECTS Lawn furniture, potted plants, and even children’s toys can on the right design options. OUTSIDE THE pose risks when carried off by storm surges and wind. HOME Secure outdoor objects or bring them inside, to keep them REINFORCE Conventional garage doors are not from causing damage. YOUR GARAGE meant to withstand the force of water DOOR or high winds from hurricanes and Check with state and TRIM OR REMOVE The high winds that often come with a storm surge can cause strong storms. Purchase a reinforced local building codes DEAD, DAMAGED, trees and branches to fall. Make sure to trim or remove any garage door or install bracing kits to before implementing any OR ROTTING TREES damaged trees regularly. Ideally, your home should be at least help keep water out of your home. mitigation. Many coastal AND LIMBS a full-grown tree’s height away from the base of any tree. areas vulnerable to storm surge have strict PROTECT Doors and windows are common requirements for what is SEAL CRACKS Prevent wind or water from coming in your home. Make sure WINDOWS AND points of failure during a storm. When allowed below the BFE. AND GAPS the caulking around windows and doors is complete and in DOORS they break open, wind, water, and These restrictions will good shape. Use a waterproof sealant to fill any holes or gaps debris can seriously damage your impact which mitigation around pipes or wires that enter your building. house and belongings. Storm shutters options are possible. For and high-impact glass can prevent example, garages may glass from breaking. not be allowed in the ANCHOR ANY FUEL Do you have an exterior fuel tank, or are any of your utilities highest-risk areas. TANKS AND EXTERNAL outside? Anchor or tie them down according to the ground anchor UTILITY LINKS instructions. This will reduce their risk of overturning and sliding. INSIDE YOUR HOME ADDITIONAL RESOURCES HAVE A Create an emergency plan for your family and practice it regularly. PLAN When a storm is approaching, evacuate and move your car to higher FEMA, Homebuilder’s Guide to Coastal Construction ground. According to the National Weather Service, just two feet of water can move a vehicle. Visit Ready.gov/plan to learn more. FEMA, Homeowner’s Guide to Retrofitting FEMA, Recommended Residential Construction for Coastal Areas GET FLOOD Most homeowners insurance For more information on purchasing INSURANCE policies don’t cover flood NATIONAL HURRICANE CENTER, Storm Surge Overview damage. Protect your investment flood insurance through the by purchasing flood insurance National Flood Insurance Program, NATIONAL HURRICANE CENTER, Storm Surge Inundation Map visit FloodSmart.gov or contact for your home and its contents. your agent to Do so even if you do not live in get coverage. a high-risk flood zone. PREPARE OR Document your belongings. This will give you peace of mind UPDATE A LIST OF and help with the insurance process if you need to file a claim. REMEMBER: YOUR HOME’S Consider documenting your home’s contents visually. You can CONTENTS either take photos of high-value items or walk through your home Some of these tips may work better than others. Tailor and videotape each room’s belongings. any mitigation measures to meet your property’s needs. Always consult professionals, such as your insurance agent, architects, STORE Store valuables and important documents above the BFE engineers, contractors, or other experts in design and construction, VALUABLES (preferably on an upper floor). Place them in waterproof or before making changes to your home. Your local planning and zoning water-resistant containers. Also, make copies and store them office or building department is a good place to start for advice. online or offsite. ELEVATE Keep appliances and utilities APPLIANCES AND such as water heaters, Talk to your floodplain manager about how high UTILITIES ABOVE washers, dryers, and to elevate your utilities. Many coastal THE BFE electric panels on higher communities have codes that require floors. It can prevent them utilities to be elevated 12 inches or from getting damaged or more above the BFE, called freeboard. ruined by flood water. USE FLOOD- Flood-resistant insulation, drywall, and floor coverings like tile RESISTANT will help minimize damage and are easier to clean and sanitize. MATERIALS KNOW YOUR If you are moving near a large lake or the ocean, talk with PROPERTY AND neighbors. Find out about any issues they’ve had, or any NEIGHBORHOOD mitigation measures they have taken. Take the time to look up flood information. You can find flood maps for coastal areas on the National Flood Hazard Layer. .
Recommended publications
  • Sirocco Manual
    SIROCCO INSTALLATION PROPER INSTALLATION IS IMPORTANT. IF YOU NEED ASSISTANCE, CONSULT A CONTRACTOR ELECTRICIAN OR TELEVISION ANTENNA INSTALLER (CHECK WITH YOUR LOCAL BUILDING SUPPLY, OR HARDWARE STORE FOR REFERRALS). TO PROMOTE CONFIDENCE, PERFORM A TRIAL WIRING BEFORE INSTALLATION. Determine where you are going to locate both the 1 rooftop sensor and the read-out. Feed the terminal lug end of the 2-conductor cable through 2 2-CONDUCTOR WIND SPEED the rubber boot and connect the lugs to the terminals on the bottom CABLE SENSOR of the wind speed sensor. (Do NOT adjust the nuts that are already BOOT on the sensor). The polarity does not matter. COTTER PIN 3 Slide the stub mast through the rubber boot and insert the stub mast into the bottom of the wind speed sensor. Secure with the cotter pin. Coat all conections with silicone sealant and slip the boot over the sensor. STRAIGHT STUB MAST Secure the sensor and the stub mast to your antenna 2-CONDUCTOR mast (not supplied) with the two hose clamps. Radio CABLE 4 Shack and similar stores have a selection of antenna HOSE CLAMPS masts and roof mounting brackets. Choose a mount that best suits your location and provides at least eight feet of vertical clearance above objects on the roof. TALL MAST EVE 8 FEET 5 Follow the instructions supplied with the antenna MOUNT VENT-PIPE mount and secure the mast to the mount. MOUNT CABLE WALL CHIMNEY Secure the wire to the building using CLIPS TRIPOD MOUNT MOUNT MOUNT 6 CAULK cable clips (do not use regular staples).
    [Show full text]
  • February 2021 Historical Winter Storm Event South-Central Texas
    Austin/San Antonio Weather Forecast Office WEATHER EVENT SUMMARY February 2021 Historical Winter Storm Event South-Central Texas 10-18 February 2021 A Snow-Covered Texas. GeoColor satellite image from the morning of 15 February, 2021. February 2021 South Central Texas Historical Winter Storm Event South-Central Texas Winter Storm Event February 10-18, 2021 Event Summary Overview An unprecedented and historical eight-day period of winter weather occurred between 10 February and 18 February across South-Central Texas. The first push of arctic air arrived in the area on 10 February, with the cold air dropping temperatures into the 20s and 30s across most of the area. The first of several frozen precipitation events occurred on the morning of 11 February where up to 0.75 inches of freezing rain accumulated on surfaces in Llano and Burnet Counties and 0.25-0.50 inches of freezing rain accumulated across the Austin metropolitan area with lesser amounts in portions of the Hill Country and New Braunfels area. For several days, the cold air mass remained in place across South-Central Texas, but a much colder air mass remained stationary across the Northern Plains. This record-breaking arctic air was able to finally move south into the region late on 14 February and into 15 February as a strong upper level low-pressure system moved through the Southern Plains. As this system moved through the region, snow began to fall and temperatures quickly fell into the single digits and teens. Most areas of South-Central Texas picked up at least an inch of snow with the highest amounts seen from Del Rio and Eagle Pass extending to the northeast into the Austin and San Antonio areas.
    [Show full text]
  • North American Notes
    268 NORTH AMERICAN NOTES NORTH AMERICAN NOTES BY KENNETH A. HENDERSON HE year I 967 marked the Centennial celebration of the purchase of Alaska from Russia by the United States and the Centenary of the Articles of Confederation which formed the Canadian provinces into the Dominion of Canada. Thus both Alaska and Canada were in a mood to celebrate, and a part of this celebration was expressed · in an extremely active climbing season both in Alaska and the Yukon, where some of the highest mountains on the continent are located. While much of the officially sponsored mountaineering activity was concentrated in the border mountains between Alaska and the Yukon, there was intense activity all over Alaska as well. More information is now available on the first winter ascent of Mount McKinley mentioned in A.J. 72. 329. The team of eight was inter­ national in scope, a Frenchman, Swiss, German, Japanese, and New Zealander, the rest Americans. The successful group of three reached the summit on February 28 in typical Alaskan weather, -62° F. and winds of 35-40 knots. On their return they were stormbound at Denali Pass camp, I7,3oo ft. for seven days. For the forty days they were on the mountain temperatures averaged -35° to -40° F. (A.A.J. I6. 2I.) One of the most important attacks on McKinley in the summer of I967 was probably the three-pronged assault on the South face by the three parties under the general direction of Boyd Everett (A.A.J. I6. IO). The fourteen men flew in to the South east fork of the Kahiltna glacier on June 22 and split into three groups for the climbs.
    [Show full text]
  • Understanding Storm Surge
    The Education Program at the New Jersey Sea Grant Consortium 22 Magruder Road, Fort Hancock, NJ 07732 (732) 872-1300 www.njseagrant.org UNDERSTANDING STORM SURGE OVERVIEW In this climate education module, students will gain an understanding of the term “storm surge” by exploring the meteorological principles that create storms and generate storm surges. Many basics of weather are discussed, including air pressure, air circulation, and the influence of the Coriolis effect on weather. TABLE OF Background……………………………………….......................1-4 CONTENTS Activity #1- Oceans of Pressure …......................................... 5-10 Activity #2- Windy Balloon ……………………….................... 11-13 Activity #3- Density Driven Currents ………………................ 14-18 Activity #4- Coriolis Effect……………………………………. 19-22 Activity #5- Pressure Driven Storms and Surge…………..... 23-25 Activity #6- Surge of the Storm ………................................. 26-34 How Meteorologists’ Measure and Predict Storm Surge…… 35-37 Why should you care about understanding storm surge? ...... 38-39 Storm Surge Watches and Warnings ………………….……. 40-42 NOAA’s Top 10 Tips for Being Ready for a Storm Surge…...... 43 References …............................................................................ 44 OBJECTIVES Following completion of this module, students will be able to: Define storm surge and the factors that influence it Learn how temperature affects air density and the formation of high and low pressure systems in the atmosphere Explore the effect of gravity on air in the atmosphere Discover the role of Earth’s rotation on global and localized wind patterns Examine the effects that air pressure has on storm surge levels Determine how storm surge affects coastal communities Explore the impact of shoreline shape and beach slope on storm surge GRADE LEVEL 5 – 12 The New Jersey Sea Grant Consortium (NJSGC) is an affiliation of colleges, universities and other groups dedicated to advancing knowledge and stewardship of New Jersey’s marine and coastal environment.
    [Show full text]
  • ESSENTIALS of METEOROLOGY (7Th Ed.) GLOSSARY
    ESSENTIALS OF METEOROLOGY (7th ed.) GLOSSARY Chapter 1 Aerosols Tiny suspended solid particles (dust, smoke, etc.) or liquid droplets that enter the atmosphere from either natural or human (anthropogenic) sources, such as the burning of fossil fuels. Sulfur-containing fossil fuels, such as coal, produce sulfate aerosols. Air density The ratio of the mass of a substance to the volume occupied by it. Air density is usually expressed as g/cm3 or kg/m3. Also See Density. Air pressure The pressure exerted by the mass of air above a given point, usually expressed in millibars (mb), inches of (atmospheric mercury (Hg) or in hectopascals (hPa). pressure) Atmosphere The envelope of gases that surround a planet and are held to it by the planet's gravitational attraction. The earth's atmosphere is mainly nitrogen and oxygen. Carbon dioxide (CO2) A colorless, odorless gas whose concentration is about 0.039 percent (390 ppm) in a volume of air near sea level. It is a selective absorber of infrared radiation and, consequently, it is important in the earth's atmospheric greenhouse effect. Solid CO2 is called dry ice. Climate The accumulation of daily and seasonal weather events over a long period of time. Front The transition zone between two distinct air masses. Hurricane A tropical cyclone having winds in excess of 64 knots (74 mi/hr). Ionosphere An electrified region of the upper atmosphere where fairly large concentrations of ions and free electrons exist. Lapse rate The rate at which an atmospheric variable (usually temperature) decreases with height. (See Environmental lapse rate.) Mesosphere The atmospheric layer between the stratosphere and the thermosphere.
    [Show full text]
  • Hail Size and Melting Considerations in Thunderstorms
    Hail Size and Melting Considerations in Thunderstorms NWS Louisville, KY Hail Size and Melting Considerations Two primary factors associated with surface hail size: • Hail generation and initial size in storm • How much melting occurs as hail falls to ground Factors Contributing to Hail Generation and Size in Storm • Storm type: supercells produce larger hail than quasi-linear convective systems (QLCSs) and pulse storms; incipient cells (intense updraft) produce larger hail than after cells congeal into a mesoscale convective system (MCS) • Storm tilt: updraft/downdraft separation promotes hail growth • Updraft strength: increases hail generation and residence time in storm • Dry air aloft (~800-500): leads to evaporative cooling which promotes hail growth and size • Steep mid-level lapse rates: suggests presence of mid-level cool/dry air; promotes strong updraft • Echo tops: taller storms can tap colder air aloft (high refl above -20° C levels) and increase hail residence time in cloud • Cell/boundary mergers: promotes stronger updraft and better chance for hail formation • Values of WBZ height: hail is most favorable with height of 7-12 kft; less favorable if < 6 kft (air mass too cool, although small hail/graupel likely from low-top storms) and if >> 12 kft (melting) The size of hail at surface can’t be determined from looking at reflectivity values in a storm alone Factors Contributing to Hail Size at Surface • Large stones: better chance to reach ground than small stones which melt faster on their descent • Stones melt faster in wet environment than in dry (RH has strong effect); dry air in ~800-500 mb layer is very important to produce evaporative cooling and limit hail melting during descent (why stones are smaller or non-existent during MCSs due to saturated environment – and weaker updraft) • Hail falling within rain melts at a much greater rate than hail falling separate from rain (especially for small hail) • Vertical wind shear is critical in surface hail size to separate the updraft and downdraft and limit duration hail falls in heavy rain.
    [Show full text]
  • Winter Storm Intensity, Hazards, and Property Losses in the New York Tristate Area
    Ann. N.Y. Acad. Sci. ISSN 0077-8923 ANNALS OF THE NEW YORK ACADEMY OF SCIENCES Issue: Annals Reports ORIGINAL ARTICLE Winter storm intensity, hazards, and property losses in the New York tristate area Cari E. Shimkus,1 Mingfang Ting,1 James F. Booth,2 Susana B. Adamo,3 Malgosia Madajewicz,4 Yochanan Kushnir,1 and Harald E. Rieder1,5 1Lamont-Doherty Earth Observatory, Columbia University, Palisades, New York. 2City University of New York, City College, New York, New York. 3Center for International Earth Science Information Network, Columbia University, Palisades, New York. 4Center for Climate Systems Research, Columbia University, New York, New York. 5Wegener Center for Climate and Global Change and IGAM/Institute of Physics, University of Graz, Graz, Austria Address for correspondence: Mingfang Ting, Lamont-Doherty Earth Observatory, Columbia University, 61 Route 9W, Palisades, NY 10964. [email protected] Winter storms pose numerous hazards to the Northeast United States, including rain, snow, strong wind, and flooding. These hazards can cause millions of dollars in damages from one storm alone. This study investigates meteorological intensity and impacts of winter storms from 2001 to 2014 on coastal counties in Connecticut, New Jersey, and New York and underscores the consequences of winter storms. The study selected 70 winter storms on the basis of station observations of surface wind strength, heavy precipitation, high storm tide, and snow extremes. Storm rankings differed between measures, suggesting that intensity is not easily defined with a single metric. Several storms fell into two or more categories (multiple-category storms). Following storm selection, property damages were examined to determine which types lead to high losses.
    [Show full text]
  • Permafrost Presence and Distribution in the Chic-Chocs Mountains
    Document généré le 30 sept. 2021 18:19 Géographie physique et Quaternaire Permafrost presence and distribution in the Chic-Chocs Mountains, Gaspésie, Québec L’existence et la répartition du pergélisol dans les monts Chic-Chocs, Gaspésie, Québec Dauerfrosfexisfenz und-Verteilung in den Chic Chocs Bergen, Gaspésie, Québec James T. Gray et Roger J. E. Brown Le pergélisol au Québec — Labrador Résumé de l'article Volume 33, numéro 3-4, 1979 Les études sur la température du sol, entreprises en 1977, ont révélé la présence d’un pergélisol au sommet du mont Jacques-Cartier (1270 m). Le URI : https://id.erudit.org/iderudit/1000366ar profil thermique, dressé à partir d'un trou de forage d’une profondeur de 30 m, DOI : https://doi.org/10.7202/1000366ar démontre qu’une couche active épaisse de 5,75 m recouvre un pergélisol plus profond que le trou de forage. Basée sur les calculs de flux de chaleur et les Aller au sommaire du numéro mesures de conductivité thermique, l’extrapolation du profil thermique à une plus grande profondeur évalue l’épaisseur du pergélisol de 45 à 60 m. La contiguïté du niveau supérieur du pergélisol et de la surface, la température moyenne annuelle du site (-3 à -5°C) et l’absence d’un couvert nival épais Éditeur(s) témoignent de la contemporanéité du pergélisol. La température moyenne Les Presses de l’Université de Montréal annuelle du sol est de -1 à -1,5°C. Les études faites sur le mont Jacques-Cartier permettent de fixer la limite inférieure du pergélisol continu à 1000-1100 m d’altitude dans les Chic-ChoCs, là où il n’y a pas d’arbres.
    [Show full text]
  • Understanding Storm Surge
    The Education Program at the New Jersey Sea Grant Consortium 22 Magruder Road, Fort Hancock, NJ 07732 (732) 872-1300 www.njseagrant.org UNDERSTANDING STORM SURGE HOW METEOROLOGISTS PREDICT AND MEASURE STORM SURGE The many factors that impact the height of storm surge make predicting storm surge very difficult; however, scientists from NOAA and the NWS (National Weather Service) have created a computer model called SLOSH (Sea, Lake, Overland Surges from Hurricanes) to predict storm surge heights and evaluate the risk of a coastal strike. The model depends on a storm’s atmospheric pressure, track, size, speed. Using complex physic equations, the model can apply this information to a specific location taking into consideration local water depth, land elevation, and other land features that could affect storm surge. All the different locations where storm surges are predicted are called basins. The New Jersey Sea Grant Consortium (NJSGC) is an affiliation of colleges, universities and other groups dedicated to advancing knowledge and stewardship of New Jersey’s marine and coastal environment. NJSGC meets its mission through its innovative research, education and outreach programs. For more information about NJSGC, visit njseagrant.org. A sample SLOSH model display from Hurricane Ike (2008). The model uses a color code to illustrate how high storm surge levels will go in feet above ground level. Since storms can be difficult to forecast, the model also takes into account historical storm surges from past storms and hypothetical storm surges, using many different factors that can change quickly during a storm such as size, intensity, track, etc. The model reports how high the storm surge inundation will be in feet above ground, so if the model predicts a 20 foot storm surge, that means the water will reach 20 feet above ground in that specific location.
    [Show full text]
  • Flood ACC Article
    Breadth of the Flood Exclusion: A Flood is a Flood, Including Storm Surge TRED R. EYERLY A case involving an Alaska Native Corporation and property damage caused by a hurricane is bound to be of interest. Arctic Slope Regional Corp. v. Affiliated FM Ins. Co. did not disappoint.1 The Arctic Slope Regional Corporation, based in Barrow, Alaska, and one of the thirteen Corporations formed under the Alaska Native Claims Settlement Act of 1971, owned an office and construction yard in Iberia Parish, Louisiana. The property was inundated with three feet of water after Hurricane Rita’s storm surge hit in September 2005. Arctic Slope filed a claim for property damage with Affiliated. The claim was denied and suit was filed. Before the district court, the parties disputed which policy provisions applied to the storm surge related claims. The distinction was critical because the policy covered damage caused by “Wind and/or hail,” but excluded damage caused by flood. The policy defined “Wind and/or hail” as “direct and/or indirect action of wind and all loss or damage resulting there from whether caused by wind, by hail or by any other peril . when water . is carried, blown, driven, or otherwise transported by wind onto or into said location.” “Flood,” on the other hand, was defined as “surface water; tidal or seismic sea wave; rising (including overflowing or breaking of boundaries) of any body of water . all whether driven by wind or not. .”2 1 Arctic Slope argued that, because storm surge is caused by strong onshore winds, coverage was provided under the “Wind and/or hail” definition.
    [Show full text]
  • Mediterranean Firestorm, Are Extreme Wildfires a Specular Aspect of Floods?
    Plinius Conference Abstracts Vol. 12, Plinius12-57 12th Plinius Conference on Mediterranean Storms Corfu Island Greece, September 2010 © Author(s) 2010 Mediterranean Firestorm, are extreme wildfires a specular aspect of floods? P. Fiorucci, L. Molini, and A. Parodi CIMA Research Foundation, Italy (paolo.fi[email protected]) Severe weather and rainfall extremes predictors are a long standing issue for risk mitigation and civil protection purposes, analogously this work is focused on finding precursors for extreme wildfires throughout Mediterranean regions. Mediterranean storm are usually related with extreme precipitation and consequent floods. In this paper we propose to consider extreme wildfires in the Mediterranean as a specular aspect of “traditional” Mediterranean storms. Floods are related with soil moisture conditions, vegetation cover and topography but the main driver is represented by extreme precipitation. Rainfall is well evident in its happening. Nevertheless, the necessity of measuring it has become fundamental since the implementation of instruments needed to prevent floods. Wildfires are usually considered as the complex results of several heterogeneous aspects. Many peculiarities make Mediterranean wildfires different from other natural risk, fire ignition, human caused in more than 90% of fire occurrences, being the most evident. Fire spread and fire damages are related with vegetation cover, topography, moisture content and wind conditions but also with the ability to cope with the fire front. In the international literature all these aspects are considered to define tools able to predict and manage wildfire risk. Strong winds and high temperature are often considered as the main drivers in extreme wildfire risk conditions. Strong winds are usually associated also to floods event during Mediterranean storm but in this case it is evident it doesn’t the main driver.
    [Show full text]
  • Massachusetts Tropical Cyclone Profile August 2021
    Commonwealth of Massachusetts Tropical Cyclone Profile August 2021 Commonwealth of Massachusetts Tropical Cyclone Profile Description Tropical cyclones, a general term for tropical storms and hurricanes, are low pressure systems that usually form over the tropics. These storms are referred to as “cyclones” due to their rotation. Tropical cyclones are among the most powerful and destructive meteorological systems on earth. Their destructive phenomena include storm surge, high winds, heavy rain, tornadoes, and rip currents. As tropical storms move inland, they can cause severe flooding, downed trees and power lines, and structural damage. Once a tropical cyclone no longer has tropical characteristics, it is then classified as a post-tropical system. The National Hurricane Center (NHC) has classified four stages of tropical cyclones: • Tropical Depression: A tropical cyclone with maximum sustained winds of 38 mph (33 knots) or less. • Tropical Storm: A tropical cyclone with maximum sustained winds of 39 to 73 mph (34 to 63 knots). • Hurricane: A tropical cyclone with maximum sustained winds of 74 mph (64 knots) or higher. • Major Hurricane: A tropical cyclone with maximum sustained winds of 111 mph (96 knots) or higher, corresponding to a Category 3, 4 or 5 on the Saffir-Simpson Hurricane Wind Scale. Primary Hazards Storm Surge and Storm Tide Storm surge is an abnormal rise of water generated by a storm, over and above the predicted astronomical tide. Storm surge and large waves produced by hurricanes pose the greatest threat to life and property along the coast. They also pose a significant risk for drowning. Storm tide is the total water level rise during a storm due to the combination of storm surge and the astronomical tide.
    [Show full text]