Glossary of Severe Weather Terms
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Global Modeling of Contrail and Contrail Cirrus Climate Impact
GLOBAL MODELING OF THE CONTRAIL AND CONTRAIL CIRRUS CLIMATE IMPACT BY ULRIKE BU RKHARDT , BERND KÄRCHER , AND ULRICH SCH U MANN et al. 2010). For the given ambient Modeling the physical processes governing the life cycle of conditions, their direct radia- contrail cirrus clouds will substantially narrow the uncer- tive effect is mainly determined tainty associated with the aviation climate impact. by coverage and optical depth. The microphysical properties of contrail cirrus likely differ from substantial part of the aviation climate impact those of most natural cirrus, at least during the initial may be due to aviation-induced cloudiness (AIC; stages of the contrail cirrus life cycle (Heymsfield A Brasseur and Gupta 2010), which is arguably et al. 2010). Contrails form and persist in air that is the most important but least understood component ice saturated, whereas natural cirrus usually requires in aviation climate impact assessments. The AIC in- high ice supersaturation to form (Jensen et al. 2001). cludes contrail cirrus and changes in cirrus properties This difference implies that in a substantial fraction or occurrence arising from aircraft soot emissions of the upper troposphere contrail cirrus can persist in (soot cirrus). Linear contrails are line-shaped ice supersaturated air that is cloud free, thus increasing clouds that form behind cruising aircraft in clear air high cloud coverage. Contrails and contrail cirrus and within cirrus clouds. Linear contrails transform existing above, below, or within clouds change the into irregularly shaped ice clouds (contrail cirrus) and column optical depth and radiative fluxes. They may may form cloud clusters in favorable meteorological also indirectly affect radiation by changing the mois- conditions, occasionally covering large horizontal ture budget of the upper troposphere, and therefore areas extending up to 100,000 km2 (Duda et al. -
Water Drop Patch Project Making a Difference
United States Office of Water Environmental Protection (4501T) March 2008 Agency Washington, DC 20460 EPA 840-B-07-001 _________________________________________________________________________ Water Drop Patch Project Photo courtesy of GSUSA Making a Difference Acknowledgments Authors Meghan Klasic (author of new version of patch manual) Oak Ridge Institude of Science and Education Intern, USEPA Office of Wetlands, Oceans, and Watersheds Patricia Scott (co-author of original patch manual) USEPA’s Office of Wetlands, Oceans, and Watersheds Karen Brown (co-author of original patch manual) Retired, Girl Scout Council of the Nation’s Capital Editor Martha Martin, Tetra Tech, Inc. Contributors A great big thanks also goes out to the following people and organizations for their contributions, including images, photographs, text, formatting, and overall general knowledge: Jodi Stewart Schwarzer, Project Manager, Environmental & Outdoor Program Girl Scouts of the USA’s Environmental and Outdoor Program, Linking Girls to the Land Elliott Wildlife Values Project Kathleen Cullinan, Manager, Environmental & Outdoor Program Girl Scouts of the USA’s Environmental and Outdoor Program Matthew Boone, Kelly Brzezinski, Aileen Molloy, Scott Morello, American Horticultural Society, Fish and Wildlife Service, Girl Scouts of the United States of America, National Oceanic Atmospheric Administration, United States Geological Survey, U.S. Environmental Protection Agency. This resource is updated periodically and is available for free through the National Service Center for Environmental Publications (NSCEP) by calling toll-free (800) 490-9198 or e-mailing [email protected]. It is also available online at www.epa.gov/adopt/patch. Inquiries or suggestions related to the project should be directed to Patricia Scott, United States Environmental Protection Agency, 1200 Pennsylvania Avenue, NW, Washington, DC 20460 (Mail Code 4501T). -
Fatalities Associated with the Severe Weather Conditions in the Czech Republic, 2000–2019
Nat. Hazards Earth Syst. Sci., 21, 1355–1382, 2021 https://doi.org/10.5194/nhess-21-1355-2021 © Author(s) 2021. This work is distributed under the Creative Commons Attribution 4.0 License. Fatalities associated with the severe weather conditions in the Czech Republic, 2000–2019 Rudolf Brázdil1,2, Katerinaˇ Chromá2, Lukáš Dolák1,2, Jan Rehoˇ rˇ1,2, Ladislava Rezníˇ ckovᡠ1,2, Pavel Zahradnícekˇ 2,3, and Petr Dobrovolný1,2 1Institute of Geography, Masaryk University, Brno, Czech Republic 2Global Change Research Institute, Czech Academy of Sciences, Brno, Czech Republic 3Czech Hydrometeorological Institute, Brno, Czech Republic Correspondence: Rudolf Brázdil ([email protected]) Received: 12 January 2021 – Discussion started: 21 January 2021 Revised: 25 March 2021 – Accepted: 26 March 2021 – Published: 4 May 2021 Abstract. This paper presents an analysis of fatalities at- with fatal accidents as well as a decrease in their percent- tributable to weather conditions in the Czech Republic dur- age in annual numbers of fatalities. The discussion of results ing the 2000–2019 period. The database of fatalities de- includes the problems of data uncertainty, comparison of dif- ployed contains information extracted from Právo, a lead- ferent data sources, and the broader context. ing daily newspaper, and Novinky.cz, its internet equivalent, supplemented by a number of other documentary sources. The analysis is performed for floods, windstorms, convective storms, rain, snow, glaze ice, frost, heat, and fog. For each 1 Introduction of them, the associated fatalities are investigated in terms of annual frequencies, trends, annual variation, spatial distribu- Natural disasters are accompanied not only by extensive ma- tion, cause, type, place, and time as well as the sex, age, and terial damage but also by great loss of human life, facts easily behaviour of casualties. -
Starry Starry Night Part 1
Starry Starry Night Part 1 DO NOT WRITE ON THIS PORTION OF THE TEST 1. If a lunar eclipse occurs tonight, when is the soonest a solar eclipse can occur? A) Tomorrow B) In two weeks C) In six months D) In one year 2. The visible surface of the Sun is called its A) corona B) photosphere C) chromosphere D) atmosphere 3. Which moon in the Solar System has lakes and rivers on it: A) Triton B) Charon C) Titan D) Europa 4. The sixth planet from the Sun is: A) Mars B) Jupiter C) Saturn D) Uranus 5. The orbits of the planets and dwarf planets around the Sun are in the shape of: A) An eclipse B) A circle C) An ellipse D) None of the above 6. True or False: During the summer and winter solstices, nighttime and daytime are of equal length. 7. The diameter of the observable universe is estimated to be A) 93 billion miles B) 93 billion astronomical units C) 93 billion light years D) 93 trillion miles 8. Asteroids in the same orbit as Jupiter -- in front and behind it -- are called: A) Greeks B) Centaurs C) Trojans D) Kuiper Belt Objects 9. Saturn's rings are made mostly of: A) Methane ice B) Water ice C) Ammonia ice D) Ice cream 10. The highest volcano in the Solar System is on: A) Earth B) Venus C) Mars D) Io 11. The area in the Solar System just beyond the orbit of Neptune populated by icy bodies is called A) The asteroid belt B) The Oort cloud C) The Kuiper Belt D) None of the above 12. -
Conspicuity of High-Visibility Safety Apparel During Civil Twilight
UMTRI-2006-13 JUNE 2006 CONSPICUITY OF HIGH-VISIBILITY SAFETY APPAREL DURING CIVIL TWILIGHT JAMES R. SAYER MARY LYNN MEFFORD CONSPICUITY OF HIGH-VISIBILITY SAFETY APPAREL DURING CIVIL TWILIGHT James R. Sayer Mary Lynn Mefford The University of Michigan Transportation Research Institute Ann Arbor, MI 48109-2150 U.S.A. Report No. UMTRI-2006-13 June 2006 Technical Report Documentation Page 1. Report No. 2. Government Accession No. 3. Recipient’s Catalog No. UMTRI-2006-13 4. Title and Subtitle 5. Report Date Conspicuity of High-Visibility Safety Apparel During Civil June 2006 Twilight 6. Performing Organization Code 302753 7. Author(s) 8. Performing Organization Report No. Sayer, J.R. and Mefford, M.L. UMTRI-2006-13 9. Performing Organization Name and Address 10. Work Unit no. (TRAIS) The University of Michigan Transportation Research Institute 11. Contract or Grant No. 2901 Baxter Road Ann Arbor, Michigan 48109-2150 U.S.A. 12. Sponsoring Agency Name and Address 13. Type of Report and Period Covered The University of Michigan Industry Affiliation Program for 14. Sponsoring Agency Code Human Factors in Transportation Safety 15. Supplementary Notes The Affiliation Program currently includes Alps Automotive/Alpine Electronics, Autoliv, Avery Dennison, Bendix, BMW, Bosch, Com-Corp Industries, DaimlerChrysler, DBM Reflex, Decoma Autosystems, Denso, Federal-Mogul, Ford, GE, General Motors, Gentex, Grote Industries, Guide Corporation, Hella, Honda, Ichikoh Industries, Koito Manufacturing, Lang- Mekra North America, Magna Donnelly, Muth, Nissan, North American Lighting, Northrop Grumman, OSRAM Sylvania, Philips Lighting, Renault, Schefenacker International, Sisecam, SL Corporation, Stanley Electric, Toyota Technical Center, USA, Truck-Lite, Valeo, Visteon, 3M Personal Safety Products and 3M Traffic Safety Systems Information about the Affiliation Program is available at: http://www.umich.edu/~industry 16. -
Soaring Weather
Chapter 16 SOARING WEATHER While horse racing may be the "Sport of Kings," of the craft depends on the weather and the skill soaring may be considered the "King of Sports." of the pilot. Forward thrust comes from gliding Soaring bears the relationship to flying that sailing downward relative to the air the same as thrust bears to power boating. Soaring has made notable is developed in a power-off glide by a conven contributions to meteorology. For example, soar tional aircraft. Therefore, to gain or maintain ing pilots have probed thunderstorms and moun altitude, the soaring pilot must rely on upward tain waves with findings that have made flying motion of the air. safer for all pilots. However, soaring is primarily To a sailplane pilot, "lift" means the rate of recreational. climb he can achieve in an up-current, while "sink" A sailplane must have auxiliary power to be denotes his rate of descent in a downdraft or in come airborne such as a winch, a ground tow, or neutral air. "Zero sink" means that upward cur a tow by a powered aircraft. Once the sailcraft is rents are just strong enough to enable him to hold airborne and the tow cable released, performance altitude but not to climb. Sailplanes are highly 171 r efficient machines; a sink rate of a mere 2 feet per second. There is no point in trying to soar until second provides an airspeed of about 40 knots, and weather conditions favor vertical speeds greater a sink rate of 6 feet per second gives an airspeed than the minimum sink rate of the aircraft. -
Viscosity Loss and Hydraulic Pressure Drop on Multilayer Separate Polymer Injection in Concentric Dual-Tubing
energies Article Viscosity Loss and Hydraulic Pressure Drop on Multilayer Separate Polymer Injection in Concentric Dual-Tubing Yi Zhang 1, Jiexiang Wang 1,*, Peng Jia 2, Xiao Liu 1, Xuxu Zhang 1, Chang Liu 1 and Xiangwei Bai 1 1 School of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266580, China; [email protected] (Y.Z.); [email protected] (X.L.); [email protected] (X.Z.); [email protected] (C.L.); [email protected] (X.B.) 2 College of Pipeline and Civil Engineering, China University of Petroleum (East China), Qingdao 266580, China; [email protected] * Correspondence: [email protected] Received: 13 February 2020; Accepted: 23 March 2020; Published: 2 April 2020 Abstract: Multilayer separate polymer injection in concentric dual-tubing is a special method for enhancing oil recovery in later development stage of the multilayer formation. During the injection process, heat exchange occurs among the inner tubing, tubing annulus and formation, making the thermal transfer process more complicated than traditional one. This work focuses on the polymer flowing characteristics during the multilayer separate polymer flooding injection process in the wellbore. A temperature–viscosity numerical model is derived to investigate the influencing factors on polymer dual-tubing injection process. Then, an estimate-correct method is introduced to derive the numerical solutions. Several influences have been discussed, including the axial temperature distribution, viscosity distribution, pressure drop, and flow pattern of polymer. Results show that under low injecting rates, below 5 m3/d, formation temperature will greatly decrease the polymer viscosity. When the injecting rates above 20 m3/d, the polymer just decreases 1–3 mPa s at the bottom · of well, which is really small. -
Observation of Polar Stratospheric Clouds Down to the Mediterranean Coast
Atmos. Chem. Phys., 7, 5275–5281, 2007 www.atmos-chem-phys.net/7/5275/2007/ Atmospheric © Author(s) 2007. This work is licensed Chemistry under a Creative Commons License. and Physics Observation of Polar Stratospheric Clouds down to the Mediterranean coast P. Keckhut1, Ch. David1, M. Marchand1, S. Bekki1, J. Jumelet1, A. Hauchecorne1, and M. Hopfner¨ 2 1Service d’Aeronomie,´ Institut Pierre Simon Laplace, B.P. 3, 91371, Verrieres-le-Buisson,` France 2Forschungszentrum Karlsruhe, Institut fur¨ Meteorologie und Klimaforschung, Karlsruhe, Germany Received: 8 March 2007 – Published in Atmos. Chem. Phys. Discuss.: 15 May 2007 Revised: 5 October 2007 – Accepted: 6 October 2007 – Published: 12 October 2007 Abstract. A Polar Stratospheric Cloud (PSC) was detected spheric temperatures are expected to cool down due to ozone for the first time in January 2006 over Southern Europe af- depletion, but also to the increase in the concentrations of ter 25 years of systematic lidar observations. This cloud greenhouse gases. Such findings are already reported and was observed while the polar vortex was highly distorted simulated (Ramaswamy et al., 2001), although trends are less during the initial phase of a major stratospheric warming. clear at high latitudes due to a larger natural variability and Very cold stratospheric temperatures (<190 K) centred over potential dynamical feedback. Nearly twenty years after the the Northern-Western Europe were reported, extending down signing of the Montreal Protocol, the timing and extent of the to the South of France -
More Observations of Small Funnel Clouds and Other Tubular Clouds
3714 MONTHLY WEATHER REVIEW VOLUME 133 PICTURE OF THE MONTH More Observations of Small Funnel Clouds and Other Tubular Clouds HOWARD B. BLUESTEIN School of Meteorology, University of Oklahoma, Norman, Oklahoma (Manuscript received 14 March 2005, in final form 20 May 2005) ABSTRACT In this brief contribution, photographic documentation is provided of a variety of small, tubular-shaped clouds and of a small funnel cloud pendant from a convective cloud that appears to have been modified by flow over high-altitude mountains in northeast Colorado. These funnel clouds are contrasted with others that have been documented, including those pendant from high-based cumulus clouds in the plains of the United States. It is suggested that the mountain funnel cloud is unique in that flow over high terrain is probably responsible for its existence; other types of small funnel clouds are seen both over elevated, mountainous terrain and over flat terrain at lower elevations. 1. Introduction which the benign funnel clouds occur so that if they are observed, severe weather warnings are not issued. Fur- Bluestein (1994) and others (e.g., Doswell 1985, p. thermore, the small funnel clouds are of interest in their 107; McCaul and Blanchard 1990) have documented, in own right because their dynamics are not well under- the plains of the United States, small funnel clouds pen- stood, and they have not been discussed in the litera- dant from convective clouds whose updrafts appear to ture to the much greater extent that the dynamics of be rooted above the boundary layer. Above many of tornadoes have (e.g., Davies-Jones 1986). -
Hurricane Response Annex Overview Introduction
TABLE OF CONTENTS SECTION I – HURICANE RESPONSE ANNEX OVERVIEW ............................................................... 2 INTRODUCTION .................................................................................................................................................. 3 PLANNING ASSUMPTIONS ................................................................................................................................... 4 COMMUNITY IMPACTS ........................................................................................................................................ 4 SECTION II – CONCEPT OF OPERATIONS ........................................................................................ 5 DEFINING THE HAZARD ...................................................................................................................................... 5 Tropical Cyclones ..................................................................................................................................................... 5 TIMELINES ........................................................................................................................................................... 6 HURRICANE SEASON ...................................................................................................................................... 6 RESPONDER REENTRY HOUR ......................................................................................................................... 7 SECTION III – ROLES & RESPONSIBILITIES -
CALIFORNIA STATE UNIVERSITY, NORTHRIDGE FORECASTING CALIFORNIA THUNDERSTORMS a Thesis Submitted in Partial Fulfillment of the Re
CALIFORNIA STATE UNIVERSITY, NORTHRIDGE FORECASTING CALIFORNIA THUNDERSTORMS A thesis submitted in partial fulfillment of the requirements For the degree of Master of Arts in Geography By Ilya Neyman May 2013 The thesis of Ilya Neyman is approved: _______________________ _________________ Dr. Steve LaDochy Date _______________________ _________________ Dr. Ron Davidson Date _______________________ _________________ Dr. James Hayes, Chair Date California State University, Northridge ii TABLE OF CONTENTS SIGNATURE PAGE ii ABSTRACT iv INTRODUCTION 1 THESIS STATEMENT 12 IMPORTANT TERMS AND DEFINITIONS 13 LITERATURE REVIEW 17 APPROACH AND METHODOLOGY 24 TRADITIONALLY RECOGNIZED TORNADIC PARAMETERS 28 CASE STUDY 1: SEPTEMBER 10, 2011 33 CASE STUDY 2: JULY 29, 2003 48 CASE STUDY 3: JANUARY 19, 2010 62 CASE STUDY 4: MAY 22, 2008 91 CONCLUSIONS 111 REFERENCES 116 iii ABSTRACT FORECASTING CALIFORNIA THUNDERSTORMS By Ilya Neyman Master of Arts in Geography Thunderstorms are a significant forecasting concern for southern California. Even though convection across this region is less frequent than in many other parts of the country significant thunderstorm events and occasional severe weather does occur. It has been found that a further challenge in convective forecasting across southern California is due to the variety of sub-regions that exist including coastal plains, inland valleys, mountains and deserts, each of which is associated with different weather conditions and sometimes drastically different convective parameters. In this paper four recent thunderstorm case studies were conducted, with each one representative of a different category of seasonal and synoptic patterns that are known to affect southern California. In addition to supporting points made in prior literature there were numerous new and unique findings that were discovered during the scope of this research and these are discussed as they are investigated in their respective case study as applicable. -
Squall Lines: Meteorology, Skywarn Spotting, & a Brief Look at the 18
Squall Lines: Meteorology, Skywarn Spotting, & A Brief Look At The 18 June 2010 Derecho Gino Izzi National Weather Service, Chicago IL Outline • Meteorology 301: Squall lines – Brief review of thunderstorm basics – Squall lines – Squall line tornadoes – Mesovorticies • Storm spotting for squall lines • Brief Case Study of 18 June 2010 Event Thunderstorm Ingredients • Moisture – Gulf of Mexico most common source locally Thunderstorm Ingredients • Lifting Mechanism(s) – Fronts – Jet Streams – “other” boundaries – topography Thunderstorm Ingredients • Instability – Measure of potential for air to accelerate upward – CAPE: common variable used to quantify magnitude of instability < 1000: weak 1000-2000: moderate 2000-4000: strong 4000+: extreme Thunderstorms Thunderstorms • Moisture + Instability + Lift = Thunderstorms • What kind of thunderstorms? – Single Cell – Multicell/Squall Line – Supercells Thunderstorm Types • What determines T-storm Type? – Short/simplistic answer: CAPE vs Shear Thunderstorm Types • What determines T-storm Type? (Longer/more complex answer) – Lot we don’t know, other factors (besides CAPE/shear) include • Strength of forcing • Strength of CAP • Shear WRT to boundary • Other stuff Thunderstorm Types • Multi-cell squall lines most common type of severe thunderstorm type locally • Most common type of severe weather is damaging winds • Hail and brief tornadoes can occur with most the intense squall lines Squall Lines & Spotting Squall Line Terminology • Squall Line : a relatively narrow line of thunderstorms, often